mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 07:00:52 +07:00
95247d24c4
commit 81e2073c175b887398e5bca6c004efa89983f58d upstream.
With interrupt force threading all device interrupt handlers are invoked
from kernel threads. Contrary to hard interrupt context the invocation only
disables bottom halfs, but not interrupts. This was an oversight back then
because any code like this will have an issue:
thread(irq_A)
irq_handler(A)
spin_lock(&foo->lock);
interrupt(irq_B)
irq_handler(B)
spin_lock(&foo->lock);
This has been triggered with networking (NAPI vs. hrtimers) and console
drivers where printk() happens from an interrupt which interrupted the
force threaded handler.
Now people noticed and started to change the spin_lock() in the handler to
spin_lock_irqsave() which affects performance or add IRQF_NOTHREAD to the
interrupt request which in turn breaks RT.
Fix the root cause and not the symptom and disable interrupts before
invoking the force threaded handler which preserves the regular semantics
and the usefulness of the interrupt force threading as a general debugging
tool.
For not RT this is not changing much, except that during the execution of
the threaded handler interrupts are delayed until the handler
returns. Vs. scheduling and softirq processing there is no difference.
For RT kernels there is no issue.
Fixes: 8d32a307e4
("genirq: Provide forced interrupt threading")
Reported-by: Johan Hovold <johan@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Johan Hovold <johan@kernel.org>
Acked-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/20210317143859.513307808@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2759 lines
73 KiB
C
2759 lines
73 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
|
|
* Copyright (C) 2005-2006 Thomas Gleixner
|
|
*
|
|
* This file contains driver APIs to the irq subsystem.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "genirq: " fmt
|
|
|
|
#include <linux/irq.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/module.h>
|
|
#include <linux/random.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/isolation.h>
|
|
#include <uapi/linux/sched/types.h>
|
|
#include <linux/task_work.h>
|
|
|
|
#include "internals.h"
|
|
|
|
#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
|
|
__read_mostly bool force_irqthreads;
|
|
EXPORT_SYMBOL_GPL(force_irqthreads);
|
|
|
|
static int __init setup_forced_irqthreads(char *arg)
|
|
{
|
|
force_irqthreads = true;
|
|
return 0;
|
|
}
|
|
early_param("threadirqs", setup_forced_irqthreads);
|
|
#endif
|
|
|
|
static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
|
|
{
|
|
struct irq_data *irqd = irq_desc_get_irq_data(desc);
|
|
bool inprogress;
|
|
|
|
do {
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* Wait until we're out of the critical section. This might
|
|
* give the wrong answer due to the lack of memory barriers.
|
|
*/
|
|
while (irqd_irq_inprogress(&desc->irq_data))
|
|
cpu_relax();
|
|
|
|
/* Ok, that indicated we're done: double-check carefully. */
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
inprogress = irqd_irq_inprogress(&desc->irq_data);
|
|
|
|
/*
|
|
* If requested and supported, check at the chip whether it
|
|
* is in flight at the hardware level, i.e. already pending
|
|
* in a CPU and waiting for service and acknowledge.
|
|
*/
|
|
if (!inprogress && sync_chip) {
|
|
/*
|
|
* Ignore the return code. inprogress is only updated
|
|
* when the chip supports it.
|
|
*/
|
|
__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
|
|
&inprogress);
|
|
}
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
/* Oops, that failed? */
|
|
} while (inprogress);
|
|
}
|
|
|
|
/**
|
|
* synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
|
|
* @irq: interrupt number to wait for
|
|
*
|
|
* This function waits for any pending hard IRQ handlers for this
|
|
* interrupt to complete before returning. If you use this
|
|
* function while holding a resource the IRQ handler may need you
|
|
* will deadlock. It does not take associated threaded handlers
|
|
* into account.
|
|
*
|
|
* Do not use this for shutdown scenarios where you must be sure
|
|
* that all parts (hardirq and threaded handler) have completed.
|
|
*
|
|
* Returns: false if a threaded handler is active.
|
|
*
|
|
* This function may be called - with care - from IRQ context.
|
|
*
|
|
* It does not check whether there is an interrupt in flight at the
|
|
* hardware level, but not serviced yet, as this might deadlock when
|
|
* called with interrupts disabled and the target CPU of the interrupt
|
|
* is the current CPU.
|
|
*/
|
|
bool synchronize_hardirq(unsigned int irq)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
|
|
if (desc) {
|
|
__synchronize_hardirq(desc, false);
|
|
return !atomic_read(&desc->threads_active);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL(synchronize_hardirq);
|
|
|
|
/**
|
|
* synchronize_irq - wait for pending IRQ handlers (on other CPUs)
|
|
* @irq: interrupt number to wait for
|
|
*
|
|
* This function waits for any pending IRQ handlers for this interrupt
|
|
* to complete before returning. If you use this function while
|
|
* holding a resource the IRQ handler may need you will deadlock.
|
|
*
|
|
* Can only be called from preemptible code as it might sleep when
|
|
* an interrupt thread is associated to @irq.
|
|
*
|
|
* It optionally makes sure (when the irq chip supports that method)
|
|
* that the interrupt is not pending in any CPU and waiting for
|
|
* service.
|
|
*/
|
|
void synchronize_irq(unsigned int irq)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
|
|
if (desc) {
|
|
__synchronize_hardirq(desc, true);
|
|
/*
|
|
* We made sure that no hardirq handler is
|
|
* running. Now verify that no threaded handlers are
|
|
* active.
|
|
*/
|
|
wait_event(desc->wait_for_threads,
|
|
!atomic_read(&desc->threads_active));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL(synchronize_irq);
|
|
|
|
#ifdef CONFIG_SMP
|
|
cpumask_var_t irq_default_affinity;
|
|
|
|
static bool __irq_can_set_affinity(struct irq_desc *desc)
|
|
{
|
|
if (!desc || !irqd_can_balance(&desc->irq_data) ||
|
|
!desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* irq_can_set_affinity - Check if the affinity of a given irq can be set
|
|
* @irq: Interrupt to check
|
|
*
|
|
*/
|
|
int irq_can_set_affinity(unsigned int irq)
|
|
{
|
|
return __irq_can_set_affinity(irq_to_desc(irq));
|
|
}
|
|
|
|
/**
|
|
* irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
|
|
* @irq: Interrupt to check
|
|
*
|
|
* Like irq_can_set_affinity() above, but additionally checks for the
|
|
* AFFINITY_MANAGED flag.
|
|
*/
|
|
bool irq_can_set_affinity_usr(unsigned int irq)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
|
|
return __irq_can_set_affinity(desc) &&
|
|
!irqd_affinity_is_managed(&desc->irq_data);
|
|
}
|
|
|
|
/**
|
|
* irq_set_thread_affinity - Notify irq threads to adjust affinity
|
|
* @desc: irq descriptor which has affitnity changed
|
|
*
|
|
* We just set IRQTF_AFFINITY and delegate the affinity setting
|
|
* to the interrupt thread itself. We can not call
|
|
* set_cpus_allowed_ptr() here as we hold desc->lock and this
|
|
* code can be called from hard interrupt context.
|
|
*/
|
|
void irq_set_thread_affinity(struct irq_desc *desc)
|
|
{
|
|
struct irqaction *action;
|
|
|
|
for_each_action_of_desc(desc, action)
|
|
if (action->thread)
|
|
set_bit(IRQTF_AFFINITY, &action->thread_flags);
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
|
|
static void irq_validate_effective_affinity(struct irq_data *data)
|
|
{
|
|
const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
|
|
struct irq_chip *chip = irq_data_get_irq_chip(data);
|
|
|
|
if (!cpumask_empty(m))
|
|
return;
|
|
pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
|
|
chip->name, data->irq);
|
|
}
|
|
|
|
static inline void irq_init_effective_affinity(struct irq_data *data,
|
|
const struct cpumask *mask)
|
|
{
|
|
cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
|
|
}
|
|
#else
|
|
static inline void irq_validate_effective_affinity(struct irq_data *data) { }
|
|
static inline void irq_init_effective_affinity(struct irq_data *data,
|
|
const struct cpumask *mask) { }
|
|
#endif
|
|
|
|
int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
|
|
bool force)
|
|
{
|
|
struct irq_desc *desc = irq_data_to_desc(data);
|
|
struct irq_chip *chip = irq_data_get_irq_chip(data);
|
|
int ret;
|
|
|
|
if (!chip || !chip->irq_set_affinity)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If this is a managed interrupt and housekeeping is enabled on
|
|
* it check whether the requested affinity mask intersects with
|
|
* a housekeeping CPU. If so, then remove the isolated CPUs from
|
|
* the mask and just keep the housekeeping CPU(s). This prevents
|
|
* the affinity setter from routing the interrupt to an isolated
|
|
* CPU to avoid that I/O submitted from a housekeeping CPU causes
|
|
* interrupts on an isolated one.
