mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 00:06:51 +07:00
f67e3fb489
* Replace the /sys/class/dax device model with /sys/bus/dax, and include a compat driver so distributions can opt-in to the new ABI. * Allow for an alternative driver for the device-dax address-range * Introduce the 'kmem' driver to hotplug / assign a device-dax address-range to the core-mm. * Arrange for the device-dax target-node to be onlined so that the newly added memory range can be uniquely referenced by numa apis. -----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJchWpGAAoJEB7SkWpmfYgCJk8P/0Q1DINszUDO/vKjJ09cDs9P Jw3it6GBIL50rDOu9QdcprSpwYDD0h1mLAV/m6oa3bVO+p4uWGvnxaxRx2HN2c/v vhZFtUDpHlqR63vzWMNVKRprYixCRJDUr6xQhhCcE3ak/ELN6w7LWfikKVWv15UL MfR96IQU38f+xRda/zSXnL9606Dvkvu/inEHj84lRcHIwj3sQAUalrE8bR3O32gZ bDg/l5kzT49o8ZXUo/TegvRSSSZpJmOl2DD0RW+ax5q3NI2bOXFrVDUKBKxf/hcQ E/V9i57TrqQx0GqRhnU7rN/v53cFZGGs31TEEIB/xs3bzCnADxwXcjL5b5K005J6 vJjBA2ODBewHFK3uVx46Hy1iV4eCtZWj4QrMnrjdSrjXOfbF5GTbWOhPFgoq7TWf S7VqFEf3I2gDPaMq4o8Ej1kLH4HMYeor2NSOZjyvGn87rSZ3ZIQguwbaNIVl+itz gdDt0ZOU0BgOBkV+rZIeZDaGdloWCHcDPL15CkZaOZyzdWhfEZ7dod6ad+9udilU EUPH62RgzXZtfm5zpebYyjNVLbb9pLZ0nT+UypyGR6zqWx1SqU3mXi63NFXPco+x XA9j//edPeI6NHg2CXLEh8DLuCg3dG1zWRJANkiF+niBwyCR8CHtGWAoY6soXbKe 2UrXGcIfXxyJ8V9v8v4q =hfa3 -----END PGP SIGNATURE----- Merge tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm Pull device-dax updates from Dan Williams: "New device-dax infrastructure to allow persistent memory and other "reserved" / performance differentiated memories, to be assigned to the core-mm as "System RAM". Some users want to use persistent memory as additional volatile memory. They are willing to cope with potential performance differences, for example between DRAM and 3D Xpoint, and want to use typical Linux memory management apis rather than a userspace memory allocator layered over an mmap() of a dax file. The administration model is to decide how much Persistent Memory (pmem) to use as System RAM, create a device-dax-mode namespace of that size, and then assign it to the core-mm. The rationale for device-dax is that it is a generic memory-mapping driver that can be layered over any "special purpose" memory, not just pmem. On subsequent boots udev rules can be used to restore the memory assignment. One implication of using pmem as RAM is that mlock() no longer keeps data off persistent media. For this reason it is recommended to enable NVDIMM Security (previously merged for 5.0) to encrypt pmem contents at rest. We considered making this recommendation an actively enforced requirement, but in the end decided to leave it as a distribution / administrator policy to allow for emulation and test environments that lack security capable NVDIMMs. Summary: - Replace the /sys/class/dax device model with /sys/bus/dax, and include a compat driver so distributions can opt-in to the new ABI. - Allow for an alternative driver for the device-dax address-range - Introduce the 'kmem' driver to hotplug / assign a device-dax address-range to the core-mm. - Arrange for the device-dax target-node to be onlined so that the newly added memory range can be uniquely referenced by numa apis" NOTE! I'm not entirely happy with the whole "PMEM as RAM" model because we currently have special - and very annoying rules in the kernel about accessing PMEM only with the "MC safe" accessors, because machine checks inside the regular repeat string copy functions can be fatal in some (not described) circumstances. And apparently the PMEM modules can cause that a lot more than regular RAM. The argument is that this happens because PMEM doesn't necessarily get scrubbed at boot like RAM does, but that is planned to be added for the user space tooling. Quoting Dan from another email: "The exposure can be reduced in the volatile-RAM case by scanning for and clearing errors before it is onlined as RAM. The userspace tooling for that can be in place before v5.1-final. There's also runtime notifications of errors via acpi_nfit_uc_error_notify() from background scrubbers on the DIMM devices. With that mechanism the kernel could proactively clear newly discovered poison in the volatile case, but that would be additional development more suitable for v5.2. I understand the concern, and the need to highlight this issue by tapping the brakes on feature development, but I don't see PMEM as RAM making the situation worse when the exposure is also there via DAX in the PMEM case. Volatile-RAM is arguably a safer use case since it's possible to repair pages where the persistent case needs active application coordination" * tag 'devdax-for-5.1' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: device-dax: "Hotplug" persistent memory for use like normal RAM mm/resource: Let walk_system_ram_range() search child resources mm/memory-hotplug: Allow memory resources to be children mm/resource: Move HMM pr_debug() deeper into resource code mm/resource: Return real error codes from walk failures device-dax: Add a 'modalias' attribute to DAX 'bus' devices device-dax: Add a 'target_node' attribute device-dax: Auto-bind device after successful new_id acpi/nfit, device-dax: Identify differentiated memory with a unique numa-node device-dax: Add /sys/class/dax backwards compatibility device-dax: Add support for a dax override driver device-dax: Move resource pinning+mapping into the common driver device-dax: Introduce bus + driver model device-dax: Start defining a dax bus model device-dax: Remove multi-resource infrastructure device-dax: Kill dax_region base device-dax: Kill dax_region ida
1245 lines
32 KiB
C
1245 lines
32 KiB
C
/*
|
|
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*/
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/io.h>
|
|
#include <linux/nd.h>
|
|
#include "nd-core.h"
|
|
#include "nd.h"
|
|
|
|
/*
|
|
* For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
|
|
* irrelevant.
