linux_dsm_epyc7002/drivers/iio/adc/imx7d_adc.c
Thomas Gleixner 2874c5fd28 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 3029 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:32 -07:00

578 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Freescale i.MX7D ADC driver
*
* Copyright (C) 2015 Freescale Semiconductor, Inc.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regulator/consumer.h>
#include <linux/iio/iio.h>
#include <linux/iio/driver.h>
#include <linux/iio/sysfs.h>
/* ADC register */
#define IMX7D_REG_ADC_CH_A_CFG1 0x00
#define IMX7D_REG_ADC_CH_A_CFG2 0x10
#define IMX7D_REG_ADC_CH_B_CFG1 0x20
#define IMX7D_REG_ADC_CH_B_CFG2 0x30
#define IMX7D_REG_ADC_CH_C_CFG1 0x40
#define IMX7D_REG_ADC_CH_C_CFG2 0x50
#define IMX7D_REG_ADC_CH_D_CFG1 0x60
#define IMX7D_REG_ADC_CH_D_CFG2 0x70
#define IMX7D_REG_ADC_CH_SW_CFG 0x80
#define IMX7D_REG_ADC_TIMER_UNIT 0x90
#define IMX7D_REG_ADC_DMA_FIFO 0xa0
#define IMX7D_REG_ADC_FIFO_STATUS 0xb0
#define IMX7D_REG_ADC_INT_SIG_EN 0xc0
#define IMX7D_REG_ADC_INT_EN 0xd0
#define IMX7D_REG_ADC_INT_STATUS 0xe0
#define IMX7D_REG_ADC_CHA_B_CNV_RSLT 0xf0
#define IMX7D_REG_ADC_CHC_D_CNV_RSLT 0x100
#define IMX7D_REG_ADC_CH_SW_CNV_RSLT 0x110
#define IMX7D_REG_ADC_DMA_FIFO_DAT 0x120
#define IMX7D_REG_ADC_ADC_CFG 0x130
#define IMX7D_REG_ADC_CHANNEL_CFG2_BASE 0x10
#define IMX7D_EACH_CHANNEL_REG_OFFSET 0x20
#define IMX7D_REG_ADC_CH_CFG1_CHANNEL_EN (0x1 << 31)
#define IMX7D_REG_ADC_CH_CFG1_CHANNEL_SINGLE BIT(30)
#define IMX7D_REG_ADC_CH_CFG1_CHANNEL_AVG_EN BIT(29)
#define IMX7D_REG_ADC_CH_CFG1_CHANNEL_SEL(x) ((x) << 24)
#define IMX7D_REG_ADC_CH_CFG2_AVG_NUM_4 (0x0 << 12)
#define IMX7D_REG_ADC_CH_CFG2_AVG_NUM_8 (0x1 << 12)
#define IMX7D_REG_ADC_CH_CFG2_AVG_NUM_16 (0x2 << 12)
#define IMX7D_REG_ADC_CH_CFG2_AVG_NUM_32 (0x3 << 12)
#define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_4 (0x0 << 29)
#define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_8 (0x1 << 29)
#define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_16 (0x2 << 29)
#define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_32 (0x3 << 29)
#define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_64 (0x4 << 29)
#define IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_128 (0x5 << 29)
#define IMX7D_REG_ADC_ADC_CFG_ADC_CLK_DOWN BIT(31)
#define IMX7D_REG_ADC_ADC_CFG_ADC_POWER_DOWN BIT(1)
#define IMX7D_REG_ADC_ADC_CFG_ADC_EN BIT(0)
#define IMX7D_REG_ADC_INT_CHA_COV_INT_EN BIT(8)
#define IMX7D_REG_ADC_INT_CHB_COV_INT_EN BIT(9)
#define IMX7D_REG_ADC_INT_CHC_COV_INT_EN BIT(10)
#define IMX7D_REG_ADC_INT_CHD_COV_INT_EN BIT(11)
#define IMX7D_REG_ADC_INT_CHANNEL_INT_EN \
(IMX7D_REG_ADC_INT_CHA_COV_INT_EN | \
IMX7D_REG_ADC_INT_CHB_COV_INT_EN | \
IMX7D_REG_ADC_INT_CHC_COV_INT_EN | \
IMX7D_REG_ADC_INT_CHD_COV_INT_EN)
#define IMX7D_REG_ADC_INT_STATUS_CHANNEL_INT_STATUS 0xf00
#define IMX7D_REG_ADC_INT_STATUS_CHANNEL_CONV_TIME_OUT 0xf0000