|
|
*
|
|
* If the masks do not intersect or include online CPU(s) then
|
|
* keep the requested mask. The isolated target CPUs are only
|
|
* receiving interrupts when the I/O operation was submitted
|
|
* directly from them.
|
|
*
|
|
* If all housekeeping CPUs in the affinity mask are offline, the
|
|
* interrupt will be migrated by the CPU hotplug code once a
|
|
* housekeeping CPU which belongs to the affinity mask comes
|
|
* online.
|
|
*/
|
|
if (irqd_affinity_is_managed(data) &&
|
|
housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
|
|
const struct cpumask *hk_mask, *prog_mask;
|
|
|
|
static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
|
|
static struct cpumask tmp_mask;
|
|
|
|
hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
|
|
|
|
raw_spin_lock(&tmp_mask_lock);
|
|
cpumask_and(&tmp_mask, mask, hk_mask);
|
|
if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
|
|
prog_mask = mask;
|
|
else
|
|
prog_mask = &tmp_mask;
|
|
ret = chip->irq_set_affinity(data, prog_mask, force);
|
|
raw_spin_unlock(&tmp_mask_lock);
|
|
} else {
|
|
ret = chip->irq_set_affinity(data, mask, force);
|
|
}
|
|
switch (ret) {
|
|
case IRQ_SET_MASK_OK:
|
|
case IRQ_SET_MASK_OK_DONE:
|
|
cpumask_copy(desc->irq_common_data.affinity, mask);
|
|
fallthrough;
|
|
case IRQ_SET_MASK_OK_NOCOPY:
|
|
irq_validate_effective_affinity(data);
|
|
irq_set_thread_affinity(desc);
|
|
ret = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_PENDING_IRQ
|
|
static inline int irq_set_affinity_pending(struct irq_data *data,
|
|
const struct cpumask *dest)
|
|
{
|
|
struct irq_desc *desc = irq_data_to_desc(data);
|
|
|
|
irqd_set_move_pending(data);
|
|
irq_copy_pending(desc, dest);
|
|
return 0;
|
|
}
|
|
#else
|
|
static inline int irq_set_affinity_pending(struct irq_data *data,
|
|
const struct cpumask *dest)
|
|
{
|
|
return -EBUSY;
|
|
}
|
|
#endif
|
|
|
|
static int irq_try_set_affinity(struct irq_data *data,
|
|
const struct cpumask *dest, bool force)
|
|
{
|
|
int ret = irq_do_set_affinity(data, dest, force);
|
|
|
|
/*
|
|
* In case that the underlying vector management is busy and the
|
|
* architecture supports the generic pending mechanism then utilize
|
|
* this to avoid returning an error to user space.
|
|
*/
|
|
if (ret == -EBUSY && !force)
|
|
ret = irq_set_affinity_pending(data, dest);
|
|
return ret;
|
|
}
|
|
|
|
static bool irq_set_affinity_deactivated(struct irq_data *data,
|
|
const struct cpumask *mask, bool force)
|
|
{
|
|
struct irq_desc *desc = irq_data_to_desc(data);
|
|
|
|
/*
|
|
* Handle irq chips which can handle affinity only in activated
|
|
* state correctly
|
|
*
|
|
* If the interrupt is not yet activated, just store the affinity
|
|
* mask and do not call the chip driver at all. On activation the
|
|
* driver has to make sure anyway that the interrupt is in a
|
|
* useable state so startup works.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
|
|
irqd_is_activated(data) || !irqd_affinity_on_activate(data))
|
|
return false;
|
|
|
|
cpumask_copy(desc->irq_common_data.affinity, mask);
|
|
irq_init_effective_affinity(data, mask);
|
|
irqd_set(data, IRQD_AFFINITY_SET);
|
|
return true;
|
|
}
|
|
|
|
int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
|
|
bool force)
|
|
{
|
|
struct irq_chip *chip = irq_data_get_irq_chip(data);
|
|
struct irq_desc *desc = irq_data_to_desc(data);
|
|
int ret = 0;
|
|
|
|
if (!chip || !chip->irq_set_affinity)
|
|
return -EINVAL;
|
|
|
|
if (irq_set_affinity_deactivated(data, mask, force))
|
|
return 0;
|
|
|
|
if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
|
|
ret = irq_try_set_affinity(data, mask, force);
|
|
} else {
|
|
irqd_set_move_pending(data);
|
|
irq_copy_pending(desc, mask);
|
|
}
|
|
|
|
if (desc->affinity_notify) {
|
|
kref_get(&desc->affinity_notify->kref);
|
|
if (!schedule_work(&desc->affinity_notify->work)) {
|
|
/* Work was already scheduled, drop our extra ref */
|
|
kref_put(&desc->affinity_notify->kref,
|
|
desc->affinity_notify->release);
|
|
}
|
|
}
|
|
irqd_set(data, IRQD_AFFINITY_SET);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
return ret;
|
|
}
|
|
|
|
int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
desc->affinity_hint = m;
|
|
irq_put_desc_unlock(desc, flags);
|
|
/* set the initial affinity to prevent every interrupt being on CPU0 */
|
|
if (m)
|
|
__irq_set_affinity(irq, m, false);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
|
|
|
|
static void irq_affinity_notify(struct work_struct *work)
|
|
{
|
|
struct irq_affinity_notify *notify =
|
|
container_of(work, struct irq_affinity_notify, work);
|
|
struct irq_desc *desc = irq_to_desc(notify->irq);
|
|
cpumask_var_t cpumask;
|
|
unsigned long flags;
|
|
|
|
if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
|
|
goto out;
|
|
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
if (irq_move_pending(&desc->irq_data))
|
|
irq_get_pending(cpumask, desc);
|
|
else
|
|
cpumask_copy(cpumask, desc->irq_common_data.affinity);
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
notify->notify(notify, cpumask);
|
|
|
|
free_cpumask_var(cpumask);
|
|
out:
|
|
kref_put(¬ify->kref, notify->release);
|
|
}
|
|
|
|
/**
|
|
* irq_set_affinity_notifier - control notification of IRQ affinity changes
|
|
* @irq: Interrupt for which to enable/disable notification
|
|
* @notify: Context for notification, or %NULL to disable
|
|
* notification. Function pointers must be initialised;
|
|
* the other fields will be initialised by this function.
|
|
*
|
|
* Must be called in process context. Notification may only be enabled
|
|
* after the IRQ is allocated and must be disabled before the IRQ is
|
|
* freed using free_irq().
|
|
*/
|
|
int
|
|
irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
struct irq_affinity_notify *old_notify;
|
|
unsigned long flags;
|
|
|
|
/* The release function is promised process context */
|
|
might_sleep();
|
|
|
|
if (!desc || desc->istate & IRQS_NMI)
|
|
return -EINVAL;
|
|
|
|
/* Complete initialisation of *notify */
|
|
if (notify) {
|
|
notify->irq = irq;
|
|
kref_init(¬ify->kref);
|
|
INIT_WORK(¬ify->work, irq_affinity_notify);
|
|
}
|
|
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
old_notify = desc->affinity_notify;
|
|
desc->affinity_notify = notify;
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
if (old_notify) {
|
|
if (cancel_work_sync(&old_notify->work)) {
|
|
/* Pending work had a ref, put that one too */
|
|
kref_put(&old_notify->kref, old_notify->release);
|
|
}
|
|
kref_put(&old_notify->kref, old_notify->release);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
|
|
|
|
#ifndef CONFIG_AUTO_IRQ_AFFINITY
|
|
/*
|
|
* Generic version of the affinity autoselector.
