linux_dsm_epyc7002/drivers/i2c/busses/i2c-brcmstb.c
Maxime Ripard d31f59eabe i2c: brcmstb: Support BCM2711 HDMI BSC controllers
The HDMI blocks in the BCM2771 have an i2c controller to retrieve the
EDID. This block is split into two parts, the BSC and the AUTO_I2C,
lying in two separate register areas.

The AUTO_I2C block has a mailbox-like interface and will take away the
BSC control from the CPU if enabled. However, the BSC is the actually
the same controller than the one supported by the brcmstb driver, and
the AUTO_I2C doesn't really bring any immediate benefit.

Let's use the BSC then, but let's also tie the AUTO_I2C registers with a
separate compatible so that we can enable AUTO_I2C if needed in the
future.

The AUTO_I2C is enabled by default at boot though, so we first need to
release the BSC from the AUTO_I2C control.

Cc: Kamal Dasu <kdasu.kdev@gmail.com>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Cc: Wolfram Sang <wsa@the-dreams.de>
Cc: bcm-kernel-feedback-list@broadcom.com
Cc: linux-i2c@vger.kernel.org
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
2020-03-10 11:08:53 +01:00

759 lines
19 KiB
C

/*
* Copyright (C) 2014 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed "as is" WITHOUT ANY WARRANTY of any
* kind, whether express or implied; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/version.h>
#define N_DATA_REGS 8
/*
* PER_I2C/BSC count register mask depends on 1 byte/4 byte data register
* size. Cable modem and DSL SoCs with Peripheral i2c cores use 1 byte per
* data register whereas STB SoCs use 4 byte per data register transfer,
* account for this difference in total count per transaction and mask to
* use.
*/
#define BSC_CNT_REG1_MASK(nb) (nb == 1 ? GENMASK(3, 0) : GENMASK(5, 0))
#define BSC_CNT_REG1_SHIFT 0
/* BSC CTL register field definitions */
#define BSC_CTL_REG_DTF_MASK 0x00000003
#define BSC_CTL_REG_SCL_SEL_MASK 0x00000030
#define BSC_CTL_REG_SCL_SEL_SHIFT 4
#define BSC_CTL_REG_INT_EN_MASK 0x00000040
#define BSC_CTL_REG_INT_EN_SHIFT 6
#define BSC_CTL_REG_DIV_CLK_MASK 0x00000080
/* BSC_IIC_ENABLE r/w enable and interrupt field definitions */
#define BSC_IIC_EN_RESTART_MASK 0x00000040
#define BSC_IIC_EN_NOSTART_MASK 0x00000020
#define BSC_IIC_EN_NOSTOP_MASK 0x00000010
#define BSC_IIC_EN_NOACK_MASK 0x00000004
#define BSC_IIC_EN_INTRP_MASK 0x00000002
#define BSC_IIC_EN_ENABLE_MASK 0x00000001
/* BSC_CTLHI control register field definitions */
#define BSC_CTLHI_REG_INPUT_SWITCHING_LEVEL_MASK 0x00000080
#define BSC_CTLHI_REG_DATAREG_SIZE_MASK 0x00000040
#define BSC_CTLHI_REG_IGNORE_ACK_MASK 0x00000002
#define BSC_CTLHI_REG_WAIT_DIS_MASK 0x00000001
#define I2C_TIMEOUT 100 /* msecs */
/* Condition mask used for non combined transfer */