#define IMX7D_ADC_TIMEOUT msecs_to_jiffies(100)
enum imx7d_adc_clk_pre_div {
IMX7D_ADC_ANALOG_CLK_PRE_DIV_4,
IMX7D_ADC_ANALOG_CLK_PRE_DIV_8,
IMX7D_ADC_ANALOG_CLK_PRE_DIV_16,
IMX7D_ADC_ANALOG_CLK_PRE_DIV_32,
IMX7D_ADC_ANALOG_CLK_PRE_DIV_64,
IMX7D_ADC_ANALOG_CLK_PRE_DIV_128,
};
enum imx7d_adc_average_num {
IMX7D_ADC_AVERAGE_NUM_4,
IMX7D_ADC_AVERAGE_NUM_8,
IMX7D_ADC_AVERAGE_NUM_16,
IMX7D_ADC_AVERAGE_NUM_32,
};
struct imx7d_adc_feature {
enum imx7d_adc_clk_pre_div clk_pre_div;
enum imx7d_adc_average_num avg_num;
u32 core_time_unit; /* impact the sample rate */
bool average_en;
};
struct imx7d_adc {
struct device *dev;
void __iomem *regs;
struct clk *clk;
u32 vref_uv;
u32 value;
u32 channel;
u32 pre_div_num;
struct regulator *vref;
struct imx7d_adc_feature adc_feature;
struct completion completion;
};
struct imx7d_adc_analogue_core_clk {
u32 pre_div;
u32 reg_config;
};
#define IMX7D_ADC_ANALOGUE_CLK_CONFIG(_pre_div, _reg_conf) { \
.pre_div = (_pre_div), \
.reg_config = (_reg_conf), \
}
static const struct imx7d_adc_analogue_core_clk imx7d_adc_analogue_clk[] = {
IMX7D_ADC_ANALOGUE_CLK_CONFIG(4, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_4),
IMX7D_ADC_ANALOGUE_CLK_CONFIG(8, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_8),
IMX7D_ADC_ANALOGUE_CLK_CONFIG(16, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_16),
IMX7D_ADC_ANALOGUE_CLK_CONFIG(32, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_32),
IMX7D_ADC_ANALOGUE_CLK_CONFIG(64, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_64),
IMX7D_ADC_ANALOGUE_CLK_CONFIG(128, IMX7D_REG_ADC_TIMER_UNIT_PRE_DIV_128),
};
#define IMX7D_ADC_CHAN(_idx) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = (_idx), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
}
static const struct iio_chan_spec imx7d_adc_iio_channels[] = {
IMX7D_ADC_CHAN(0),
IMX7D_ADC_CHAN(1),
IMX7D_ADC_CHAN(2),
IMX7D_ADC_CHAN(3),
IMX7D_ADC_CHAN(4),
IMX7D_ADC_CHAN(5),
IMX7D_ADC_CHAN(6),
IMX7D_ADC_CHAN(7),
IMX7D_ADC_CHAN(8),
IMX7D_ADC_CHAN(9),
IMX7D_ADC_CHAN(10),
IMX7D_ADC_CHAN(11),
IMX7D_ADC_CHAN(12),
IMX7D_ADC_CHAN(13),
IMX7D_ADC_CHAN(14),
IMX7D_ADC_CHAN(15),
};
static const u32 imx7d_adc_average_num[] = {
IMX7D_REG_ADC_CH_CFG2_AVG_NUM_4,
IMX7D_REG_ADC_CH_CFG2_AVG_NUM_8,
IMX7D_REG_ADC_CH_CFG2_AVG_NUM_16,
IMX7D_REG_ADC_CH_CFG2_AVG_NUM_32,
};
static void imx7d_adc_feature_config(struct imx7d_adc *info)
{
info->adc_feature.clk_pre_div = IMX7D_ADC_ANALOG_CLK_PRE_DIV_4;
info->adc_feature.avg_num = IMX7D_ADC_AVERAGE_NUM_32;
info->adc_feature.core_time_unit = 1;
info->adc_feature.average_en = true;
}
static void imx7d_adc_sample_rate_set(struct imx7d_adc *info)
{
struct imx7d_adc_feature *adc_feature = &info->adc_feature;
struct imx7d_adc_analogue_core_clk adc_analogure_clk;
u32 i;
u32 tmp_cfg1;
u32 sample_rate = 0;
/*
* Before sample set, disable channel A,B,C,D. Here we
* clear the bit 31 of register REG_ADC_CH_A\B\C\D_CFG1.