|
|
*/
|
|
int irq_setup_affinity(struct irq_desc *desc)
|
|
{
|
|
struct cpumask *set = irq_default_affinity;
|
|
int ret, node = irq_desc_get_node(desc);
|
|
static DEFINE_RAW_SPINLOCK(mask_lock);
|
|
static struct cpumask mask;
|
|
|
|
/* Excludes PER_CPU and NO_BALANCE interrupts */
|
|
if (!__irq_can_set_affinity(desc))
|
|
return 0;
|
|
|
|
raw_spin_lock(&mask_lock);
|
|
/*
|
|
* Preserve the managed affinity setting and a userspace affinity
|
|
* setup, but make sure that one of the targets is online.
|
|
*/
|
|
if (irqd_affinity_is_managed(&desc->irq_data) ||
|
|
irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
|
|
if (cpumask_intersects(desc->irq_common_data.affinity,
|
|
cpu_online_mask))
|
|
set = desc->irq_common_data.affinity;
|
|
else
|
|
irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
|
|
}
|
|
|
|
cpumask_and(&mask, cpu_online_mask, set);
|
|
if (cpumask_empty(&mask))
|
|
cpumask_copy(&mask, cpu_online_mask);
|
|
|
|
if (node != NUMA_NO_NODE) {
|
|
const struct cpumask *nodemask = cpumask_of_node(node);
|
|
|
|
/* make sure at least one of the cpus in nodemask is online */
|
|
if (cpumask_intersects(&mask, nodemask))
|
|
cpumask_and(&mask, &mask, nodemask);
|
|
}
|
|
ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
|
|
raw_spin_unlock(&mask_lock);
|
|
return ret;
|
|
}
|
|
#else
|
|
/* Wrapper for ALPHA specific affinity selector magic */
|
|
int irq_setup_affinity(struct irq_desc *desc)
|
|
{
|
|
return irq_select_affinity(irq_desc_get_irq(desc));
|
|
}
|
|
#endif /* CONFIG_AUTO_IRQ_AFFINITY */
|
|
#endif /* CONFIG_SMP */
|
|
|
|
|
|
/**
|
|
* irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
|
|
* @irq: interrupt number to set affinity
|
|
* @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
|
|
* specific data for percpu_devid interrupts
|
|
*
|
|
* This function uses the vCPU specific data to set the vCPU
|
|
* affinity for an irq. The vCPU specific data is passed from
|
|
* outside, such as KVM. One example code path is as below:
|
|
* KVM -> IOMMU -> irq_set_vcpu_affinity().
|
|
*/
|
|
int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
|
|
struct irq_data *data;
|
|
struct irq_chip *chip;
|
|
int ret = -ENOSYS;
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
data = irq_desc_get_irq_data(desc);
|
|
do {
|
|
chip = irq_data_get_irq_chip(data);
|
|
if (chip && chip->irq_set_vcpu_affinity)
|
|
break;
|
|
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
|
|
data = data->parent_data;
|
|
#else
|
|
data = NULL;
|
|
#endif
|
|
} while (data);
|
|
|
|
if (data)
|
|
ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
|
|
irq_put_desc_unlock(desc, flags);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
|
|
|
|
void __disable_irq(struct irq_desc *desc)
|
|
{
|
|
if (!desc->depth++)
|
|
irq_disable(desc);
|
|
}
|
|
|
|
static int __disable_irq_nosync(unsigned int irq)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
__disable_irq(desc);
|
|
irq_put_desc_busunlock(desc, flags);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* disable_irq_nosync - disable an irq without waiting
|
|
* @irq: Interrupt to disable
|
|
*
|
|
* Disable the selected interrupt line. Disables and Enables are
|
|
* nested.
|
|
* Unlike disable_irq(), this function does not ensure existing
|
|
* instances of the IRQ handler have completed before returning.
|
|
*
|
|
* This function may be called from IRQ context.
|
|
*/
|
|
void disable_irq_nosync(unsigned int irq)
|
|
{
|
|
__disable_irq_nosync(irq);
|
|
}
|
|
EXPORT_SYMBOL(disable_irq_nosync);
|
|
|
|
/**
|
|
* disable_irq - disable an irq and wait for completion
|
|
* @irq: Interrupt to disable
|
|
*
|
|
* Disable the selected interrupt line. Enables and Disables are
|
|
* nested.
|
|
* This function waits for any pending IRQ handlers for this interrupt
|
|
* to complete before returning. If you use this function while
|
|
* holding a resource the IRQ handler may need you will deadlock.
|
|
*
|
|
* This function may be called - with care - from IRQ context.
|
|
*/
|
|
void disable_irq(unsigned int irq)
|
|
{
|
|
if (!__disable_irq_nosync(irq))
|
|
synchronize_irq(irq);
|
|
}
|
|
EXPORT_SYMBOL(disable_irq);
|
|
|
|
/**
|
|
* disable_hardirq - disables an irq and waits for hardirq completion
|
|
* @irq: Interrupt to disable
|
|
*
|
|
* Disable the selected interrupt line. Enables and Disables are
|
|
* nested.
|
|
* This function waits for any pending hard IRQ handlers for this
|
|
* interrupt to complete before returning. If you use this function while
|
|
* holding a resource the hard IRQ handler may need you will deadlock.
|
|
*
|
|
* When used to optimistically disable an interrupt from atomic context
|
|
* the return value must be checked.
|
|
*
|
|
* Returns: false if a threaded handler is active.
|
|
*
|
|
* This function may be called - with care - from IRQ context.
|
|
*/
|
|
bool disable_hardirq(unsigned int irq)
|
|
{
|
|
if (!__disable_irq_nosync(irq))
|
|
return synchronize_hardirq(irq);
|
|
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(disable_hardirq);
|
|
|
|
/**
|
|
* disable_nmi_nosync - disable an nmi without waiting
|
|
* @irq: Interrupt to disable
|
|
*
|
|
* Disable the selected interrupt line. Disables and enables are
|
|
* nested.
|
|
* The interrupt to disable must have been requested through request_nmi.
|
|
* Unlike disable_nmi(), this function does not ensure existing
|
|
* instances of the IRQ handler have completed before returning.
|
|
*/
|
|
void disable_nmi_nosync(unsigned int irq)
|
|
{
|
|
disable_irq_nosync(irq);
|
|
}
|
|
|
|
void __enable_irq(struct irq_desc *desc)
|
|
{
|
|
switch (desc->depth) {
|
|
case 0:
|
|
err_out:
|
|
WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
|
|
irq_desc_get_irq(desc));
|
|
break;
|
|
case 1: {
|
|
if (desc->istate & IRQS_SUSPENDED)
|
|
goto err_out;
|
|
/* Prevent probing on this irq: */
|
|
irq_settings_set_noprobe(desc);
|
|
/*
|
|
* Call irq_startup() not irq_enable() here because the
|
|
* interrupt might be marked NOAUTOEN. So irq_startup()
|
|
* needs to be invoked when it gets enabled the first
|
|
* time. If it was already started up, then irq_startup()
|
|
* will invoke irq_enable() under the hood.
|
|
*/
|
|
irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
|
|
break;
|
|
}
|
|
default:
|
|
desc->depth--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* enable_irq - enable handling of an irq
|
|
* @irq: Interrupt to enable
|
|
*
|
|
* Undoes the effect of one call to disable_irq(). If this
|
|
* matches the last disable, processing of interrupts on this
|
|
* IRQ line is re-enabled.
|
|
*
|
|
* This function may be called from IRQ context only when
|
|
* desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
|
|
*/
|
|
void enable_irq(unsigned int irq)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
|
|
|
|
if (!desc)
|
|
return;
|
|
if (WARN(!desc->irq_data.chip,
|
|
KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
|
|
goto out;
|
|
|
|
__enable_irq(desc);
|
|
out:
|
|
irq_put_desc_busunlock(desc, flags);
|
|
}
|
|
EXPORT_SYMBOL(enable_irq);
|
|
|
|
/**
|
|
* enable_nmi - enable handling of an nmi
|
|
* @irq: Interrupt to enable
|
|
*
|
|
* The interrupt to enable must have been requested through request_nmi.
|
|
* Undoes the effect of one call to disable_nmi(). If this
|
|
* matches the last disable, processing of interrupts on this
|
|
* IRQ line is re-enabled.