#define COND_RESTART BSC_IIC_EN_RESTART_MASK
#define COND_NOSTART BSC_IIC_EN_NOSTART_MASK
#define COND_NOSTOP BSC_IIC_EN_NOSTOP_MASK
#define COND_START_STOP (COND_RESTART | COND_NOSTART | COND_NOSTOP)
/* BSC data transfer direction */
#define DTF_WR_MASK 0x00000000
#define DTF_RD_MASK 0x00000001
/* BSC data transfer direction combined format */
#define DTF_RD_WR_MASK 0x00000002
#define DTF_WR_RD_MASK 0x00000003
#define INT_ENABLE true
#define INT_DISABLE false
/* BSC block register map structure to cache fields to be written */
struct bsc_regs {
u32 chip_address; /* slave address */
u32 data_in[N_DATA_REGS]; /* tx data buffer*/
u32 cnt_reg; /* rx/tx data length */
u32 ctl_reg; /* control register */
u32 iic_enable; /* xfer enable and status */
u32 data_out[N_DATA_REGS]; /* rx data buffer */
u32 ctlhi_reg; /* more control fields */
u32 scl_param; /* reserved */
};
struct bsc_clk_param {
u32 hz;
u32 scl_mask;
u32 div_mask;
};
enum bsc_xfer_cmd {
CMD_WR,
CMD_RD,
CMD_WR_NOACK,
CMD_RD_NOACK,
};
static char const *cmd_string[] = {
[CMD_WR] = "WR",
[CMD_RD] = "RD",
[CMD_WR_NOACK] = "WR NOACK",
[CMD_RD_NOACK] = "RD NOACK",
};
enum bus_speeds {
SPD_375K,
SPD_390K,
SPD_187K,
SPD_200K,
SPD_93K,
SPD_97K,
SPD_46K,
SPD_50K
};
static const struct bsc_clk_param bsc_clk[] = {
[SPD_375K] = {
.hz = 375000,
.scl_mask = SPD_375K << BSC_CTL_REG_SCL_SEL_SHIFT,
.div_mask = 0
},
[SPD_390K] = {
.hz = 390000,
.scl_mask = SPD_390K << BSC_CTL_REG_SCL_SEL_SHIFT,
.div_mask = 0
},
[SPD_187K] = {
.hz = 187500,
.scl_mask = SPD_187K << BSC_CTL_REG_SCL_SEL_SHIFT,
.div_mask = 0
},
[SPD_200K] = {
.hz = 200000,
.scl_mask = SPD_200K << BSC_CTL_REG_SCL_SEL_SHIFT,
.div_mask = 0
},
[SPD_93K] = {
.hz = 93750,
.scl_mask = SPD_375K << BSC_CTL_REG_SCL_SEL_SHIFT,
.div_mask = BSC_CTL_REG_DIV_CLK_MASK
},
[SPD_97K] = {
.hz = 97500,
.scl_mask = SPD_390K << BSC_CTL_REG_SCL_SEL_SHIFT,
.div_mask = BSC_CTL_REG_DIV_CLK_MASK
},
[SPD_46K] = {
.hz = 46875,
.scl_mask = SPD_187K << BSC_CTL_REG_SCL_SEL_SHIFT,
.div_mask = BSC_CTL_REG_DIV_CLK_MASK
},
[SPD_50K] = {
.hz = 50000,
.scl_mask = SPD_200K << BSC_CTL_REG_SCL_SEL_SHIFT,
.div_mask = BSC_CTL_REG_DIV_CLK_MASK
}
};
struct brcmstb_i2c_dev {
struct device *device;
void __iomem *base;
int irq;
struct bsc_regs *bsc_regmap;
struct i2c_adapter adapter;
struct completion done;
u32 clk_freq_hz;
int data_regsz;
};
/* register accessors for both be and le cpu arch */
#ifdef CONFIG_CPU_BIG_ENDIAN
#define __bsc_readl(_reg) ioread32be(_reg)
#define __bsc_writel(_val, _reg) iowrite32be(_val, _reg)
#else
#define __bsc_readl(_reg) ioread32(_reg)
#define __bsc_writel(_val, _reg) iowrite32(_val, _reg)
#endif
#define bsc_readl(_dev, _reg) \
__bsc_readl(_dev->base + offsetof(struct bsc_regs, _reg))
#define bsc_writel(_dev, _val, _reg) \