|
|
*/
|
|
#include <linux/io-64-nonatomic-hi-lo.h>
|
|
|
|
static DEFINE_IDA(region_ida);
|
|
static DEFINE_PER_CPU(int, flush_idx);
|
|
|
|
static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
|
|
struct nd_region_data *ndrd)
|
|
{
|
|
int i, j;
|
|
|
|
dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
|
|
nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
|
|
for (i = 0; i < (1 << ndrd->hints_shift); i++) {
|
|
struct resource *res = &nvdimm->flush_wpq[i];
|
|
unsigned long pfn = PHYS_PFN(res->start);
|
|
void __iomem *flush_page;
|
|
|
|
/* check if flush hints share a page */
|
|
for (j = 0; j < i; j++) {
|
|
struct resource *res_j = &nvdimm->flush_wpq[j];
|
|
unsigned long pfn_j = PHYS_PFN(res_j->start);
|
|
|
|
if (pfn == pfn_j)
|
|
break;
|
|
}
|
|
|
|
if (j < i)
|
|
flush_page = (void __iomem *) ((unsigned long)
|
|
ndrd_get_flush_wpq(ndrd, dimm, j)
|
|
& PAGE_MASK);
|
|
else
|
|
flush_page = devm_nvdimm_ioremap(dev,
|
|
PFN_PHYS(pfn), PAGE_SIZE);
|
|
if (!flush_page)
|
|
return -ENXIO;
|
|
ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
|
|
+ (res->start & ~PAGE_MASK));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nd_region_activate(struct nd_region *nd_region)
|
|
{
|
|
int i, j, num_flush = 0;
|
|
struct nd_region_data *ndrd;
|
|
struct device *dev = &nd_region->dev;
|
|
size_t flush_data_size = sizeof(void *);
|
|
|
|
nvdimm_bus_lock(&nd_region->dev);
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
|
|
nvdimm_bus_unlock(&nd_region->dev);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* at least one null hint slot per-dimm for the "no-hint" case */
|
|
flush_data_size += sizeof(void *);
|
|
num_flush = min_not_zero(num_flush, nvdimm->num_flush);
|
|
if (!nvdimm->num_flush)
|
|
continue;
|
|
flush_data_size += nvdimm->num_flush * sizeof(void *);
|
|
}
|
|
nvdimm_bus_unlock(&nd_region->dev);
|
|
|
|
ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
|
|
if (!ndrd)
|
|
return -ENOMEM;
|
|
dev_set_drvdata(dev, ndrd);
|
|
|
|
if (!num_flush)
|
|
return 0;
|
|
|
|
ndrd->hints_shift = ilog2(num_flush);
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
|
|
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Clear out entries that are duplicates. This should prevent the
|
|
* extra flushings.
|
|
*/
|
|
for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
|
|
/* ignore if NULL already */
|
|
if (!ndrd_get_flush_wpq(ndrd, i, 0))
|
|
continue;
|
|
|
|
for (j = i + 1; j < nd_region->ndr_mappings; j++)
|
|
if (ndrd_get_flush_wpq(ndrd, i, 0) ==
|
|
ndrd_get_flush_wpq(ndrd, j, 0))
|
|
ndrd_set_flush_wpq(ndrd, j, 0, NULL);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nd_region_release(struct device *dev)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
u16 i;
|
|
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
put_device(&nvdimm->dev);
|
|
}
|
|
free_percpu(nd_region->lane);
|
|
ida_simple_remove(®ion_ida, nd_region->id);
|
|
if (is_nd_blk(dev))
|
|
kfree(to_nd_blk_region(dev));
|
|
else
|
|
kfree(nd_region);
|
|
}
|
|
|
|
static struct device_type nd_blk_device_type = {
|
|
.name = "nd_blk",
|
|
.release = nd_region_release,
|
|
};
|
|
|
|
static struct device_type nd_pmem_device_type = {
|
|
.name = "nd_pmem",
|
|
.release = nd_region_release,
|
|
};
|
|
|
|
static struct device_type nd_volatile_device_type = {
|
|
.name = "nd_volatile",
|
|
.release = nd_region_release,
|
|
};
|
|
|
|
bool is_nd_pmem(struct device *dev)
|
|
{
|
|
return dev ? dev->type == &nd_pmem_device_type : false;
|
|
}
|
|
|
|
bool is_nd_blk(struct device *dev)
|
|
{
|
|
return dev ? dev->type == &nd_blk_device_type : false;
|
|
}
|
|
|
|
bool is_nd_volatile(struct device *dev)
|
|
{
|
|
return dev ? dev->type == &nd_volatile_device_type : false;
|
|
}
|
|
|
|
struct nd_region *to_nd_region(struct device *dev)
|
|
{
|
|
struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
|
|
|
|
WARN_ON(dev->type->release != nd_region_release);
|
|
return nd_region;
|
|
}
|
|
EXPORT_SYMBOL_GPL(to_nd_region);
|
|
|
|
struct device *nd_region_dev(struct nd_region *nd_region)
|
|
{
|
|
if (!nd_region)
|
|
return NULL;
|
|
return &nd_region->dev;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nd_region_dev);
|
|
|
|
struct nd_blk_region *to_nd_blk_region(struct device *dev)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
WARN_ON(!is_nd_blk(dev));
|
|
return container_of(nd_region, struct nd_blk_region, nd_region);
|
|
}
|
|
EXPORT_SYMBOL_GPL(to_nd_blk_region);
|
|
|
|
void *nd_region_provider_data(struct nd_region *nd_region)
|
|
{
|
|
return nd_region->provider_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nd_region_provider_data);
|
|
|
|
void *nd_blk_region_provider_data(struct nd_blk_region *ndbr)
|
|
{
|
|
return ndbr->blk_provider_data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nd_blk_region_provider_data);
|
|
|
|
void nd_blk_region_set_provider_data(struct nd_blk_region *ndbr, void *data)
|
|
{
|
|
ndbr->blk_provider_data = data;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nd_blk_region_set_provider_data);
|
|
|
|
/**
|
|
* nd_region_to_nstype() - region to an integer namespace type
|
|
* @nd_region: region-device to interrogate
|
|
*
|
|
* This is the 'nstype' attribute of a region as well, an input to the
|
|
* MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
|
|
* namespace devices with namespace drivers.