|
|
*/
|
|
void enable_nmi(unsigned int irq)
|
|
{
|
|
enable_irq(irq);
|
|
}
|
|
|
|
static int set_irq_wake_real(unsigned int irq, unsigned int on)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
int ret = -ENXIO;
|
|
|
|
if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
|
|
return 0;
|
|
|
|
if (desc->irq_data.chip->irq_set_wake)
|
|
ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* irq_set_irq_wake - control irq power management wakeup
|
|
* @irq: interrupt to control
|
|
* @on: enable/disable power management wakeup
|
|
*
|
|
* Enable/disable power management wakeup mode, which is
|
|
* disabled by default. Enables and disables must match,
|
|
* just as they match for non-wakeup mode support.
|
|
*
|
|
* Wakeup mode lets this IRQ wake the system from sleep
|
|
* states like "suspend to RAM".
|
|
*
|
|
* Note: irq enable/disable state is completely orthogonal
|
|
* to the enable/disable state of irq wake. An irq can be
|
|
* disabled with disable_irq() and still wake the system as
|
|
* long as the irq has wake enabled. If this does not hold,
|
|
* then the underlying irq chip and the related driver need
|
|
* to be investigated.
|
|
*/
|
|
int irq_set_irq_wake(unsigned int irq, unsigned int on)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
|
|
int ret = 0;
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
/* Don't use NMIs as wake up interrupts please */
|
|
if (desc->istate & IRQS_NMI) {
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* wakeup-capable irqs can be shared between drivers that
|
|
* don't need to have the same sleep mode behaviors.
|
|
*/
|
|
if (on) {
|
|
if (desc->wake_depth++ == 0) {
|
|
ret = set_irq_wake_real(irq, on);
|
|
if (ret)
|
|
desc->wake_depth = 0;
|
|
else
|
|
irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
|
|
}
|
|
} else {
|
|
if (desc->wake_depth == 0) {
|
|
WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
|
|
} else if (--desc->wake_depth == 0) {
|
|
ret = set_irq_wake_real(irq, on);
|
|
if (ret)
|
|
desc->wake_depth = 1;
|
|
else
|
|
irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
|
|
}
|
|
}
|
|
|
|
out_unlock:
|
|
irq_put_desc_busunlock(desc, flags);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(irq_set_irq_wake);
|
|
|
|
/*
|
|
* Internal function that tells the architecture code whether a
|
|
* particular irq has been exclusively allocated or is available
|
|
* for driver use.
|
|
*/
|
|
int can_request_irq(unsigned int irq, unsigned long irqflags)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
|
|
int canrequest = 0;
|
|
|
|
if (!desc)
|
|
return 0;
|
|
|
|
if (irq_settings_can_request(desc)) {
|
|
if (!desc->action ||
|
|
irqflags & desc->action->flags & IRQF_SHARED)
|
|
canrequest = 1;
|
|
}
|
|
irq_put_desc_unlock(desc, flags);
|
|
return canrequest;
|
|
}
|
|
|
|
int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
|
|
{
|
|
struct irq_chip *chip = desc->irq_data.chip;
|
|
int ret, unmask = 0;
|
|
|
|
if (!chip || !chip->irq_set_type) {
|
|
/*
|
|
* IRQF_TRIGGER_* but the PIC does not support multiple
|
|
* flow-types?
|
|
*/
|
|
pr_debug("No set_type function for IRQ %d (%s)\n",
|
|
irq_desc_get_irq(desc),
|
|
chip ? (chip->name ? : "unknown") : "unknown");
|
|
return 0;
|
|
}
|
|
|
|
if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
|
|
if (!irqd_irq_masked(&desc->irq_data))
|
|
mask_irq(desc);
|
|
if (!irqd_irq_disabled(&desc->irq_data))
|
|
unmask = 1;
|
|
}
|
|
|
|
/* Mask all flags except trigger mode */
|
|
flags &= IRQ_TYPE_SENSE_MASK;
|
|
ret = chip->irq_set_type(&desc->irq_data, flags);
|
|
|
|
switch (ret) {
|
|
case IRQ_SET_MASK_OK:
|
|
case IRQ_SET_MASK_OK_DONE:
|
|
irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
|
|
irqd_set(&desc->irq_data, flags);
|
|
fallthrough;
|
|
|
|
case IRQ_SET_MASK_OK_NOCOPY:
|
|
flags = irqd_get_trigger_type(&desc->irq_data);
|
|
irq_settings_set_trigger_mask(desc, flags);
|
|
irqd_clear(&desc->irq_data, IRQD_LEVEL);
|
|
irq_settings_clr_level(desc);
|
|
if (flags & IRQ_TYPE_LEVEL_MASK) {
|
|
irq_settings_set_level(desc);
|
|
irqd_set(&desc->irq_data, IRQD_LEVEL);
|
|
}
|
|
|
|
ret = 0;
|
|
break;
|
|
default:
|
|
pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
|
|
flags, irq_desc_get_irq(desc), chip->irq_set_type);
|
|
}
|
|
if (unmask)
|
|
unmask_irq(desc);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_HARDIRQS_SW_RESEND
|
|
int irq_set_parent(int irq, int parent_irq)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
desc->parent_irq = parent_irq;
|
|
|
|
irq_put_desc_unlock(desc, flags);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_set_parent);
|
|
#endif
|
|
|
|
/*
|
|
* Default primary interrupt handler for threaded interrupts. Is
|
|
* assigned as primary handler when request_threaded_irq is called
|
|
* with handler == NULL. Useful for oneshot interrupts.
|
|
*/
|
|
static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
|
|
{
|
|
return IRQ_WAKE_THREAD;
|
|
}
|
|
|
|
/*
|
|
* Primary handler for nested threaded interrupts. Should never be
|
|
* called.
|
|
*/
|
|
static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
|
|
{
|
|
WARN(1, "Primary handler called for nested irq %d\n", irq);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
|
|
{
|
|
WARN(1, "Secondary action handler called for irq %d\n", irq);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
static int irq_wait_for_interrupt(struct irqaction *action)
|
|
{
|
|
for (;;) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
if (kthread_should_stop()) {
|
|
/* may need to run one last time */
|
|
if (test_and_clear_bit(IRQTF_RUNTHREAD,
|
|
&action->thread_flags)) {
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
return -1;
|
|
}
|
|
|
|
if (test_and_clear_bit(IRQTF_RUNTHREAD,
|
|
&action->thread_flags)) {
|
|
__set_current_state(TASK_RUNNING);
|
|
return 0;
|
|
}
|
|
schedule();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Oneshot interrupts keep the irq line masked until the threaded
|
|
* handler finished. unmask if the interrupt has not been disabled and
|
|
* is marked MASKED.
|
|
*/
|
|
static void irq_finalize_oneshot(struct irq_desc *desc,
|
|
struct irqaction *action)
|
|
{
|
|
if (!(desc->istate & IRQS_ONESHOT) ||
|
|
action->handler == irq_forced_secondary_handler)
|
|
return;
|
|
again:
|
|
chip_bus_lock(desc);
|
|
raw_spin_lock_irq(&desc->lock);
|
|
|
|
/*
|
|
* Implausible though it may be we need to protect us against
|
|
* the following scenario:
|
|
*
|
|
* The thread is faster done than the hard interrupt handler
|
|
* on the other CPU. If we unmask the irq line then the
|
|
* interrupt can come in again and masks the line, leaves due
|
|
* to IRQS_INPROGRESS and the irq line is masked forever.
|
|
*
|
|
* This also serializes the state of shared oneshot handlers
|
|
* versus "desc->threads_onehsot |= action->thread_mask;" in
|
|
* irq_wake_thread(). See the comment there which explains the
|
|
* serialization.
|
|
*/
|
|
if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
|
|
raw_spin_unlock_irq(&desc->lock);
|
|
chip_bus_sync_unlock(desc);
|
|
cpu_relax();
|
|
goto again;
|
|
}
|
|
|
|
/*
|
|
* Now check again, whether the thread should run. Otherwise
|
|
* we would clear the threads_oneshot bit of this thread which
|
|
* was just set.
|
|
*/
|
|
if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
|
|
goto out_unlock;
|
|
|
|
desc->threads_oneshot &= ~action->thread_mask;
|
|
|
|
if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
|
|
irqd_irq_masked(&desc->irq_data))
|
|
unmask_threaded_irq(desc);
|
|
|
|
out_unlock:
|
|
raw_spin_unlock_irq(&desc->lock);
|
|
chip_bus_sync_unlock(desc);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Check whether we need to change the affinity of the interrupt thread.