__bsc_writel(_val, _dev->base + offsetof(struct bsc_regs, _reg))
static inline int brcmstb_i2c_get_xfersz(struct brcmstb_i2c_dev *dev)
{
return (N_DATA_REGS * dev->data_regsz);
}
static inline int brcmstb_i2c_get_data_regsz(struct brcmstb_i2c_dev *dev)
{
return dev->data_regsz;
}
static void brcmstb_i2c_enable_disable_irq(struct brcmstb_i2c_dev *dev,
bool int_en)
{
if (int_en)
/* Enable BSC CTL interrupt line */
dev->bsc_regmap->ctl_reg |= BSC_CTL_REG_INT_EN_MASK;
else
/* Disable BSC CTL interrupt line */
dev->bsc_regmap->ctl_reg &= ~BSC_CTL_REG_INT_EN_MASK;
barrier();
bsc_writel(dev, dev->bsc_regmap->ctl_reg, ctl_reg);
}
static irqreturn_t brcmstb_i2c_isr(int irq, void *devid)
{
struct brcmstb_i2c_dev *dev = devid;
u32 status_bsc_ctl = bsc_readl(dev, ctl_reg);
u32 status_iic_intrp = bsc_readl(dev, iic_enable);
dev_dbg(dev->device, "isr CTL_REG %x IIC_EN %x\n",
status_bsc_ctl, status_iic_intrp);
if (!(status_bsc_ctl & BSC_CTL_REG_INT_EN_MASK))
return IRQ_NONE;
brcmstb_i2c_enable_disable_irq(dev, INT_DISABLE);
complete(&dev->done);
dev_dbg(dev->device, "isr handled");
return IRQ_HANDLED;
}
/* Wait for device to be ready */
static int brcmstb_i2c_wait_if_busy(struct brcmstb_i2c_dev *dev)
{
unsigned long timeout = jiffies + msecs_to_jiffies(I2C_TIMEOUT);
while ((bsc_readl(dev, iic_enable) & BSC_IIC_EN_INTRP_MASK)) {
if (time_after(jiffies, timeout))
return -ETIMEDOUT;
cpu_relax();
}
return 0;
}
/* i2c xfer completion function, handles both irq and polling mode */
static int brcmstb_i2c_wait_for_completion(struct brcmstb_i2c_dev *dev)
{
int ret = 0;
unsigned long timeout = msecs_to_jiffies(I2C_TIMEOUT);
if (dev->irq >= 0) {
if (!wait_for_completion_timeout(&dev->done, timeout))
ret = -ETIMEDOUT;
} else {
/* we are in polling mode */
u32 bsc_intrp;
unsigned long time_left = jiffies + timeout;
do {
bsc_intrp = bsc_readl(dev, iic_enable) &
BSC_IIC_EN_INTRP_MASK;
if (time_after(jiffies, time_left)) {
ret = -ETIMEDOUT;
break;
}
cpu_relax();
} while (!bsc_intrp);
}
if (dev->irq < 0 || ret == -ETIMEDOUT)
brcmstb_i2c_enable_disable_irq(dev, INT_DISABLE);
return ret;
}
/* Set xfer START/STOP conditions for subsequent transfer */
static void brcmstb_set_i2c_start_stop(struct brcmstb_i2c_dev *dev,
u32 cond_flag)
{
u32 regval = dev->bsc_regmap->iic_enable;
dev->bsc_regmap->iic_enable = (regval & ~COND_START_STOP) | cond_flag;
}
/* Send I2C request check completion */
static int brcmstb_send_i2c_cmd(struct brcmstb_i2c_dev *dev,
enum bsc_xfer_cmd cmd)
{
int rc = 0;
struct bsc_regs *pi2creg = dev->bsc_regmap;
/* Make sure the hardware is ready */
rc = brcmstb_i2c_wait_if_busy(dev);
if (rc < 0)
return rc;
/* only if we are in interrupt mode */
if (dev->irq >= 0)
reinit_completion(&dev->done);