|
|
*/
|
|
int nd_region_to_nstype(struct nd_region *nd_region)
|
|
{
|
|
if (is_memory(&nd_region->dev)) {
|
|
u16 i, alias;
|
|
|
|
for (i = 0, alias = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
if (test_bit(NDD_ALIASING, &nvdimm->flags))
|
|
alias++;
|
|
}
|
|
if (alias)
|
|
return ND_DEVICE_NAMESPACE_PMEM;
|
|
else
|
|
return ND_DEVICE_NAMESPACE_IO;
|
|
} else if (is_nd_blk(&nd_region->dev)) {
|
|
return ND_DEVICE_NAMESPACE_BLK;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(nd_region_to_nstype);
|
|
|
|
static ssize_t size_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
unsigned long long size = 0;
|
|
|
|
if (is_memory(dev)) {
|
|
size = nd_region->ndr_size;
|
|
} else if (nd_region->ndr_mappings == 1) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
|
|
|
|
size = nd_mapping->size;
|
|
}
|
|
|
|
return sprintf(buf, "%llu\n", size);
|
|
}
|
|
static DEVICE_ATTR_RO(size);
|
|
|
|
static ssize_t deep_flush_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
/*
|
|
* NOTE: in the nvdimm_has_flush() error case this attribute is
|
|
* not visible.
|
|
*/
|
|
return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
|
|
}
|
|
|
|
static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
|
|
const char *buf, size_t len)
|
|
{
|
|
bool flush;
|
|
int rc = strtobool(buf, &flush);
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
if (rc)
|
|
return rc;
|
|
if (!flush)
|
|
return -EINVAL;
|
|
nvdimm_flush(nd_region);
|
|
|
|
return len;
|
|
}
|
|
static DEVICE_ATTR_RW(deep_flush);
|
|
|
|
static ssize_t mappings_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
return sprintf(buf, "%d\n", nd_region->ndr_mappings);
|
|
}
|
|
static DEVICE_ATTR_RO(mappings);
|
|
|
|
static ssize_t nstype_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
|
|
}
|
|
static DEVICE_ATTR_RO(nstype);
|
|
|
|
static ssize_t set_cookie_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
struct nd_interleave_set *nd_set = nd_region->nd_set;
|
|
ssize_t rc = 0;
|
|
|
|
if (is_memory(dev) && nd_set)
|
|
/* pass, should be precluded by region_visible */;
|
|
else
|
|
return -ENXIO;
|
|
|
|
/*
|
|
* The cookie to show depends on which specification of the
|
|
* labels we are using. If there are not labels then default to
|
|
* the v1.1 namespace label cookie definition. To read all this
|
|
* data we need to wait for probing to settle.
|
|
*/
|
|
device_lock(dev);
|
|
nvdimm_bus_lock(dev);
|
|
wait_nvdimm_bus_probe_idle(dev);
|
|
if (nd_region->ndr_mappings) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
|
|
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
|
|
|
|
if (ndd) {
|
|
struct nd_namespace_index *nsindex;
|
|
|
|
nsindex = to_namespace_index(ndd, ndd->ns_current);
|
|
rc = sprintf(buf, "%#llx\n",
|
|
nd_region_interleave_set_cookie(nd_region,
|
|
nsindex));
|
|
}
|
|
}
|
|
nvdimm_bus_unlock(dev);
|
|
device_unlock(dev);
|
|
|
|
if (rc)
|
|
return rc;
|
|
return sprintf(buf, "%#llx\n", nd_set->cookie1);
|
|
}
|
|
static DEVICE_ATTR_RO(set_cookie);
|
|
|
|
resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
|
|
{
|
|
resource_size_t blk_max_overlap = 0, available, overlap;
|
|
int i;
|
|
|
|
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
|
|
|
|
retry:
|
|
available = 0;
|
|
overlap = blk_max_overlap;
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
|
|
|
|
/* if a dimm is disabled the available capacity is zero */
|
|
if (!ndd)
|
|
return 0;
|
|
|
|
if (is_memory(&nd_region->dev)) {
|
|
available += nd_pmem_available_dpa(nd_region,
|
|
nd_mapping, &overlap);
|
|
if (overlap > blk_max_overlap) {
|
|
blk_max_overlap = overlap;
|
|
goto retry;
|
|
}
|
|
} else if (is_nd_blk(&nd_region->dev))
|
|
available += nd_blk_available_dpa(nd_region);
|
|
}
|
|
|
|
return available;
|
|
}
|
|
|
|
resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
|
|
{
|
|
resource_size_t available = 0;
|
|
int i;
|
|
|
|
if (is_memory(&nd_region->dev))
|
|
available = PHYS_ADDR_MAX;
|
|
|
|
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
|
|
if (is_memory(&nd_region->dev))
|
|
available = min(available,
|
|
nd_pmem_max_contiguous_dpa(nd_region,
|
|
nd_mapping));
|
|
else if (is_nd_blk(&nd_region->dev))
|
|
available += nd_blk_available_dpa(nd_region);
|
|
}
|
|
if (is_memory(&nd_region->dev))
|
|
return available * nd_region->ndr_mappings;
|
|
return available;
|
|
}
|
|
|
|
static ssize_t available_size_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
unsigned long long available = 0;
|
|
|
|
/*
|
|
* Flush in-flight updates and grab a snapshot of the available
|
|
* size. Of course, this value is potentially invalidated the
|
|
* memory nvdimm_bus_lock() is dropped, but that's userspace's
|
|
* problem to not race itself.