*/
for (i = 0; i < 4; i++) {
tmp_cfg1 =
readl(info->regs + i * IMX7D_EACH_CHANNEL_REG_OFFSET);
tmp_cfg1 &= ~IMX7D_REG_ADC_CH_CFG1_CHANNEL_EN;
writel(tmp_cfg1,
info->regs + i * IMX7D_EACH_CHANNEL_REG_OFFSET);
}
adc_analogure_clk = imx7d_adc_analogue_clk[adc_feature->clk_pre_div];
sample_rate |= adc_analogure_clk.reg_config;
info->pre_div_num = adc_analogure_clk.pre_div;
sample_rate |= adc_feature->core_time_unit;
writel(sample_rate, info->regs + IMX7D_REG_ADC_TIMER_UNIT);
}
static void imx7d_adc_hw_init(struct imx7d_adc *info)
{
u32 cfg;
/* power up and enable adc analogue core */
cfg = readl(info->regs + IMX7D_REG_ADC_ADC_CFG);
cfg &= ~(IMX7D_REG_ADC_ADC_CFG_ADC_CLK_DOWN |
IMX7D_REG_ADC_ADC_CFG_ADC_POWER_DOWN);
cfg |= IMX7D_REG_ADC_ADC_CFG_ADC_EN;
writel(cfg, info->regs + IMX7D_REG_ADC_ADC_CFG);
/* enable channel A,B,C,D interrupt */
writel(IMX7D_REG_ADC_INT_CHANNEL_INT_EN,
info->regs + IMX7D_REG_ADC_INT_SIG_EN);
writel(IMX7D_REG_ADC_INT_CHANNEL_INT_EN,
info->regs + IMX7D_REG_ADC_INT_EN);
imx7d_adc_sample_rate_set(info);
}
static void imx7d_adc_channel_set(struct imx7d_adc *info)
{
u32 cfg1 = 0;
u32 cfg2;
u32 channel;
channel = info->channel;
/* the channel choose single conversion, and enable average mode */
cfg1 |= (IMX7D_REG_ADC_CH_CFG1_CHANNEL_EN |
IMX7D_REG_ADC_CH_CFG1_CHANNEL_SINGLE);
if (info->adc_feature.average_en)
cfg1 |= IMX7D_REG_ADC_CH_CFG1_CHANNEL_AVG_EN;
/*
* physical channel 0 chose logical channel A
* physical channel 1 chose logical channel B
* physical channel 2 chose logical channel C
* physical channel 3 chose logical channel D
*/
cfg1 |= IMX7D_REG_ADC_CH_CFG1_CHANNEL_SEL(channel);
/*
* read register REG_ADC_CH_A\B\C\D_CFG2, according to the
* channel chosen
*/
cfg2 = readl(info->regs + IMX7D_EACH_CHANNEL_REG_OFFSET * channel +
IMX7D_REG_ADC_CHANNEL_CFG2_BASE);
cfg2 |= imx7d_adc_average_num[info->adc_feature.avg_num];
/*
* write the register REG_ADC_CH_A\B\C\D_CFG2, according to
* the channel chosen
*/
writel(cfg2, info->regs + IMX7D_EACH_CHANNEL_REG_OFFSET * channel +
IMX7D_REG_ADC_CHANNEL_CFG2_BASE);
writel(cfg1, info->regs + IMX7D_EACH_CHANNEL_REG_OFFSET * channel);
}
static u32 imx7d_adc_get_sample_rate(struct imx7d_adc *info)
{
/* input clock is always 24MHz */
u32 input_clk = 24000000;
u32 analogue_core_clk;
u32 core_time_unit = info->adc_feature.core_time_unit;