|
|
*/
|
|
static void
|
|
irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
|
|
{
|
|
cpumask_var_t mask;
|
|
bool valid = true;
|
|
|
|
if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
|
|
return;
|
|
|
|
/*
|
|
* In case we are out of memory we set IRQTF_AFFINITY again and
|
|
* try again next time
|
|
*/
|
|
if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
|
|
set_bit(IRQTF_AFFINITY, &action->thread_flags);
|
|
return;
|
|
}
|
|
|
|
raw_spin_lock_irq(&desc->lock);
|
|
/*
|
|
* This code is triggered unconditionally. Check the affinity
|
|
* mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
|
|
*/
|
|
if (cpumask_available(desc->irq_common_data.affinity)) {
|
|
const struct cpumask *m;
|
|
|
|
m = irq_data_get_effective_affinity_mask(&desc->irq_data);
|
|
cpumask_copy(mask, m);
|
|
} else {
|
|
valid = false;
|
|
}
|
|
raw_spin_unlock_irq(&desc->lock);
|
|
|
|
if (valid)
|
|
set_cpus_allowed_ptr(current, mask);
|
|
free_cpumask_var(mask);
|
|
}
|
|
#else
|
|
static inline void
|
|
irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
|
|
#endif
|
|
|
|
/*
|
|
* Interrupts which are not explicitly requested as threaded
|
|
* interrupts rely on the implicit bh/preempt disable of the hard irq
|
|
* context. So we need to disable bh here to avoid deadlocks and other
|
|
* side effects.
|
|
*/
|
|
static irqreturn_t
|
|
irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
|
|
{
|
|
irqreturn_t ret;
|
|
|
|
local_bh_disable();
|
|
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
local_irq_disable();
|
|
ret = action->thread_fn(action->irq, action->dev_id);
|
|
if (ret == IRQ_HANDLED)
|
|
atomic_inc(&desc->threads_handled);
|
|
|
|
irq_finalize_oneshot(desc, action);
|
|
if (!IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
local_irq_enable();
|
|
local_bh_enable();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Interrupts explicitly requested as threaded interrupts want to be
|
|
* preemtible - many of them need to sleep and wait for slow busses to
|
|
* complete.
|
|
*/
|
|
static irqreturn_t irq_thread_fn(struct irq_desc *desc,
|
|
struct irqaction *action)
|
|
{
|
|
irqreturn_t ret;
|
|
|
|
ret = action->thread_fn(action->irq, action->dev_id);
|
|
if (ret == IRQ_HANDLED)
|
|
atomic_inc(&desc->threads_handled);
|
|
|
|
irq_finalize_oneshot(desc, action);
|
|
return ret;
|
|
}
|
|
|
|
static void wake_threads_waitq(struct irq_desc *desc)
|
|
{
|
|
if (atomic_dec_and_test(&desc->threads_active))
|
|
wake_up(&desc->wait_for_threads);
|
|
}
|
|
|
|
static void irq_thread_dtor(struct callback_head *unused)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct irq_desc *desc;
|
|
struct irqaction *action;
|
|
|
|
if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
|
|
return;
|
|
|
|
action = kthread_data(tsk);
|
|
|
|
pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
|
|
tsk->comm, tsk->pid, action->irq);
|
|
|
|
|
|
desc = irq_to_desc(action->irq);
|
|
/*
|
|
* If IRQTF_RUNTHREAD is set, we need to decrement
|
|
* desc->threads_active and wake possible waiters.
|
|
*/
|
|
if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
|
|
wake_threads_waitq(desc);
|
|
|
|
/* Prevent a stale desc->threads_oneshot */
|
|
irq_finalize_oneshot(desc, action);
|
|
}
|
|
|
|
static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
|
|
{
|
|
struct irqaction *secondary = action->secondary;
|
|
|
|
if (WARN_ON_ONCE(!secondary))
|
|
return;
|
|
|
|
raw_spin_lock_irq(&desc->lock);
|
|
__irq_wake_thread(desc, secondary);
|
|
raw_spin_unlock_irq(&desc->lock);
|
|
}
|
|
|
|
/*
|
|
* Interrupt handler thread
|
|
*/
|
|
static int irq_thread(void *data)
|
|
{
|
|
struct callback_head on_exit_work;
|
|
struct irqaction *action = data;
|
|
struct irq_desc *desc = irq_to_desc(action->irq);
|
|
irqreturn_t (*handler_fn)(struct irq_desc *desc,
|
|
struct irqaction *action);
|
|
|
|
if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
|
|
&action->thread_flags))
|
|
handler_fn = irq_forced_thread_fn;
|
|
else
|
|
handler_fn = irq_thread_fn;
|
|
|
|
init_task_work(&on_exit_work, irq_thread_dtor);
|
|
task_work_add(current, &on_exit_work, TWA_NONE);
|
|
|
|
irq_thread_check_affinity(desc, action);
|
|
|
|
while (!irq_wait_for_interrupt(action)) {
|
|
irqreturn_t action_ret;
|
|
|
|
irq_thread_check_affinity(desc, action);
|
|
|
|
action_ret = handler_fn(desc, action);
|
|
if (action_ret == IRQ_WAKE_THREAD)
|
|
irq_wake_secondary(desc, action);
|
|
|
|
wake_threads_waitq(desc);
|
|
}
|
|
|
|
/*
|
|
* This is the regular exit path. __free_irq() is stopping the
|
|
* thread via kthread_stop() after calling
|
|
* synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
|
|
* oneshot mask bit can be set.
|
|
*/
|
|
task_work_cancel(current, irq_thread_dtor);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* irq_wake_thread - wake the irq thread for the action identified by dev_id
|
|
* @irq: Interrupt line
|
|
* @dev_id: Device identity for which the thread should be woken
|
|
*
|
|
*/
|
|
void irq_wake_thread(unsigned int irq, void *dev_id)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
struct irqaction *action;
|
|
unsigned long flags;
|
|
|
|
if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
|
|
return;
|
|
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
for_each_action_of_desc(desc, action) {
|
|
if (action->dev_id == dev_id) {
|
|
if (action->thread)
|
|
__irq_wake_thread(desc, action);
|
|
break;
|
|
}
|
|
}
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_wake_thread);
|
|
|
|
static int irq_setup_forced_threading(struct irqaction *new)
|
|
{
|
|
if (!force_irqthreads)
|
|
return 0;
|
|
if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
|
|
return 0;
|
|
|
|
/*
|
|
* No further action required for interrupts which are requested as
|
|
* threaded interrupts already
|
|
*/
|
|
if (new->handler == irq_default_primary_handler)
|
|
return 0;
|
|
|
|
new->flags |= IRQF_ONESHOT;
|
|
|
|
/*
|
|
* Handle the case where we have a real primary handler and a
|
|
* thread handler. We force thread them as well by creating a
|
|
* secondary action.
