mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 18:56:39 +07:00
b36c6049ed
The WPF needs access to the current display list to configure writeback. Add a display list pointer to the VSP1 entity .configure_stream() operation. Only display pipelines can make use of the display list there as mem-to-mem pipelines don't have access to a display list at stream configuration time. This is not an issue as writeback is only used for display pipelines. Signed-off-by: Laurent Pinchart <laurent.pinchart+renesas@ideasonboard.com> Reviewed-by: Kieran Bingham <kieran.bingham+renesas@ideasonboard.com> Reviewed-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
383 lines
11 KiB
C
383 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* vsp1_rpf.c -- R-Car VSP1 Read Pixel Formatter
|
|
*
|
|
* Copyright (C) 2013-2014 Renesas Electronics Corporation
|
|
*
|
|
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
|
|
*/
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <media/v4l2-subdev.h>
|
|
|
|
#include "vsp1.h"
|
|
#include "vsp1_dl.h"
|
|
#include "vsp1_pipe.h"
|
|
#include "vsp1_rwpf.h"
|
|
#include "vsp1_video.h"
|
|
|
|
#define RPF_MAX_WIDTH 8190
|
|
#define RPF_MAX_HEIGHT 8190
|
|
|
|
/* Pre extended display list command data structure. */
|
|
struct vsp1_extcmd_auto_fld_body {
|
|
u32 top_y0;
|
|
u32 bottom_y0;
|
|
u32 top_c0;
|
|
u32 bottom_c0;
|
|
u32 top_c1;
|
|
u32 bottom_c1;
|
|
u32 reserved0;
|
|
u32 reserved1;
|
|
} __packed;
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Device Access
|
|
*/
|
|
|
|
static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
|
|
struct vsp1_dl_body *dlb, u32 reg, u32 data)
|
|
{
|
|
vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
|
|
data);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* V4L2 Subdevice Operations
|
|
*/
|
|
|
|
static const struct v4l2_subdev_ops rpf_ops = {
|
|
.pad = &vsp1_rwpf_pad_ops,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* VSP1 Entity Operations
|
|
*/
|
|
|
|
static void rpf_configure_stream(struct vsp1_entity *entity,
|
|
struct vsp1_pipeline *pipe,
|
|
struct vsp1_dl_list *dl,
|
|
struct vsp1_dl_body *dlb)
|
|
{
|
|
struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
|
|
const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
|
|
const struct v4l2_pix_format_mplane *format = &rpf->format;
|
|
const struct v4l2_mbus_framefmt *source_format;
|
|
const struct v4l2_mbus_framefmt *sink_format;
|
|
unsigned int left = 0;
|
|
unsigned int top = 0;
|
|
u32 pstride;
|
|
u32 infmt;
|
|
|
|
/* Stride */
|
|
pstride = format->plane_fmt[0].bytesperline
|
|
<< VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
|
|
if (format->num_planes > 1)
|
|
pstride |= format->plane_fmt[1].bytesperline
|
|
<< VI6_RPF_SRCM_PSTRIDE_C_SHIFT;
|
|
|
|
/*
|
|
* pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
|
|
* of pstride by 2 is conveniently OK here as we are multiplying both
|
|
* values.
|
|
*/
|
|
if (pipe->interlaced)
|
|
pstride *= 2;
|
|
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);
|
|
|
|
/* Format */
|
|
sink_format = vsp1_entity_get_pad_format(&rpf->entity,
|
|
rpf->entity.config,
|
|
RWPF_PAD_SINK);
|
|
source_format = vsp1_entity_get_pad_format(&rpf->entity,
|
|
rpf->entity.config,
|
|
RWPF_PAD_SOURCE);
|
|
|
|
infmt = VI6_RPF_INFMT_CIPM
|
|
| (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);
|
|
|
|
if (fmtinfo->swap_yc)
|
|
infmt |= VI6_RPF_INFMT_SPYCS;
|
|
if (fmtinfo->swap_uv)
|
|
infmt |= VI6_RPF_INFMT_SPUVS;
|
|
|
|
if (sink_format->code != source_format->code)
|
|
infmt |= VI6_RPF_INFMT_CSC;
|
|
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);
|
|
|
|
/* Output location. */
|
|
if (pipe->brx) {
|
|
const struct v4l2_rect *compose;
|
|
|
|
compose = vsp1_entity_get_pad_selection(pipe->brx,
|
|
pipe->brx->config,
|
|
rpf->brx_input,
|
|
V4L2_SEL_TGT_COMPOSE);
|
|
left = compose->left;
|
|
top = compose->top;
|
|
}
|
|
|
|
if (pipe->interlaced)
|
|
top /= 2;
|
|
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
|
|
(left << VI6_RPF_LOC_HCOORD_SHIFT) |
|
|
(top << VI6_RPF_LOC_VCOORD_SHIFT));
|
|
|
|
/*
|
|
* On Gen2 use the alpha channel (extended to 8 bits) when available or
|
|
* a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
|
|
* otherwise.