u32 tmp;
analogue_core_clk = input_clk / info->pre_div_num;
tmp = (core_time_unit + 1) * 6;
return analogue_core_clk / tmp;
}
static int imx7d_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long mask)
{
struct imx7d_adc *info = iio_priv(indio_dev);
u32 channel;
long ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&indio_dev->mlock);
reinit_completion(&info->completion);
channel = chan->channel & 0x03;
info->channel = channel;
imx7d_adc_channel_set(info);
ret = wait_for_completion_interruptible_timeout
(&info->completion, IMX7D_ADC_TIMEOUT);
if (ret == 0) {
mutex_unlock(&indio_dev->mlock);
return -ETIMEDOUT;
}
if (ret < 0) {
mutex_unlock(&indio_dev->mlock);
return ret;
}
*val = info->value;
mutex_unlock(&indio_dev->mlock);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
info->vref_uv = regulator_get_voltage(info->vref);
*val = info->vref_uv / 1000;
*val2 = 12;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = imx7d_adc_get_sample_rate(info);
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int imx7d_adc_read_data(struct imx7d_adc *info)
{
u32 channel;
u32 value;
channel = info->channel & 0x03;
/*
* channel A and B conversion result share one register,
* bit[27~16] is the channel B conversion result,
* bit[11~0] is the channel A conversion result.
* channel C and D is the same.
*/
if (channel < 2)
value = readl(info->regs + IMX7D_REG_ADC_CHA_B_CNV_RSLT);
else
value = readl(info->regs + IMX7D_REG_ADC_CHC_D_CNV_RSLT);
if (channel & 0x1) /* channel B or D */
value = (value >> 16) & 0xFFF;
else /* channel A or C */
value &= 0xFFF;
return value;
}
static irqreturn_t imx7d_adc_isr(int irq, void *dev_id)
{
struct imx7d_adc *info = dev_id;
int status;
status = readl(info->regs + IMX7D_REG_ADC_INT_STATUS);
if (status & IMX7D_REG_ADC_INT_STATUS_CHANNEL_INT_STATUS) {
info->value = imx7d_adc_read_data(info);
complete(&info->completion);
/*
* The register IMX7D_REG_ADC_INT_STATUS can't clear
* itself after read operation, need software to write
* 0 to the related bit. Here we clear the channel A/B/C/D
* conversion finished flag.
*/
status &= ~IMX7D_REG_ADC_INT_STATUS_CHANNEL_INT_STATUS;
writel(status, info->regs + IMX7D_REG_ADC_INT_STATUS);
}
/*
* If the channel A/B/C/D conversion timeout, report it and clear these
* timeout flags.