|
|
*/
|
|
nvdimm_bus_lock(dev);
|
|
wait_nvdimm_bus_probe_idle(dev);
|
|
available = nd_region_available_dpa(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return sprintf(buf, "%llu\n", available);
|
|
}
|
|
static DEVICE_ATTR_RO(available_size);
|
|
|
|
static ssize_t max_available_extent_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
unsigned long long available = 0;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
wait_nvdimm_bus_probe_idle(dev);
|
|
available = nd_region_allocatable_dpa(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return sprintf(buf, "%llu\n", available);
|
|
}
|
|
static DEVICE_ATTR_RO(max_available_extent);
|
|
|
|
static ssize_t init_namespaces_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region_data *ndrd = dev_get_drvdata(dev);
|
|
ssize_t rc;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
if (ndrd)
|
|
rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
|
|
else
|
|
rc = -ENXIO;
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR_RO(init_namespaces);
|
|
|
|
static ssize_t namespace_seed_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
ssize_t rc;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->ns_seed)
|
|
rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
|
|
else
|
|
rc = sprintf(buf, "\n");
|
|
nvdimm_bus_unlock(dev);
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR_RO(namespace_seed);
|
|
|
|
static ssize_t btt_seed_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
ssize_t rc;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->btt_seed)
|
|
rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
|
|
else
|
|
rc = sprintf(buf, "\n");
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR_RO(btt_seed);
|
|
|
|
static ssize_t pfn_seed_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
ssize_t rc;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->pfn_seed)
|
|
rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
|
|
else
|
|
rc = sprintf(buf, "\n");
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR_RO(pfn_seed);
|
|
|
|
static ssize_t dax_seed_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
ssize_t rc;
|
|
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->dax_seed)
|
|
rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
|
|
else
|
|
rc = sprintf(buf, "\n");
|
|
nvdimm_bus_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR_RO(dax_seed);
|
|
|
|
static ssize_t read_only_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
return sprintf(buf, "%d\n", nd_region->ro);
|
|
}
|
|
|
|
static ssize_t read_only_store(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
bool ro;
|
|
int rc = strtobool(buf, &ro);
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
nd_region->ro = ro;
|
|
return len;
|
|
}
|
|
static DEVICE_ATTR_RW(read_only);
|
|
|
|
static ssize_t region_badblocks_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
ssize_t rc;
|
|
|
|
device_lock(dev);
|
|
if (dev->driver)
|
|
rc = badblocks_show(&nd_region->bb, buf, 0);
|
|
else
|
|
rc = -ENXIO;
|
|
device_unlock(dev);
|
|
|
|
return rc;
|
|
}
|
|
static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
|
|
|
|
static ssize_t resource_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
return sprintf(buf, "%#llx\n", nd_region->ndr_start);
|
|
}
|
|
static DEVICE_ATTR_RO(resource);
|
|
|
|
static ssize_t persistence_domain_show(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
|
|
return sprintf(buf, "cpu_cache\n");
|
|
else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
|
|
return sprintf(buf, "memory_controller\n");
|
|
else
|
|
return sprintf(buf, "\n");
|
|
}
|
|
static DEVICE_ATTR_RO(persistence_domain);
|
|
|
|
static struct attribute *nd_region_attributes[] = {
|
|
&dev_attr_size.attr,
|
|
&dev_attr_nstype.attr,
|
|
&dev_attr_mappings.attr,
|
|
&dev_attr_btt_seed.attr,
|
|
&dev_attr_pfn_seed.attr,
|
|
&dev_attr_dax_seed.attr,
|
|
&dev_attr_deep_flush.attr,
|
|
&dev_attr_read_only.attr,
|
|
&dev_attr_set_cookie.attr,
|
|
&dev_attr_available_size.attr,
|
|
&dev_attr_max_available_extent.attr,
|
|
&dev_attr_namespace_seed.attr,
|
|
&dev_attr_init_namespaces.attr,
|
|
&dev_attr_badblocks.attr,
|
|
&dev_attr_resource.attr,
|
|
&dev_attr_persistence_domain.attr,
|
|
NULL,
|
|
};
|
|
|
|
static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
|
|
{
|
|
struct device *dev = container_of(kobj, typeof(*dev), kobj);
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
struct nd_interleave_set *nd_set = nd_region->nd_set;
|
|
int type = nd_region_to_nstype(nd_region);
|
|
|
|
if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
|
|
return 0;
|
|
|
|
if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
|
|
return 0;
|
|
|
|
if (!is_nd_pmem(dev) && a == &dev_attr_badblocks.attr)
|
|
return 0;
|
|
|
|
if (a == &dev_attr_resource.attr) {
|
|
if (is_nd_pmem(dev))
|
|
return 0400;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
if (a == &dev_attr_deep_flush.attr) {
|
|
int has_flush = nvdimm_has_flush(nd_region);
|
|
|
|
if (has_flush == 1)
|
|
return a->mode;
|
|
else if (has_flush == 0)
|
|