|
|
*
|
|
* The Gen3 RPF has extended alpha capability and can both multiply the
|
|
* alpha channel by a fixed global alpha value, and multiply the pixel
|
|
* components to convert the input to premultiplied alpha.
|
|
*
|
|
* As alpha premultiplication is available in the BRx for both Gen2 and
|
|
* Gen3 we handle it there and use the Gen3 alpha multiplier for global
|
|
* alpha multiplication only. This however prevents conversion to
|
|
* premultiplied alpha if no BRx is present in the pipeline. If that use
|
|
* case turns out to be useful we will revisit the implementation (for
|
|
* Gen3 only).
|
|
*
|
|
* We enable alpha multiplication on Gen3 using the fixed alpha value
|
|
* set through the V4L2_CID_ALPHA_COMPONENT control when the input
|
|
* contains an alpha channel. On Gen2 the global alpha is ignored in
|
|
* that case.
|
|
*
|
|
* In all cases, disable color keying.
|
|
*/
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
|
|
(fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
|
|
: VI6_RPF_ALPH_SEL_ASEL_FIXED));
|
|
|
|
if (entity->vsp1->info->gen == 3) {
|
|
u32 mult;
|
|
|
|
if (fmtinfo->alpha) {
|
|
/*
|
|
* When the input contains an alpha channel enable the
|
|
* alpha multiplier. If the input is premultiplied we
|
|
* need to multiply both the alpha channel and the pixel
|
|
* components by the global alpha value to keep them
|
|
* premultiplied. Otherwise multiply the alpha channel
|
|
* only.
|
|
*/
|
|
bool premultiplied = format->flags
|
|
& V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;
|
|
|
|
mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
|
|
| (premultiplied ?
|
|
VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
|
|
VI6_RPF_MULT_ALPHA_P_MMD_NONE);
|
|
} else {
|
|
/*
|
|
* When the input doesn't contain an alpha channel the
|
|
* global alpha value is applied in the unpacking unit,
|
|
* the alpha multiplier isn't needed and must be
|
|
* disabled.
|
|
*/
|
|
mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
|
|
| VI6_RPF_MULT_ALPHA_P_MMD_NONE;
|
|
}
|
|
|
|
rpf->mult_alpha = mult;
|
|
}
|
|
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);
|
|
|
|
}
|
|
|
|
static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
|
|
struct vsp1_dl_list *dl)
|
|
{
|
|
const struct v4l2_pix_format_mplane *format = &rpf->format;
|
|
struct vsp1_dl_ext_cmd *cmd;
|
|
struct vsp1_extcmd_auto_fld_body *auto_fld;
|
|
u32 offset_y, offset_c;
|
|
|
|
cmd = vsp1_dl_get_pre_cmd(dl);
|
|
if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
|
|
return;
|
|
|
|
/* Re-index our auto_fld to match the current RPF. */
|
|
auto_fld = cmd->data;
|
|
auto_fld = &auto_fld[rpf->entity.index];
|
|
|
|
auto_fld->top_y0 = rpf->mem.addr[0];
|
|
auto_fld->top_c0 = rpf->mem.addr[1];
|
|
auto_fld->top_c1 = rpf->mem.addr[2];
|
|
|
|
offset_y = format->plane_fmt[0].bytesperline;
|
|
offset_c = format->plane_fmt[1].bytesperline;
|
|
|
|
auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
|
|
auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
|
|
auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;
|
|
|
|
cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
|
|
}
|
|
|
|
static void rpf_configure_frame(struct vsp1_entity *entity,
|
|
struct vsp1_pipeline *pipe,
|
|
struct vsp1_dl_list *dl,
|
|
struct vsp1_dl_body *dlb)
|
|
{
|
|
struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
|
|
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
|
|
rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
|
|
(rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));
|
|
|
|
vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
|
|
}
|
|
|
|
static void rpf_configure_partition(struct vsp1_entity *entity,
|
|
struct vsp1_pipeline *pipe,
|
|
struct vsp1_dl_list *dl,
|
|
struct vsp1_dl_body *dlb)
|
|
{
|
|
struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
|
|
struct vsp1_rwpf_memory mem = rpf->mem;
|
|
struct vsp1_device *vsp1 = rpf->entity.vsp1;
|
|
const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
|
|
const struct v4l2_pix_format_mplane *format = &rpf->format;
|
|
struct v4l2_rect crop;
|
|
|
|
/*
|
|
* Source size and crop offsets.