|
|
*/
|
|
if (new->handler && new->thread_fn) {
|
|
/* Allocate the secondary action */
|
|
new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
|
|
if (!new->secondary)
|
|
return -ENOMEM;
|
|
new->secondary->handler = irq_forced_secondary_handler;
|
|
new->secondary->thread_fn = new->thread_fn;
|
|
new->secondary->dev_id = new->dev_id;
|
|
new->secondary->irq = new->irq;
|
|
new->secondary->name = new->name;
|
|
}
|
|
/* Deal with the primary handler */
|
|
set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
|
|
new->thread_fn = new->handler;
|
|
new->handler = irq_default_primary_handler;
|
|
return 0;
|
|
}
|
|
|
|
static int irq_request_resources(struct irq_desc *desc)
|
|
{
|
|
struct irq_data *d = &desc->irq_data;
|
|
struct irq_chip *c = d->chip;
|
|
|
|
return c->irq_request_resources ? c->irq_request_resources(d) : 0;
|
|
}
|
|
|
|
static void irq_release_resources(struct irq_desc *desc)
|
|
{
|
|
struct irq_data *d = &desc->irq_data;
|
|
struct irq_chip *c = d->chip;
|
|
|
|
if (c->irq_release_resources)
|
|
c->irq_release_resources(d);
|
|
}
|
|
|
|
static bool irq_supports_nmi(struct irq_desc *desc)
|
|
{
|
|
struct irq_data *d = irq_desc_get_irq_data(desc);
|
|
|
|
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
|
|
/* Only IRQs directly managed by the root irqchip can be set as NMI */
|
|
if (d->parent_data)
|
|
return false;
|
|
#endif
|
|
/* Don't support NMIs for chips behind a slow bus */
|
|
if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
|
|
return false;
|
|
|
|
return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
|
|
}
|
|
|
|
static int irq_nmi_setup(struct irq_desc *desc)
|
|
{
|
|
struct irq_data *d = irq_desc_get_irq_data(desc);
|
|
struct irq_chip *c = d->chip;
|
|
|
|
return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
|
|
}
|
|
|
|
static void irq_nmi_teardown(struct irq_desc *desc)
|
|
{
|
|
struct irq_data *d = irq_desc_get_irq_data(desc);
|
|
struct irq_chip *c = d->chip;
|
|
|
|
if (c->irq_nmi_teardown)
|
|
c->irq_nmi_teardown(d);
|
|
}
|
|
|
|
static int
|
|
setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
if (!secondary) {
|
|
t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
|
|
new->name);
|
|
} else {
|
|
t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
|
|
new->name);
|
|
}
|
|
|
|
if (IS_ERR(t))
|
|
return PTR_ERR(t);
|
|
|
|
sched_set_fifo(t);
|
|
|
|
/*
|
|
* We keep the reference to the task struct even if
|
|
* the thread dies to avoid that the interrupt code
|
|
* references an already freed task_struct.
|
|
*/
|
|
new->thread = get_task_struct(t);
|
|
/*
|
|
* Tell the thread to set its affinity. This is
|
|
* important for shared interrupt handlers as we do
|
|
* not invoke setup_affinity() for the secondary
|
|
* handlers as everything is already set up. Even for
|
|
* interrupts marked with IRQF_NO_BALANCE this is
|
|
* correct as we want the thread to move to the cpu(s)
|
|
* on which the requesting code placed the interrupt.
|
|
*/
|
|
set_bit(IRQTF_AFFINITY, &new->thread_flags);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Internal function to register an irqaction - typically used to
|
|
* allocate special interrupts that are part of the architecture.
|
|
*
|
|
* Locking rules:
|
|
*
|
|
* desc->request_mutex Provides serialization against a concurrent free_irq()
|
|
* chip_bus_lock Provides serialization for slow bus operations
|
|
* desc->lock Provides serialization against hard interrupts
|
|
*
|
|
* chip_bus_lock and desc->lock are sufficient for all other management and
|
|
* interrupt related functions. desc->request_mutex solely serializes
|
|
* request/free_irq().
|
|
*/
|
|
static int
|
|
__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
|
|
{
|
|
struct irqaction *old, **old_ptr;
|
|
unsigned long flags, thread_mask = 0;
|
|
int ret, nested, shared = 0;
|
|
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
if (desc->irq_data.chip == &no_irq_chip)
|
|
return -ENOSYS;
|
|
if (!try_module_get(desc->owner))
|
|
return -ENODEV;
|
|
|
|
new->irq = irq;
|
|
|
|
/*
|
|
* If the trigger type is not specified by the caller,
|
|
* then use the default for this interrupt.
|
|
*/
|
|
if (!(new->flags & IRQF_TRIGGER_MASK))
|
|
new->flags |= irqd_get_trigger_type(&desc->irq_data);
|
|
|
|
/*
|
|
* Check whether the interrupt nests into another interrupt
|
|
* thread.
|
|
*/
|
|
nested = irq_settings_is_nested_thread(desc);
|
|
if (nested) {
|
|
if (!new->thread_fn) {
|
|
ret = -EINVAL;
|
|
goto out_mput;
|
|
}
|
|
/*
|
|
* Replace the primary handler which was provided from
|
|
* the driver for non nested interrupt handling by the
|
|
* dummy function which warns when called.
|
|
*/
|
|
new->handler = irq_nested_primary_handler;
|
|
} else {
|
|
if (irq_settings_can_thread(desc)) {
|
|
ret = irq_setup_forced_threading(new);
|
|
if (ret)
|
|
goto out_mput;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a handler thread when a thread function is supplied
|
|
* and the interrupt does not nest into another interrupt
|
|
* thread.
|
|
*/
|
|
if (new->thread_fn && !nested) {
|
|
ret = setup_irq_thread(new, irq, false);
|
|
if (ret)
|
|
goto out_mput;
|
|
if (new->secondary) {
|
|
ret = setup_irq_thread(new->secondary, irq, true);
|
|
if (ret)
|
|
goto out_thread;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Drivers are often written to work w/o knowledge about the
|
|
* underlying irq chip implementation, so a request for a
|
|
* threaded irq without a primary hard irq context handler
|
|
* requires the ONESHOT flag to be set. Some irq chips like
|
|
* MSI based interrupts are per se one shot safe. Check the
|
|
* chip flags, so we can avoid the unmask dance at the end of
|
|
* the threaded handler for those.
|
|
*/
|
|
if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
|
|
new->flags &= ~IRQF_ONESHOT;
|
|
|
|
/*
|
|
* Protects against a concurrent __free_irq() call which might wait
|
|
* for synchronize_hardirq() to complete without holding the optional
|
|
* chip bus lock and desc->lock. Also protects against handing out
|
|
* a recycled oneshot thread_mask bit while it's still in use by
|
|
* its previous owner.
|
|
*/
|
|
mutex_lock(&desc->request_mutex);
|
|
|
|
/*
|
|
* Acquire bus lock as the irq_request_resources() callback below
|
|
* might rely on the serialization or the magic power management
|
|
* functions which are abusing the irq_bus_lock() callback,
|
|
*/
|
|
chip_bus_lock(desc);
|
|
|
|
/* First installed action requests resources. */
|
|
if (!desc->action) {
|
|
ret = irq_request_resources(desc);
|
|
if (ret) {
|
|
pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
|
|
new->name, irq, desc->irq_data.chip->name);
|
|
goto out_bus_unlock;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following block of code has to be executed atomically
|
|
* protected against a concurrent interrupt and any of the other
|
|
* management calls which are not serialized via
|
|
* desc->request_mutex or the optional bus lock.
|
|
*/
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
old_ptr = &desc->action;
|
|
old = *old_ptr;
|
|
if (old) {
|
|
/*
|
|
* Can't share interrupts unless both agree to and are
|
|
* the same type (level, edge, polarity). So both flag
|
|
* fields must have IRQF_SHARED set and the bits which
|
|
* set the trigger type must match. Also all must
|
|
* agree on ONESHOT.
|
|
* Interrupt lines used for NMIs cannot be shared.
|
|
*/
|
|
unsigned int oldtype;
|
|
|
|
if (desc->istate & IRQS_NMI) {
|
|
pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
|
|
new->name, irq, desc->irq_data.chip->name);
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If nobody did set the configuration before, inherit
|
|
* the one provided by the requester.
|
|
*/
|
|
if (irqd_trigger_type_was_set(&desc->irq_data)) {
|
|
oldtype = irqd_get_trigger_type(&desc->irq_data);
|
|
} else {
|
|
oldtype = new->flags & IRQF_TRIGGER_MASK;
|
|
irqd_set_trigger_type(&desc->irq_data, oldtype);
|
|
}
|
|
|
|
if (!((old->flags & new->flags) & IRQF_SHARED) ||
|
|
(oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
|
|
((old->flags ^ new->flags) & IRQF_ONESHOT))
|
|
goto mismatch;
|
|
|
|
/* All handlers must agree on per-cpuness */
|
|
if ((old->flags & IRQF_PERCPU) !=
|
|
(new->flags & IRQF_PERCPU))
|
|
goto mismatch;
|
|
|
|
/* add new interrupt at end of irq queue */
|
|
do {
|
|
/*
|
|
* Or all existing action->thread_mask bits,
|
|
* so we can find the next zero bit for this
|
|
* new action.
|
|
*/
|
|
thread_mask |= old->thread_mask;
|
|
old_ptr = &old->next;
|
|
old = *old_ptr;
|
|
} while (old);
|
|
shared = 1;
|
|
}
|
|
|
|
/*
|
|
* Setup the thread mask for this irqaction for ONESHOT. For
|
|
* !ONESHOT irqs the thread mask is 0 so we can avoid a
|
|
* conditional in irq_wake_thread().