return 0444;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
if (a == &dev_attr_persistence_domain.attr) {
|
|
if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
|
|
| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
|
|
return 0;
|
|
return a->mode;
|
|
}
|
|
|
|
if (a != &dev_attr_set_cookie.attr
|
|
&& a != &dev_attr_available_size.attr)
|
|
return a->mode;
|
|
|
|
if ((type == ND_DEVICE_NAMESPACE_PMEM
|
|
|| type == ND_DEVICE_NAMESPACE_BLK)
|
|
&& a == &dev_attr_available_size.attr)
|
|
return a->mode;
|
|
else if (is_memory(dev) && nd_set)
|
|
return a->mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct attribute_group nd_region_attribute_group = {
|
|
.attrs = nd_region_attributes,
|
|
.is_visible = region_visible,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nd_region_attribute_group);
|
|
|
|
u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
|
|
struct nd_namespace_index *nsindex)
|
|
{
|
|
struct nd_interleave_set *nd_set = nd_region->nd_set;
|
|
|
|
if (!nd_set)
|
|
return 0;
|
|
|
|
if (nsindex && __le16_to_cpu(nsindex->major) == 1
|
|
&& __le16_to_cpu(nsindex->minor) == 1)
|
|
return nd_set->cookie1;
|
|
return nd_set->cookie2;
|
|
}
|
|
|
|
u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
|
|
{
|
|
struct nd_interleave_set *nd_set = nd_region->nd_set;
|
|
|
|
if (nd_set)
|
|
return nd_set->altcookie;
|
|
return 0;
|
|
}
|
|
|
|
void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
|
|
{
|
|
struct nd_label_ent *label_ent, *e;
|
|
|
|
lockdep_assert_held(&nd_mapping->lock);
|
|
list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
|
|
list_del(&label_ent->list);
|
|
kfree(label_ent);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Upon successful probe/remove, take/release a reference on the
|
|
* associated interleave set (if present), and plant new btt + namespace
|
|
* seeds. Also, on the removal of a BLK region, notify the provider to
|
|
* disable the region.
|
|
*/
|
|
static void nd_region_notify_driver_action(struct nvdimm_bus *nvdimm_bus,
|
|
struct device *dev, bool probe)
|
|
{
|
|
struct nd_region *nd_region;
|
|
|
|
if (!probe && is_nd_region(dev)) {
|
|
int i;
|
|
|
|
nd_region = to_nd_region(dev);
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm_drvdata *ndd = nd_mapping->ndd;
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
mutex_lock(&nd_mapping->lock);
|
|
nd_mapping_free_labels(nd_mapping);
|
|
mutex_unlock(&nd_mapping->lock);
|
|
|
|
put_ndd(ndd);
|
|
nd_mapping->ndd = NULL;
|
|
if (ndd)
|
|
atomic_dec(&nvdimm->busy);
|
|
}
|
|
}
|
|
if (dev->parent && is_nd_region(dev->parent) && probe) {
|
|
nd_region = to_nd_region(dev->parent);
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->ns_seed == dev)
|
|
nd_region_create_ns_seed(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
}
|
|
if (is_nd_btt(dev) && probe) {
|
|
struct nd_btt *nd_btt = to_nd_btt(dev);
|
|
|
|
nd_region = to_nd_region(dev->parent);
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->btt_seed == dev)
|
|
nd_region_create_btt_seed(nd_region);
|
|
if (nd_region->ns_seed == &nd_btt->ndns->dev)
|
|
nd_region_create_ns_seed(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
}
|
|
if (is_nd_pfn(dev) && probe) {
|
|
struct nd_pfn *nd_pfn = to_nd_pfn(dev);
|
|
|
|
nd_region = to_nd_region(dev->parent);
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->pfn_seed == dev)
|
|
nd_region_create_pfn_seed(nd_region);
|
|
if (nd_region->ns_seed == &nd_pfn->ndns->dev)
|
|
nd_region_create_ns_seed(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
}
|
|
if (is_nd_dax(dev) && probe) {
|
|
struct nd_dax *nd_dax = to_nd_dax(dev);
|
|
|
|
nd_region = to_nd_region(dev->parent);
|
|
nvdimm_bus_lock(dev);
|
|
if (nd_region->dax_seed == dev)
|
|
nd_region_create_dax_seed(nd_region);
|
|
if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
|
|
nd_region_create_ns_seed(nd_region);
|
|
nvdimm_bus_unlock(dev);
|
|
}
|
|
}
|
|
|
|
void nd_region_probe_success(struct nvdimm_bus *nvdimm_bus, struct device *dev)
|
|
{
|
|
nd_region_notify_driver_action(nvdimm_bus, dev, true);
|
|
}
|
|
|
|
void nd_region_disable(struct nvdimm_bus *nvdimm_bus, struct device *dev)
|
|
{
|
|
nd_region_notify_driver_action(nvdimm_bus, dev, false);
|
|
}
|
|
|
|
static ssize_t mappingN(struct device *dev, char *buf, int n)
|
|
{
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
struct nd_mapping *nd_mapping;
|
|
struct nvdimm *nvdimm;
|
|
|
|
if (n >= nd_region->ndr_mappings)
|
|
return -ENXIO;
|
|
nd_mapping = &nd_region->mapping[n];
|
|
nvdimm = nd_mapping->nvdimm;
|
|
|
|
return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
|
|
nd_mapping->start, nd_mapping->size,
|
|
nd_mapping->position);
|
|
}
|
|
|
|
#define REGION_MAPPING(idx) \
|
|
static ssize_t mapping##idx##_show(struct device *dev, \
|
|
struct device_attribute *attr, char *buf) \
|
|
{ \
|
|
return mappingN(dev, buf, idx); \
|
|
} \
|
|
static DEVICE_ATTR_RO(mapping##idx)
|
|
|
|
/*
|
|
* 32 should be enough for a while, even in the presence of socket
|
|
* interleave a 32-way interleave set is a degenerate case.