*/
if (status & IMX7D_REG_ADC_INT_STATUS_CHANNEL_CONV_TIME_OUT) {
dev_err(info->dev,
"ADC got conversion time out interrupt: 0x%08x\n",
status);
status &= ~IMX7D_REG_ADC_INT_STATUS_CHANNEL_CONV_TIME_OUT;
writel(status, info->regs + IMX7D_REG_ADC_INT_STATUS);
}
return IRQ_HANDLED;
}
static int imx7d_adc_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct imx7d_adc *info = iio_priv(indio_dev);
if (!readval || reg % 4 || reg > IMX7D_REG_ADC_ADC_CFG)
return -EINVAL;
*readval = readl(info->regs + reg);
return 0;
}
static const struct iio_info imx7d_adc_iio_info = {
.read_raw = &imx7d_adc_read_raw,
.debugfs_reg_access = &imx7d_adc_reg_access,
};
static const struct of_device_id imx7d_adc_match[] = {
{ .compatible = "fsl,imx7d-adc", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx7d_adc_match);
static void imx7d_adc_power_down(struct imx7d_adc *info)
{
u32 adc_cfg;
adc_cfg = readl(info->regs + IMX7D_REG_ADC_ADC_CFG);
adc_cfg |= IMX7D_REG_ADC_ADC_CFG_ADC_CLK_DOWN |
IMX7D_REG_ADC_ADC_CFG_ADC_POWER_DOWN;
adc_cfg &= ~IMX7D_REG_ADC_ADC_CFG_ADC_EN;
writel(adc_cfg, info->regs + IMX7D_REG_ADC_ADC_CFG);
}
static int imx7d_adc_enable(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct imx7d_adc *info = iio_priv(indio_dev);
int ret;
ret = regulator_enable(info->vref);
if (ret) {
dev_err(info->dev,
"Can't enable adc reference top voltage, err = %d\n",
ret);
return ret;
}
ret = clk_prepare_enable(info->clk);
if (ret) {
dev_err(info->dev,
"Could not prepare or enable clock.\n");
regulator_disable(info->vref);
return ret;
}
imx7d_adc_hw_init(info);
return 0;
}
static int imx7d_adc_disable(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct imx7d_adc *info = iio_priv(indio_dev);
imx7d_adc_power_down(info);
clk_disable_unprepare(info->clk);
regulator_disable(info->vref);
return 0;
}
static void __imx7d_adc_disable(void *data)
{
imx7d_adc_disable(data);
}
static int imx7d_adc_probe(struct platform_device *pdev)
{
struct imx7d_adc *info;
struct iio_dev *indio_dev;
struct device *dev = &pdev->dev;
int irq;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*info));
if (!indio_dev) {
dev_err(&pdev->dev, "Failed allocating iio device\n");
return -ENOMEM;
}
info = iio_priv(indio_dev);
info->dev = dev;
info->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(info->regs)) {
ret = PTR_ERR(info->regs);
dev_err(dev, "Failed to remap adc memory, err = %d\n", ret);
return ret;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "No irq resource?\n");
return irq;
}
info->clk = devm_clk_get(dev, "adc");
if (IS_ERR(info->clk)) {
ret = PTR_ERR(info->clk);
dev_err(dev, "Failed getting clock, err = %d\n", ret);
return ret;
}
info->vref = devm_regulator_get(dev, "vref");
if (IS_ERR(info->vref)) {
ret = PTR_ERR(info->vref);
dev_err(dev,
"Failed getting reference voltage, err = %d\n", ret);
return ret;
}
platform_set_drvdata(pdev, indio_dev);
init_completion(&info->completion);
indio_dev->name = dev_name(dev);
indio_dev->dev.parent = dev;
indio_dev->info = &imx7d_adc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = imx7d_adc_iio_channels;
indio_dev->num_channels = ARRAY_SIZE(imx7d_adc_iio_channels);
ret = devm_request_irq(dev, irq,
imx7d_adc_isr, 0,
dev_name(dev), info);
if (ret < 0) {
dev_err(dev, "Failed requesting irq, irq = %d\n", irq);
return ret;
}
imx7d_adc_feature_config(info);
ret = imx7d_adc_enable(&indio_dev->dev);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, __imx7d_adc_disable,
&indio_dev->dev);
if (ret)
return ret;
ret = devm_iio_device_register(dev, indio_dev);
if (ret) {
dev_err(&pdev->dev, "Couldn't register the device.\n");
return ret;
}
return 0;
}
static SIMPLE_DEV_PM_OPS(imx7d_adc_pm_ops, imx7d_adc_disable, imx7d_adc_enable);
static struct platform_driver imx7d_adc_driver = {
.probe = imx7d_adc_probe,
.driver = {
.name = "imx7d_adc",
.of_match_table = imx7d_adc_match,
.pm = &imx7d_adc_pm_ops,
},
};
module_platform_driver(imx7d_adc_driver);
MODULE_AUTHOR("Haibo Chen <haibo.chen@freescale.com>");
MODULE_DESCRIPTION("Freescale IMX7D ADC driver");
MODULE_LICENSE("GPL v2");