|
|
*/
|
|
if (new->flags & IRQF_ONESHOT) {
|
|
/*
|
|
* Unlikely to have 32 resp 64 irqs sharing one line,
|
|
* but who knows.
|
|
*/
|
|
if (thread_mask == ~0UL) {
|
|
ret = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* The thread_mask for the action is or'ed to
|
|
* desc->thread_active to indicate that the
|
|
* IRQF_ONESHOT thread handler has been woken, but not
|
|
* yet finished. The bit is cleared when a thread
|
|
* completes. When all threads of a shared interrupt
|
|
* line have completed desc->threads_active becomes
|
|
* zero and the interrupt line is unmasked. See
|
|
* handle.c:irq_wake_thread() for further information.
|
|
*
|
|
* If no thread is woken by primary (hard irq context)
|
|
* interrupt handlers, then desc->threads_active is
|
|
* also checked for zero to unmask the irq line in the
|
|
* affected hard irq flow handlers
|
|
* (handle_[fasteoi|level]_irq).
|
|
*
|
|
* The new action gets the first zero bit of
|
|
* thread_mask assigned. See the loop above which or's
|
|
* all existing action->thread_mask bits.
|
|
*/
|
|
new->thread_mask = 1UL << ffz(thread_mask);
|
|
|
|
} else if (new->handler == irq_default_primary_handler &&
|
|
!(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
|
|
/*
|
|
* The interrupt was requested with handler = NULL, so
|
|
* we use the default primary handler for it. But it
|
|
* does not have the oneshot flag set. In combination
|
|
* with level interrupts this is deadly, because the
|
|
* default primary handler just wakes the thread, then
|
|
* the irq lines is reenabled, but the device still
|
|
* has the level irq asserted. Rinse and repeat....
|
|
*
|
|
* While this works for edge type interrupts, we play
|
|
* it safe and reject unconditionally because we can't
|
|
* say for sure which type this interrupt really
|
|
* has. The type flags are unreliable as the
|
|
* underlying chip implementation can override them.
|
|
*/
|
|
pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
|
|
new->name, irq);
|
|
ret = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (!shared) {
|
|
init_waitqueue_head(&desc->wait_for_threads);
|
|
|
|
/* Setup the type (level, edge polarity) if configured: */
|
|
if (new->flags & IRQF_TRIGGER_MASK) {
|
|
ret = __irq_set_trigger(desc,
|
|
new->flags & IRQF_TRIGGER_MASK);
|
|
|
|
if (ret)
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Activate the interrupt. That activation must happen
|
|
* independently of IRQ_NOAUTOEN. request_irq() can fail
|
|
* and the callers are supposed to handle
|
|
* that. enable_irq() of an interrupt requested with
|
|
* IRQ_NOAUTOEN is not supposed to fail. The activation
|
|
* keeps it in shutdown mode, it merily associates
|
|
* resources if necessary and if that's not possible it
|
|
* fails. Interrupts which are in managed shutdown mode
|
|
* will simply ignore that activation request.
|
|
*/
|
|
ret = irq_activate(desc);
|
|
if (ret)
|
|
goto out_unlock;
|
|
|
|
desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
|
|
IRQS_ONESHOT | IRQS_WAITING);
|
|
irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
|
|
|
|
if (new->flags & IRQF_PERCPU) {
|
|
irqd_set(&desc->irq_data, IRQD_PER_CPU);
|
|
irq_settings_set_per_cpu(desc);
|
|
}
|
|
|
|
if (new->flags & IRQF_ONESHOT)
|
|
desc->istate |= IRQS_ONESHOT;
|
|
|
|
/* Exclude IRQ from balancing if requested */
|
|
if (new->flags & IRQF_NOBALANCING) {
|
|
irq_settings_set_no_balancing(desc);
|
|
irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
|
|
}
|
|
|
|
if (irq_settings_can_autoenable(desc)) {
|
|
irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
|
|
} else {
|
|
/*
|
|
* Shared interrupts do not go well with disabling
|
|
* auto enable. The sharing interrupt might request
|
|
* it while it's still disabled and then wait for
|
|
* interrupts forever.
|
|
*/
|
|
WARN_ON_ONCE(new->flags & IRQF_SHARED);
|
|
/* Undo nested disables: */
|
|
desc->depth = 1;
|
|
}
|
|
|
|
} else if (new->flags & IRQF_TRIGGER_MASK) {
|
|
unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
|
|
unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
|
|
|
|
if (nmsk != omsk)
|
|
/* hope the handler works with current trigger mode */
|
|
pr_warn("irq %d uses trigger mode %u; requested %u\n",
|
|
irq, omsk, nmsk);
|
|
}
|
|
|
|
*old_ptr = new;
|
|
|
|
irq_pm_install_action(desc, new);
|
|
|
|
/* Reset broken irq detection when installing new handler */
|
|
desc->irq_count = 0;
|
|
desc->irqs_unhandled = 0;
|
|
|
|
/*
|
|
* Check whether we disabled the irq via the spurious handler
|
|
* before. Reenable it and give it another chance.
|
|
*/
|
|
if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
|
|
desc->istate &= ~IRQS_SPURIOUS_DISABLED;
|
|
__enable_irq(desc);
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
chip_bus_sync_unlock(desc);
|
|
mutex_unlock(&desc->request_mutex);
|
|
|
|
irq_setup_timings(desc, new);
|
|
|
|
/*
|
|
* Strictly no need to wake it up, but hung_task complains
|
|
* when no hard interrupt wakes the thread up.
|
|
*/
|
|
if (new->thread)
|
|
wake_up_process(new->thread);
|
|
if (new->secondary)
|
|
wake_up_process(new->secondary->thread);
|
|
|
|
register_irq_proc(irq, desc);
|
|
new->dir = NULL;
|
|
register_handler_proc(irq, new);
|
|
return 0;
|
|
|
|
mismatch:
|
|
if (!(new->flags & IRQF_PROBE_SHARED)) {
|
|
pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
|
|
irq, new->flags, new->name, old->flags, old->name);
|
|
#ifdef CONFIG_DEBUG_SHIRQ
|
|
dump_stack();
|
|
#endif
|
|
}
|
|
ret = -EBUSY;
|
|
|
|
out_unlock:
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
if (!desc->action)
|
|
irq_release_resources(desc);
|
|
out_bus_unlock:
|
|
chip_bus_sync_unlock(desc);
|
|
mutex_unlock(&desc->request_mutex);
|
|
|
|
out_thread:
|
|
if (new->thread) {
|
|
struct task_struct *t = new->thread;
|
|
|
|
new->thread = NULL;
|
|
kthread_stop(t);
|
|
put_task_struct(t);
|
|
}
|
|
if (new->secondary && new->secondary->thread) {
|
|
struct task_struct *t = new->secondary->thread;
|
|
|
|
new->secondary->thread = NULL;
|
|
kthread_stop(t);
|
|
put_task_struct(t);
|
|
}
|
|
out_mput:
|
|
module_put(desc->owner);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Internal function to unregister an irqaction - used to free
|
|
* regular and special interrupts that are part of the architecture.
|
|
*/
|
|
static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
|
|
{
|
|
unsigned irq = desc->irq_data.irq;
|
|
struct irqaction *action, **action_ptr;
|
|
unsigned long flags;
|
|
|
|
WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
|
|
|
|
mutex_lock(&desc->request_mutex);
|
|
chip_bus_lock(desc);
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
|
|
/*
|
|
* There can be multiple actions per IRQ descriptor, find the right
|
|
* one based on the dev_id:
|
|
*/
|
|
action_ptr = &desc->action;
|
|
for (;;) {
|
|
action = *action_ptr;
|
|
|
|
if (!action) {
|
|
WARN(1, "Trying to free already-free IRQ %d\n", irq);
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
chip_bus_sync_unlock(desc);
|
|
mutex_unlock(&desc->request_mutex);
|
|
return NULL;
|
|
}
|
|
|
|
if (action->dev_id == dev_id)
|
|
break;
|
|
action_ptr = &action->next;
|
|
}
|
|
|
|
/* Found it - now remove it from the list of entries: */
|
|
*action_ptr = action->next;
|
|
|
|
irq_pm_remove_action(desc, action);
|
|
|
|
/* If this was the last handler, shut down the IRQ line: */
|
|
if (!desc->action) {
|
|
irq_settings_clr_disable_unlazy(desc);
|
|
/* Only shutdown. Deactivate after synchronize_hardirq() */
|
|
irq_shutdown(desc);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* make sure affinity_hint is cleaned up */
|
|
if (WARN_ON_ONCE(desc->affinity_hint))
|
|
desc->affinity_hint = NULL;
|
|
#endif
|
|
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
/*
|
|
* Drop bus_lock here so the changes which were done in the chip
|
|
* callbacks above are synced out to the irq chips which hang
|
|
* behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
|
|
*
|
|
* Aside of that the bus_lock can also be taken from the threaded
|
|
* handler in irq_finalize_oneshot() which results in a deadlock
|
|
* because kthread_stop() would wait forever for the thread to
|
|
* complete, which is blocked on the bus lock.