|
|
*/
|
|
REGION_MAPPING(0);
|
|
REGION_MAPPING(1);
|
|
REGION_MAPPING(2);
|
|
REGION_MAPPING(3);
|
|
REGION_MAPPING(4);
|
|
REGION_MAPPING(5);
|
|
REGION_MAPPING(6);
|
|
REGION_MAPPING(7);
|
|
REGION_MAPPING(8);
|
|
REGION_MAPPING(9);
|
|
REGION_MAPPING(10);
|
|
REGION_MAPPING(11);
|
|
REGION_MAPPING(12);
|
|
REGION_MAPPING(13);
|
|
REGION_MAPPING(14);
|
|
REGION_MAPPING(15);
|
|
REGION_MAPPING(16);
|
|
REGION_MAPPING(17);
|
|
REGION_MAPPING(18);
|
|
REGION_MAPPING(19);
|
|
REGION_MAPPING(20);
|
|
REGION_MAPPING(21);
|
|
REGION_MAPPING(22);
|
|
REGION_MAPPING(23);
|
|
REGION_MAPPING(24);
|
|
REGION_MAPPING(25);
|
|
REGION_MAPPING(26);
|
|
REGION_MAPPING(27);
|
|
REGION_MAPPING(28);
|
|
REGION_MAPPING(29);
|
|
REGION_MAPPING(30);
|
|
REGION_MAPPING(31);
|
|
|
|
static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
|
|
{
|
|
struct device *dev = container_of(kobj, struct device, kobj);
|
|
struct nd_region *nd_region = to_nd_region(dev);
|
|
|
|
if (n < nd_region->ndr_mappings)
|
|
return a->mode;
|
|
return 0;
|
|
}
|
|
|
|
static struct attribute *mapping_attributes[] = {
|
|
&dev_attr_mapping0.attr,
|
|
&dev_attr_mapping1.attr,
|
|
&dev_attr_mapping2.attr,
|
|
&dev_attr_mapping3.attr,
|
|
&dev_attr_mapping4.attr,
|
|
&dev_attr_mapping5.attr,
|
|
&dev_attr_mapping6.attr,
|
|
&dev_attr_mapping7.attr,
|
|
&dev_attr_mapping8.attr,
|
|
&dev_attr_mapping9.attr,
|
|
&dev_attr_mapping10.attr,
|
|
&dev_attr_mapping11.attr,
|
|
&dev_attr_mapping12.attr,
|
|
&dev_attr_mapping13.attr,
|
|
&dev_attr_mapping14.attr,
|
|
&dev_attr_mapping15.attr,
|
|
&dev_attr_mapping16.attr,
|
|
&dev_attr_mapping17.attr,
|
|
&dev_attr_mapping18.attr,
|
|
&dev_attr_mapping19.attr,
|
|
&dev_attr_mapping20.attr,
|
|
&dev_attr_mapping21.attr,
|
|
&dev_attr_mapping22.attr,
|
|
&dev_attr_mapping23.attr,
|
|
&dev_attr_mapping24.attr,
|
|
&dev_attr_mapping25.attr,
|
|
&dev_attr_mapping26.attr,
|
|
&dev_attr_mapping27.attr,
|
|
&dev_attr_mapping28.attr,
|
|
&dev_attr_mapping29.attr,
|
|
&dev_attr_mapping30.attr,
|
|
&dev_attr_mapping31.attr,
|
|
NULL,
|
|
};
|
|
|
|
struct attribute_group nd_mapping_attribute_group = {
|
|
.is_visible = mapping_visible,
|
|
.attrs = mapping_attributes,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nd_mapping_attribute_group);
|
|
|
|
int nd_blk_region_init(struct nd_region *nd_region)
|
|
{
|
|
struct device *dev = &nd_region->dev;
|
|
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev);
|
|
|
|
if (!is_nd_blk(dev))
|
|
return 0;
|
|
|
|
if (nd_region->ndr_mappings < 1) {
|
|
dev_dbg(dev, "invalid BLK region\n");
|
|
return -ENXIO;
|
|
}
|
|
|
|
return to_nd_blk_region(dev)->enable(nvdimm_bus, dev);
|
|
}
|
|
|
|
/**
|
|
* nd_region_acquire_lane - allocate and lock a lane
|
|
* @nd_region: region id and number of lanes possible
|
|
*
|
|
* A lane correlates to a BLK-data-window and/or a log slot in the BTT.
|
|
* We optimize for the common case where there are 256 lanes, one
|
|
* per-cpu. For larger systems we need to lock to share lanes. For now
|
|
* this implementation assumes the cost of maintaining an allocator for
|
|
* free lanes is on the order of the lock hold time, so it implements a
|
|
* static lane = cpu % num_lanes mapping.