/* enable BSC CTL interrupt line */
brcmstb_i2c_enable_disable_irq(dev, INT_ENABLE);
/* initiate transfer by setting iic_enable */
pi2creg->iic_enable |= BSC_IIC_EN_ENABLE_MASK;
bsc_writel(dev, pi2creg->iic_enable, iic_enable);
/* Wait for transaction to finish or timeout */
rc = brcmstb_i2c_wait_for_completion(dev);
if (rc) {
dev_dbg(dev->device, "intr timeout for cmd %s\n",
cmd_string[cmd]);
goto cmd_out;
}
if ((CMD_RD || CMD_WR) &&
bsc_readl(dev, iic_enable) & BSC_IIC_EN_NOACK_MASK) {
rc = -EREMOTEIO;
dev_dbg(dev->device, "controller received NOACK intr for %s\n",
cmd_string[cmd]);
}
cmd_out:
bsc_writel(dev, 0, cnt_reg);
bsc_writel(dev, 0, iic_enable);
return rc;
}
/* Actual data transfer through the BSC master */
static int brcmstb_i2c_xfer_bsc_data(struct brcmstb_i2c_dev *dev,
u8 *buf, unsigned int len,
struct i2c_msg *pmsg)
{
int cnt, byte, i, rc;
enum bsc_xfer_cmd cmd;
u32 ctl_reg;
struct bsc_regs *pi2creg = dev->bsc_regmap;
int no_ack = pmsg->flags & I2C_M_IGNORE_NAK;
int data_regsz = brcmstb_i2c_get_data_regsz(dev);
/* see if the transaction needs to check NACK conditions */
if (no_ack) {
cmd = (pmsg->flags & I2C_M_RD) ? CMD_RD_NOACK
: CMD_WR_NOACK;
pi2creg->ctlhi_reg |= BSC_CTLHI_REG_IGNORE_ACK_MASK;
} else {
cmd = (pmsg->flags & I2C_M_RD) ? CMD_RD : CMD_WR;
pi2creg->ctlhi_reg &= ~BSC_CTLHI_REG_IGNORE_ACK_MASK;
}
bsc_writel(dev, pi2creg->ctlhi_reg, ctlhi_reg);
/* set data transfer direction */
ctl_reg = pi2creg->ctl_reg & ~BSC_CTL_REG_DTF_MASK;
if (cmd == CMD_WR || cmd == CMD_WR_NOACK)
pi2creg->ctl_reg = ctl_reg | DTF_WR_MASK;
else
pi2creg->ctl_reg = ctl_reg | DTF_RD_MASK;
/* set the read/write length */
bsc_writel(dev, BSC_CNT_REG1_MASK(data_regsz) &
(len << BSC_CNT_REG1_SHIFT), cnt_reg);
/* Write data into data_in register */
if (cmd == CMD_WR || cmd == CMD_WR_NOACK) {
for (cnt = 0, i = 0; cnt < len; cnt += data_regsz, i++) {
u32 word = 0;
for (byte = 0; byte < data_regsz; byte++) {
word >>= BITS_PER_BYTE;
if ((cnt + byte) < len)
word |= buf[cnt + byte] <<
(BITS_PER_BYTE * (data_regsz - 1));
}
bsc_writel(dev, word, data_in[i]);
}
}
/* Initiate xfer, the function will return on completion */
rc = brcmstb_send_i2c_cmd(dev, cmd);
if (rc != 0) {
dev_dbg(dev->device, "%s failure", cmd_string[cmd]);
return rc;
}
/* Read data from data_out register */
if (cmd == CMD_RD || cmd == CMD_RD_NOACK) {
for (cnt = 0, i = 0; cnt < len; cnt += data_regsz, i++) {
u32 data = bsc_readl(dev, data_out[i]);
for (byte = 0; byte < data_regsz &&
(byte + cnt) < len; byte++) {
buf[cnt + byte] = data & 0xff;
data >>= BITS_PER_BYTE;
}
}
}
return 0;
}
/* Write a single byte of data to the i2c bus */
static int brcmstb_i2c_write_data_byte(struct brcmstb_i2c_dev *dev,
u8 *buf, unsigned int nak_expected)
{