|
|
*
|
|
* The crop offsets correspond to the location of the crop
|
|
* rectangle top left corner in the plane buffer. Only two
|
|
* offsets are needed, as planes 2 and 3 always have identical
|
|
* strides.
|
|
*/
|
|
crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);
|
|
|
|
/*
|
|
* Partition Algorithm Control
|
|
*
|
|
* The partition algorithm can split this frame into multiple
|
|
* slices. We must scale our partition window based on the pipe
|
|
* configuration to match the destination partition window.
|
|
* To achieve this, we adjust our crop to provide a 'sub-crop'
|
|
* matching the expected partition window. Only 'left' and
|
|
* 'width' need to be adjusted.
|
|
*/
|
|
if (pipe->partitions > 1) {
|
|
crop.width = pipe->partition->rpf.width;
|
|
crop.left += pipe->partition->rpf.left;
|
|
}
|
|
|
|
if (pipe->interlaced) {
|
|
crop.height = round_down(crop.height / 2, fmtinfo->vsub);
|
|
crop.top = round_down(crop.top / 2, fmtinfo->vsub);
|
|
}
|
|
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
|
|
(crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
|
|
(crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
|
|
(crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
|
|
(crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));
|
|
|
|
mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
|
|
+ crop.left * fmtinfo->bpp[0] / 8;
|
|
|
|
if (format->num_planes > 1) {
|
|
unsigned int offset;
|
|
|
|
offset = crop.top * format->plane_fmt[1].bytesperline
|
|
+ crop.left / fmtinfo->hsub
|
|
* fmtinfo->bpp[1] / 8;
|
|
mem.addr[1] += offset;
|
|
mem.addr[2] += offset;
|
|
}
|
|
|
|
/*
|
|
* On Gen3 hardware the SPUVS bit has no effect on 3-planar
|
|
* formats. Swap the U and V planes manually in that case.
|
|
*/
|
|
if (vsp1->info->gen == 3 && format->num_planes == 3 &&
|
|
fmtinfo->swap_uv)
|
|
swap(mem.addr[1], mem.addr[2]);
|
|
|
|
/*
|
|
* Interlaced pipelines will use the extended pre-cmd to process
|
|
* SRCM_ADDR_{Y,C0,C1}.
|
|
*/
|
|
if (pipe->interlaced) {
|
|
vsp1_rpf_configure_autofld(rpf, dl);
|
|
} else {
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
|
|
vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
|
|
}
|
|
}
|
|
|
|
static void rpf_partition(struct vsp1_entity *entity,
|
|
struct vsp1_pipeline *pipe,
|
|
struct vsp1_partition *partition,
|
|
unsigned int partition_idx,
|
|
struct vsp1_partition_window *window)
|
|
{
|
|
partition->rpf = *window;
|
|
}
|
|
|
|
static const struct vsp1_entity_operations rpf_entity_ops = {
|
|
.configure_stream = rpf_configure_stream,
|
|
.configure_frame = rpf_configure_frame,
|
|
.configure_partition = rpf_configure_partition,
|
|
.partition = rpf_partition,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Initialization and Cleanup
|
|
*/
|
|
|
|
struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
|
|
{
|
|
struct vsp1_rwpf *rpf;
|
|
char name[6];
|
|
int ret;
|
|
|
|
rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
|
|
if (rpf == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
rpf->max_width = RPF_MAX_WIDTH;
|
|
rpf->max_height = RPF_MAX_HEIGHT;
|
|
|
|
rpf->entity.ops = &rpf_entity_ops;
|
|
rpf->entity.type = VSP1_ENTITY_RPF;
|
|
rpf->entity.index = index;
|
|
|
|
sprintf(name, "rpf.%u", index);
|
|
ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
|
|
MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
|
|
/* Initialize the control handler. */
|
|
ret = vsp1_rwpf_init_ctrls(rpf, 0);
|
|
if (ret < 0) {
|
|
dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
|
|
index);
|
|
goto error;
|
|
}
|
|
|
|
v4l2_ctrl_handler_setup(&rpf->ctrls);
|
|
|
|
return rpf;
|
|
|
|
error:
|
|
vsp1_entity_destroy(&rpf->entity);
|
|
return ERR_PTR(ret);
|
|
}
|