|
|
*
|
|
* In the case of a BTT instance on top of a BLK namespace a lane may be
|
|
* acquired recursively. We lock on the first instance.
|
|
*
|
|
* In the case of a BTT instance on top of PMEM, we only acquire a lane
|
|
* for the BTT metadata updates.
|
|
*/
|
|
unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
|
|
{
|
|
unsigned int cpu, lane;
|
|
|
|
cpu = get_cpu();
|
|
if (nd_region->num_lanes < nr_cpu_ids) {
|
|
struct nd_percpu_lane *ndl_lock, *ndl_count;
|
|
|
|
lane = cpu % nd_region->num_lanes;
|
|
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
|
|
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
|
|
if (ndl_count->count++ == 0)
|
|
spin_lock(&ndl_lock->lock);
|
|
} else
|
|
lane = cpu;
|
|
|
|
return lane;
|
|
}
|
|
EXPORT_SYMBOL(nd_region_acquire_lane);
|
|
|
|
void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
|
|
{
|
|
if (nd_region->num_lanes < nr_cpu_ids) {
|
|
unsigned int cpu = get_cpu();
|
|
struct nd_percpu_lane *ndl_lock, *ndl_count;
|
|
|
|
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
|
|
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
|
|
if (--ndl_count->count == 0)
|
|
spin_unlock(&ndl_lock->lock);
|
|
put_cpu();
|
|
}
|
|
put_cpu();
|
|
}
|
|
EXPORT_SYMBOL(nd_region_release_lane);
|
|
|
|
static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
|
|
struct nd_region_desc *ndr_desc, struct device_type *dev_type,
|
|
const char *caller)
|
|
{
|
|
struct nd_region *nd_region;
|
|
struct device *dev;
|
|
void *region_buf;
|
|
unsigned int i;
|
|
int ro = 0;
|
|
|
|
for (i = 0; i < ndr_desc->num_mappings; i++) {
|
|
struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
|
|
struct nvdimm *nvdimm = mapping->nvdimm;
|
|
|
|
if ((mapping->start | mapping->size) % SZ_4K) {
|
|
dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not 4K aligned\n",
|
|
caller, dev_name(&nvdimm->dev), i);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
if (test_bit(NDD_UNARMED, &nvdimm->flags))
|
|
ro = 1;
|
|
|
|
if (test_bit(NDD_NOBLK, &nvdimm->flags)
|
|
&& dev_type == &nd_blk_device_type) {
|
|
dev_err(&nvdimm_bus->dev, "%s: %s mapping%d is not BLK capable\n",
|
|
caller, dev_name(&nvdimm->dev), i);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (dev_type == &nd_blk_device_type) {
|
|
struct nd_blk_region_desc *ndbr_desc;
|
|
struct nd_blk_region *ndbr;
|
|
|
|
ndbr_desc = to_blk_region_desc(ndr_desc);
|
|
ndbr = kzalloc(sizeof(*ndbr) + sizeof(struct nd_mapping)
|
|
* ndr_desc->num_mappings,
|
|
GFP_KERNEL);
|
|
if (ndbr) {
|
|
nd_region = &ndbr->nd_region;
|
|
ndbr->enable = ndbr_desc->enable;
|
|
ndbr->do_io = ndbr_desc->do_io;
|
|
}
|
|
region_buf = ndbr;
|
|
} else {
|
|
nd_region = kzalloc(sizeof(struct nd_region)
|
|
+ sizeof(struct nd_mapping)
|
|
* ndr_desc->num_mappings,
|
|
GFP_KERNEL);
|
|
region_buf = nd_region;
|
|
}
|
|
|
|
if (!region_buf)
|
|
return NULL;
|
|
nd_region->id = ida_simple_get(®ion_ida, 0, 0, GFP_KERNEL);
|
|
if (nd_region->id < 0)
|
|
goto err_id;
|
|
|
|
nd_region->lane = alloc_percpu(struct nd_percpu_lane);
|
|
if (!nd_region->lane)
|
|
goto err_percpu;
|
|
|
|
for (i = 0; i < nr_cpu_ids; i++) {
|
|
struct nd_percpu_lane *ndl;
|
|
|
|
ndl = per_cpu_ptr(nd_region->lane, i);
|
|
spin_lock_init(&ndl->lock);
|
|
ndl->count = 0;
|
|
}
|
|
|
|
for (i = 0; i < ndr_desc->num_mappings; i++) {
|
|
struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
|
|
struct nvdimm *nvdimm = mapping->nvdimm;
|
|
|
|
nd_region->mapping[i].nvdimm = nvdimm;
|
|
nd_region->mapping[i].start = mapping->start;
|
|
nd_region->mapping[i].size = mapping->size;
|
|
nd_region->mapping[i].position = mapping->position;
|
|
INIT_LIST_HEAD(&nd_region->mapping[i].labels);
|
|
mutex_init(&nd_region->mapping[i].lock);
|
|
|
|
get_device(&nvdimm->dev);
|
|
}
|
|
nd_region->ndr_mappings = ndr_desc->num_mappings;
|
|
nd_region->provider_data = ndr_desc->provider_data;
|
|
nd_region->nd_set = ndr_desc->nd_set;
|
|
nd_region->num_lanes = ndr_desc->num_lanes;
|
|
nd_region->flags = ndr_desc->flags;
|
|
nd_region->ro = ro;
|
|
nd_region->numa_node = ndr_desc->numa_node;
|
|
nd_region->target_node = ndr_desc->target_node;
|
|
ida_init(&nd_region->ns_ida);
|
|
ida_init(&nd_region->btt_ida);
|
|
ida_init(&nd_region->pfn_ida);
|
|
ida_init(&nd_region->dax_ida);
|
|
dev = &nd_region->dev;
|
|
dev_set_name(dev, "region%d", nd_region->id);
|
|
dev->parent = &nvdimm_bus->dev;
|
|
dev->type = dev_type;
|
|
dev->groups = ndr_desc->attr_groups;
|
|
dev->of_node = ndr_desc->of_node;
|
|
nd_region->ndr_size = resource_size(ndr_desc->res);
|
|
nd_region->ndr_start = ndr_desc->res->start;
|