enum bsc_xfer_cmd cmd = nak_expected ? CMD_WR : CMD_WR_NOACK;
bsc_writel(dev, 1, cnt_reg);
bsc_writel(dev, *buf, data_in);
return brcmstb_send_i2c_cmd(dev, cmd);
}
/* Send i2c address */
static int brcmstb_i2c_do_addr(struct brcmstb_i2c_dev *dev,
struct i2c_msg *msg)
{
unsigned char addr;
if (msg->flags & I2C_M_TEN) {
/* First byte is 11110XX0 where XX is upper 2 bits */
addr = 0xF0 | ((msg->addr & 0x300) >> 7);
bsc_writel(dev, addr, chip_address);
/* Second byte is the remaining 8 bits */
addr = msg->addr & 0xFF;
if (brcmstb_i2c_write_data_byte(dev, &addr, 0) < 0)
return -EREMOTEIO;
if (msg->flags & I2C_M_RD) {
/* For read, send restart without stop condition */
brcmstb_set_i2c_start_stop(dev, COND_RESTART
| COND_NOSTOP);
/* Then re-send the first byte with the read bit set */
addr = 0xF0 | ((msg->addr & 0x300) >> 7) | 0x01;
if (brcmstb_i2c_write_data_byte(dev, &addr, 0) < 0)
return -EREMOTEIO;
}
} else {
addr = i2c_8bit_addr_from_msg(msg);
bsc_writel(dev, addr, chip_address);
}
return 0;
}
/* Master transfer function */
static int brcmstb_i2c_xfer(struct i2c_adapter *adapter,
struct i2c_msg msgs[], int num)
{
struct brcmstb_i2c_dev *dev = i2c_get_adapdata(adapter);
struct i2c_msg *pmsg;
int rc = 0;
int i;
int bytes_to_xfer;
u8 *tmp_buf;
int len = 0;
int xfersz = brcmstb_i2c_get_xfersz(dev);
u32 cond, cond_per_msg;
/* Loop through all messages */
for (i = 0; i < num; i++) {
pmsg = &msgs[i];
len = pmsg->len;
tmp_buf = pmsg->buf;
dev_dbg(dev->device,
"msg# %d/%d flg %x buf %x len %d\n", i,
num - 1, pmsg->flags,
pmsg->buf ? pmsg->buf[0] : '0', pmsg->len);
if (i < (num - 1) && (msgs[i + 1].flags & I2C_M_NOSTART))
cond = ~COND_START_STOP;
else
cond = COND_RESTART | COND_NOSTOP;
brcmstb_set_i2c_start_stop(dev, cond);
/* Send slave address */
if (!(pmsg->flags & I2C_M_NOSTART)) {
rc = brcmstb_i2c_do_addr(dev, pmsg);
if (rc < 0) {
dev_dbg(dev->device,
"NACK for addr %2.2x msg#%d rc = %d\n",
pmsg->addr, i, rc);
goto out;
}
}
cond_per_msg = cond;
/* Perform data transfer */
while (len) {
bytes_to_xfer = min(len, xfersz);
if (len <= xfersz) {
if (i == (num - 1))
cond_per_msg = cond_per_msg &
~(COND_RESTART | COND_NOSTOP);
else
cond_per_msg = cond;
} else {
cond_per_msg = (cond_per_msg & ~COND_RESTART) |
COND_NOSTOP;
}
brcmstb_set_i2c_start_stop(dev, cond_per_msg);
rc = brcmstb_i2c_xfer_bsc_data(dev, tmp_buf,
bytes_to_xfer, pmsg);
if (rc < 0)
goto out;
len -= bytes_to_xfer;
tmp_buf += bytes_to_xfer;
cond_per_msg = COND_NOSTART | COND_NOSTOP;
}
}
rc = num;
out:
return rc;
}
static u32 brcmstb_i2c_functionality(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_10BIT_ADDR
| I2C_FUNC_NOSTART | I2C_FUNC_PROTOCOL_MANGLING;
}
static const struct i2c_algorithm brcmstb_i2c_algo = {
.master_xfer = brcmstb_i2c_xfer,
