linux_dsm_epyc7002/drivers/mtd/ubi/Kconfig
Richard Genoud ba4087e956 UBI: use the whole MTD device size to get bad_peb_limit
On NAND flash devices, UBI reserves some physical erase blocks (PEB) for
bad block handling. Today, the number of reserved PEB can only be set as a
percentage of the total number of PEB in each MTD partition. For example, for a
NAND flash with 128KiB PEB, 2 MTD partition of 20MiB (mtd0) and 100MiB (mtd1)
and 2% reserved PEB:
 - the UBI device on mtd0 will have 2 PEB reserved
 - the UBI device on mtd1 will have 16 PEB reserved

The problem with this behaviour is that NAND flash manufacturers give a
minimum number of valid block (NVB) during the endurance life of the
device, e.g.:

Parameter             Symbol    Min    Max    Unit      Notes
--------------------------------------------------------------
Valid block number     NVB     1004    1024   Blocks     1

From this number we can deduce the maximum number of bad PEB that a device will
contain during its endurance life: a 128MiB NAND flash (1024 PEB) will not have
less than 20 bad blocks during the flash endurance life.

But the manufacturer doesn't tell where those bad block will appear. He doesn't
say either if they will be equally disposed on the whole device (and I'm pretty
sure they won't). So, according to the datasheets, we should reserve the
maximum number of bad PEB for each UBI device (worst case scenario: 20 bad
blocks appears on the smallest MTD partition).

So this patch make UBI use the whole MTD device size to calculate the maximum
bad expected eraseblocks.

The Kconfig option is in per1024 blocks, thus it can have a default value of 20
which is *very* common for NAND devices.

Signed-off-by: Richard Genoud <richard.genoud@gmail.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
2012-09-04 09:39:00 +03:00

67 lines
2.8 KiB
Plaintext

menuconfig MTD_UBI
tristate "Enable UBI - Unsorted block images"
select CRC32
help
UBI is a software layer above MTD layer which admits of LVM-like
logical volumes on top of MTD devices, hides some complexities of
flash chips like wear and bad blocks and provides some other useful
capabilities. Please, consult the MTD web site for more details
(www.linux-mtd.infradead.org).
if MTD_UBI
config MTD_UBI_WL_THRESHOLD
int "UBI wear-leveling threshold"
default 4096
range 2 65536
help
This parameter defines the maximum difference between the highest
erase counter value and the lowest erase counter value of eraseblocks
of UBI devices. When this threshold is exceeded, UBI starts performing
wear leveling by means of moving data from eraseblock with low erase
counter to eraseblocks with high erase counter.
The default value should be OK for SLC NAND flashes, NOR flashes and
other flashes which have eraseblock life-cycle 100000 or more.
However, in case of MLC NAND flashes which typically have eraseblock
life-cycle less than 10000, the threshold should be lessened (e.g.,
to 128 or 256, although it does not have to be power of 2).
config MTD_UBI_BEB_LIMIT
int "Maximum expected bad eraseblock count per 1024 eraseblocks"
default 20
range 0 768
help
This option specifies the maximum bad physical eraseblocks UBI
expects on the MTD device (per 1024 eraseblocks). If the underlying
flash does not admit of bad eraseblocks (e.g. NOR flash), this value
is ignored.
NAND datasheets often specify the minimum and maximum NVM (Number of
Valid Blocks) for the flashes' endurance lifetime. The maximum
expected bad eraseblocks per 1024 eraseblocks then can be calculated
as "1024 * (1 - MinNVB / MaxNVB)", which gives 20 for most NANDs
(MaxNVB is basically the total count of eraseblocks on the chip).
To put it differently, if this value is 20, UBI will try to reserve
about 1.9% of physical eraseblocks for bad blocks handling. And that
will be 1.9% of eraseblocks on the entire NAND chip, not just the MTD
partition UBI attaches. This means that if you have, say, a NAND
flash chip admits maximum 40 bad eraseblocks, and it is split on two
MTD partitions of the same size, UBI will reserve 40 eraseblocks when
attaching a partition.
Leave the default value if unsure.
config MTD_UBI_GLUEBI
tristate "MTD devices emulation driver (gluebi)"
help
This option enables gluebi - an additional driver which emulates MTD
devices on top of UBI volumes: for each UBI volumes an MTD device is
created, and all I/O to this MTD device is redirected to the UBI
volume. This is handy to make MTD-oriented software (like JFFS2)
work on top of UBI. Do not enable this unless you use legacy
software.
endif # MTD_UBI