|
nd_device_register(dev);
|
|
|
|
return nd_region;
|
|
|
|
err_percpu:
|
|
ida_simple_remove(®ion_ida, nd_region->id);
|
|
err_id:
|
|
kfree(region_buf);
|
|
return NULL;
|
|
}
|
|
|
|
struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
|
|
struct nd_region_desc *ndr_desc)
|
|
{
|
|
ndr_desc->num_lanes = ND_MAX_LANES;
|
|
return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
|
|
__func__);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
|
|
|
|
struct nd_region *nvdimm_blk_region_create(struct nvdimm_bus *nvdimm_bus,
|
|
struct nd_region_desc *ndr_desc)
|
|
{
|
|
if (ndr_desc->num_mappings > 1)
|
|
return NULL;
|
|
ndr_desc->num_lanes = min(ndr_desc->num_lanes, ND_MAX_LANES);
|
|
return nd_region_create(nvdimm_bus, ndr_desc, &nd_blk_device_type,
|
|
__func__);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_blk_region_create);
|
|
|
|
struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
|
|
struct nd_region_desc *ndr_desc)
|
|
{
|
|
ndr_desc->num_lanes = ND_MAX_LANES;
|
|
return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
|
|
__func__);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
|
|
|
|
/**
|
|
* nvdimm_flush - flush any posted write queues between the cpu and pmem media
|
|
* @nd_region: blk or interleaved pmem region
|
|
*/
|
|
void nvdimm_flush(struct nd_region *nd_region)
|
|
{
|
|
struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
|
|
int i, idx;
|
|
|
|
/*
|
|
* Try to encourage some diversity in flush hint addresses
|
|
* across cpus assuming a limited number of flush hints.
|
|
*/
|
|
idx = this_cpu_read(flush_idx);
|
|
idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
|
|
|
|
/*
|
|
* The first wmb() is needed to 'sfence' all previous writes
|
|
* such that they are architecturally visible for the platform
|
|
* buffer flush. Note that we've already arranged for pmem
|
|
* writes to avoid the cache via memcpy_flushcache(). The final
|
|
* wmb() ensures ordering for the NVDIMM flush write.
|
|
*/
|
|
wmb();
|
|
for (i = 0; i < nd_region->ndr_mappings; i++)
|
|
if (ndrd_get_flush_wpq(ndrd, i, 0))
|
|
writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
|
|
wmb();
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_flush);
|
|
|
|
/**
|
|
* nvdimm_has_flush - determine write flushing requirements
|
|
* @nd_region: blk or interleaved pmem region
|
|
*
|
|
* Returns 1 if writes require flushing
|
|
* Returns 0 if writes do not require flushing
|
|
* Returns -ENXIO if flushing capability can not be determined
|
|
*/
|
|
int nvdimm_has_flush(struct nd_region *nd_region)
|
|
{
|
|
int i;
|
|
|
|
/* no nvdimm or pmem api == flushing capability unknown */
|
|
if (nd_region->ndr_mappings == 0
|
|
|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
|
|
return -ENXIO;
|
|
|
|
for (i = 0; i < nd_region->ndr_mappings; i++) {
|
|
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
|
|
struct nvdimm *nvdimm = nd_mapping->nvdimm;
|
|
|
|
/* flush hints present / available */
|
|
if (nvdimm->num_flush)
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* The platform defines dimm devices without hints, assume
|
|
* platform persistence mechanism like ADR
|
|
*/
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_has_flush);
|
|
|
|
int nvdimm_has_cache(struct nd_region *nd_region)
|
|
{
|
|
return is_nd_pmem(&nd_region->dev) &&
|
|
!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nvdimm_has_cache);
|
|
|
|
struct conflict_context {
|
|
struct nd_region *nd_region;
|
|
resource_size_t start, size;
|
|
};
|
|
|
|
static int region_conflict(struct device *dev, void *data)
|
|
{
|
|
struct nd_region *nd_region;
|
|
struct conflict_context *ctx = data;
|
|
resource_size_t res_end, region_end, region_start;
|
|
|
|
if (!is_memory(dev))
|
|
return 0;
|
|
|
|
nd_region = to_nd_region(dev);
|
|
if (nd_region == ctx->nd_region)
|
|
return 0;
|
|
|
|
res_end = ctx->start + ctx->size;
|
|
region_start = nd_region->ndr_start;
|
|
region_end = region_start + nd_region->ndr_size;
|
|
if (ctx->start >= region_start && ctx->start < region_end)
|
|
return -EBUSY;
|
|
if (res_end > region_start && res_end <= region_end)
|
|
return -EBUSY;
|
|
return 0;
|
|
}
|
|
|
|
int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
|
|
resource_size_t size)
|
|
{
|
|
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
|
|
struct conflict_context ctx = {
|
|
.nd_region = nd_region,
|
|
.start = start,
|
|
.size = size,
|
|
};
|
|
|
|
return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
|
|
}
|
|
|
|
void __exit nd_region_devs_exit(void)
|
|
{
|
|
ida_destroy(®ion_ida);
|
|
}
|