.functionality = brcmstb_i2c_functionality,
};
static void brcmstb_i2c_set_bus_speed(struct brcmstb_i2c_dev *dev)
{
int i = 0, num_speeds = ARRAY_SIZE(bsc_clk);
u32 clk_freq_hz = dev->clk_freq_hz;
for (i = 0; i < num_speeds; i++) {
if (bsc_clk[i].hz == clk_freq_hz) {
dev->bsc_regmap->ctl_reg &= ~(BSC_CTL_REG_SCL_SEL_MASK
| BSC_CTL_REG_DIV_CLK_MASK);
dev->bsc_regmap->ctl_reg |= (bsc_clk[i].scl_mask |
bsc_clk[i].div_mask);
bsc_writel(dev, dev->bsc_regmap->ctl_reg, ctl_reg);
break;
}
}
/* in case we did not get find a valid speed */
if (i == num_speeds) {
i = (bsc_readl(dev, ctl_reg) & BSC_CTL_REG_SCL_SEL_MASK) >>
BSC_CTL_REG_SCL_SEL_SHIFT;
dev_warn(dev->device, "leaving current clock-frequency @ %dHz\n",
bsc_clk[i].hz);
}
}
static void brcmstb_i2c_set_bsc_reg_defaults(struct brcmstb_i2c_dev *dev)
{
if (brcmstb_i2c_get_data_regsz(dev) == sizeof(u32))
/* set 4 byte data in/out xfers */
dev->bsc_regmap->ctlhi_reg = BSC_CTLHI_REG_DATAREG_SIZE_MASK;
else
dev->bsc_regmap->ctlhi_reg &= ~BSC_CTLHI_REG_DATAREG_SIZE_MASK;
bsc_writel(dev, dev->bsc_regmap->ctlhi_reg, ctlhi_reg);
/* set bus speed */
brcmstb_i2c_set_bus_speed(dev);
}
#define AUTOI2C_CTRL0 0x26c
#define AUTOI2C_CTRL0_RELEASE_BSC BIT(1)
static int bcm2711_release_bsc(struct brcmstb_i2c_dev *dev)
{
struct platform_device *pdev = to_platform_device(dev->device);
struct resource *iomem;
void __iomem *autoi2c;
/* Map hardware registers */
iomem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "auto-i2c");
autoi2c = devm_ioremap_resource(&pdev->dev, iomem);
if (IS_ERR(autoi2c))
return PTR_ERR(autoi2c);
writel(AUTOI2C_CTRL0_RELEASE_BSC, autoi2c + AUTOI2C_CTRL0);
devm_iounmap(&pdev->dev, autoi2c);
/* We need to reset the controller after the release */
dev->bsc_regmap->iic_enable = 0;
bsc_writel(dev, dev->bsc_regmap->iic_enable, iic_enable);
return 0;
}
static int brcmstb_i2c_probe(struct platform_device *pdev)
{
int rc = 0;
struct brcmstb_i2c_dev *dev;
struct i2c_adapter *adap;
struct resource *iomem;
const char *int_name;
/* Allocate memory for private data structure */
dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
if (!dev)
return -ENOMEM;
dev->bsc_regmap = devm_kzalloc(&pdev->dev, sizeof(*dev->bsc_regmap), GFP_KERNEL);
if (!dev->bsc_regmap)
return -ENOMEM;
platform_set_drvdata(pdev, dev);
dev->device = &pdev->dev;
init_completion(&dev->done);
/* Map hardware registers */
iomem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dev->base = devm_ioremap_resource(dev->device, iomem);
if (IS_ERR(dev->base)) {
rc = -ENOMEM;
goto probe_errorout;
}
if (of_device_is_compatible(dev->device->of_node,
"brcm,bcm2711-hdmi-i2c")) {
rc = bcm2711_release_bsc(dev);
if (rc)
goto probe_errorout;
}
rc = of_property_read_string(dev->device->of_node, "interrupt-names",
&int_name);
if (rc < 0)
int_name = NULL;
/* Get the interrupt number */
dev->irq = platform_get_irq(pdev, 0);
/* disable the bsc interrupt line */
brcmstb_i2c_enable_disable_irq(dev, INT_DISABLE);
/* register the ISR handler */
rc = devm_request_irq(&pdev->dev, dev->irq, brcmstb_i2c_isr,
IRQF_SHARED,
int_name ? int_name : pdev->name,
dev);
if (rc) {
dev_dbg(dev->device, "falling back to polling mode");
dev->irq = -1;
}
if (of_property_read_u32(dev->device->of_node,
"clock-frequency", &dev->clk_freq_hz)) {
dev_warn(dev->device, "setting clock-frequency@%dHz\n",
bsc_clk[0].hz);
dev->clk_freq_hz = bsc_clk[0].hz;
}
/* set the data in/out register size for compatible SoCs */
if (of_device_is_compatible(dev->device->of_node,
"brcmstb,brcmper-i2c"))
dev->data_regsz = sizeof(u8);
else
dev->data_regsz = sizeof(u32);
brcmstb_i2c_set_bsc_reg_defaults(dev);
/* Add the i2c adapter */
adap = &dev->adapter;
i2c_set_adapdata(adap, dev);
adap->owner = THIS_MODULE;
strlcpy(adap->name, "Broadcom STB : ", sizeof(adap->name));
if (int_name)
strlcat(adap->name, int_name, sizeof(adap->name));
adap->algo = &brcmstb_i2c_algo;
adap->dev.parent = &pdev->dev;
adap->dev.of_node = pdev->dev.of_node;
rc = i2c_add_adapter(adap);
if (rc)
goto probe_errorout;
dev_info(dev->device, "%s@%dhz registered in %s mode\n",
int_name ? int_name : " ", dev->clk_freq_hz,
(dev->irq >= 0) ? "interrupt" : "polling");
return 0;
probe_errorout:
return rc;
}
static int brcmstb_i2c_remove(struct platform_device *pdev)
{
struct brcmstb_i2c_dev *dev = platform_get_drvdata(pdev);
i2c_del_adapter(&dev->adapter);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int brcmstb_i2c_suspend(struct device *dev)
{
struct brcmstb_i2c_dev *i2c_dev = dev_get_drvdata(dev);
i2c_mark_adapter_suspended(&i2c_dev->adapter);
return 0;
}
static int brcmstb_i2c_resume(struct device *dev)
{
struct brcmstb_i2c_dev *i2c_dev = dev_get_drvdata(dev);
brcmstb_i2c_set_bsc_reg_defaults(i2c_dev);
i2c_mark_adapter_resumed(&i2c_dev->adapter);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(brcmstb_i2c_pm, brcmstb_i2c_suspend,
brcmstb_i2c_resume);
static const struct of_device_id brcmstb_i2c_of_match[] = {
{.compatible = "brcm,brcmstb-i2c"},
{.compatible = "brcm,brcmper-i2c"},
{.compatible = "brcm,bcm2711-hdmi-i2c"},
{},
};
MODULE_DEVICE_TABLE(of, brcmstb_i2c_of_match);
static struct platform_driver brcmstb_i2c_driver = {
.driver = {
.name = "brcmstb-i2c",
.of_match_table = brcmstb_i2c_of_match,
.pm = &brcmstb_i2c_pm,
},
.probe = brcmstb_i2c_probe,
.remove = brcmstb_i2c_remove,
};
module_platform_driver(brcmstb_i2c_driver);
MODULE_AUTHOR("Kamal Dasu <kdasu@broadcom.com>");
MODULE_DESCRIPTION("Broadcom Settop I2C Driver");
MODULE_LICENSE("GPL v2");