|
|
*
|
|
* The still held desc->request_mutex() protects against a
|
|
* concurrent request_irq() of this irq so the release of resources
|
|
* and timing data is properly serialized.
|
|
*/
|
|
chip_bus_sync_unlock(desc);
|
|
|
|
unregister_handler_proc(irq, action);
|
|
|
|
/*
|
|
* Make sure it's not being used on another CPU and if the chip
|
|
* supports it also make sure that there is no (not yet serviced)
|
|
* interrupt in flight at the hardware level.
|
|
*/
|
|
__synchronize_hardirq(desc, true);
|
|
|
|
#ifdef CONFIG_DEBUG_SHIRQ
|
|
/*
|
|
* It's a shared IRQ -- the driver ought to be prepared for an IRQ
|
|
* event to happen even now it's being freed, so let's make sure that
|
|
* is so by doing an extra call to the handler ....
|
|
*
|
|
* ( We do this after actually deregistering it, to make sure that a
|
|
* 'real' IRQ doesn't run in parallel with our fake. )
|
|
*/
|
|
if (action->flags & IRQF_SHARED) {
|
|
local_irq_save(flags);
|
|
action->handler(irq, dev_id);
|
|
local_irq_restore(flags);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The action has already been removed above, but the thread writes
|
|
* its oneshot mask bit when it completes. Though request_mutex is
|
|
* held across this which prevents __setup_irq() from handing out
|
|
* the same bit to a newly requested action.
|
|
*/
|
|
if (action->thread) {
|
|
kthread_stop(action->thread);
|
|
put_task_struct(action->thread);
|
|
if (action->secondary && action->secondary->thread) {
|
|
kthread_stop(action->secondary->thread);
|
|
put_task_struct(action->secondary->thread);
|
|
}
|
|
}
|
|
|
|
/* Last action releases resources */
|
|
if (!desc->action) {
|
|
/*
|
|
* Reaquire bus lock as irq_release_resources() might
|
|
* require it to deallocate resources over the slow bus.
|
|
*/
|
|
chip_bus_lock(desc);
|
|
/*
|
|
* There is no interrupt on the fly anymore. Deactivate it
|
|
* completely.
|
|
*/
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
irq_domain_deactivate_irq(&desc->irq_data);
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
irq_release_resources(desc);
|
|
chip_bus_sync_unlock(desc);
|
|
irq_remove_timings(desc);
|
|
}
|
|
|
|
mutex_unlock(&desc->request_mutex);
|
|
|
|
irq_chip_pm_put(&desc->irq_data);
|
|
module_put(desc->owner);
|
|
kfree(action->secondary);
|
|
return action;
|
|
}
|
|
|
|
/**
|
|
* free_irq - free an interrupt allocated with request_irq
|
|
* @irq: Interrupt line to free
|
|
* @dev_id: Device identity to free
|
|
*
|
|
* Remove an interrupt handler. The handler is removed and if the
|
|
* interrupt line is no longer in use by any driver it is disabled.
|
|
* On a shared IRQ the caller must ensure the interrupt is disabled
|
|
* on the card it drives before calling this function. The function
|
|
* does not return until any executing interrupts for this IRQ
|
|
* have completed.
|
|
*
|
|
* This function must not be called from interrupt context.
|
|
*
|
|
* Returns the devname argument passed to request_irq.
|
|
*/
|
|
const void *free_irq(unsigned int irq, void *dev_id)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
struct irqaction *action;
|
|
const char *devname;
|
|
|
|
if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
|
|
return NULL;
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (WARN_ON(desc->affinity_notify))
|
|
desc->affinity_notify = NULL;
|
|
#endif
|
|
|
|
action = __free_irq(desc, dev_id);
|
|
|
|
if (!action)
|
|
return NULL;
|
|
|
|
devname = action->name;
|
|
kfree(action);
|
|
return devname;
|
|
}
|
|
EXPORT_SYMBOL(free_irq);
|
|
|
|
/* This function must be called with desc->lock held */
|
|
static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
|
|
{
|
|
const char *devname = NULL;
|
|
|
|
desc->istate &= ~IRQS_NMI;
|
|
|
|
if (!WARN_ON(desc->action == NULL)) {
|
|
irq_pm_remove_action(desc, desc->action);
|
|
devname = desc->action->name;
|
|
unregister_handler_proc(irq, desc->action);
|
|
|
|
kfree(desc->action);
|
|
desc->action = NULL;
|
|
}
|
|
|
|
irq_settings_clr_disable_unlazy(desc);
|
|
irq_shutdown_and_deactivate(desc);
|
|
|
|
irq_release_resources(desc);
|
|
|
|
irq_chip_pm_put(&desc->irq_data);
|
|
module_put(desc->owner);
|
|
|
|
return devname;
|
|
}
|
|
|
|
const void *free_nmi(unsigned int irq, void *dev_id)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
unsigned long flags;
|
|
const void *devname;
|
|
|
|
if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
|
|
return NULL;
|
|
|
|
if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
|
|
return NULL;
|
|
|
|
/* NMI still enabled */
|
|
if (WARN_ON(desc->depth == 0))
|
|
disable_nmi_nosync(irq);
|
|
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
|
|
irq_nmi_teardown(desc);
|
|
devname = __cleanup_nmi(irq, desc);
|
|
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
return devname;
|
|
}
|
|
|
|
/**
|
|
* request_threaded_irq - allocate an interrupt line
|
|
* @irq: Interrupt line to allocate
|
|
* @handler: Function to be called when the IRQ occurs.
|
|
* Primary handler for threaded interrupts
|
|
* If NULL and thread_fn != NULL the default
|
|
* primary handler is installed
|
|
* @thread_fn: Function called from the irq handler thread
|
|
* If NULL, no irq thread is created
|
|
* @irqflags: Interrupt type flags
|
|
* @devname: An ascii name for the claiming device
|
|
* @dev_id: A cookie passed back to the handler function
|
|
*
|
|
* This call allocates interrupt resources and enables the
|
|
* interrupt line and IRQ handling. From the point this
|
|
* call is made your handler function may be invoked. Since
|
|
* your handler function must clear any interrupt the board
|
|
* raises, you must take care both to initialise your hardware
|
|
* and to set up the interrupt handler in the right order.
|
|
*
|
|
* If you want to set up a threaded irq handler for your device
|
|
* then you need to supply @handler and @thread_fn. @handler is
|
|
* still called in hard interrupt context and has to check
|
|
* whether the interrupt originates from the device. If yes it
|
|
* needs to disable the interrupt on the device and return
|
|
* IRQ_WAKE_THREAD which will wake up the handler thread and run
|
|
* @thread_fn. This split handler design is necessary to support
|
|
* shared interrupts.
|
|
*
|
|
* Dev_id must be globally unique. Normally the address of the
|
|
* device data structure is used as the cookie. Since the handler
|
|
* receives this value it makes sense to use it.
|
|
*
|
|
* If your interrupt is shared you must pass a non NULL dev_id
|
|
* as this is required when freeing the interrupt.
|
|
*
|
|
* Flags:
|
|
*
|
|
* IRQF_SHARED Interrupt is shared
|
|
* IRQF_TRIGGER_* Specify active edge(s) or level
|
|
*
|
|
*/
|
|
int request_threaded_irq(unsigned int irq, irq_handler_t handler,
|
|
irq_handler_t thread_fn, unsigned long irqflags,
|
|
const char *devname, void *dev_id)
|
|
{
|
|
struct irqaction *action;
|
|
struct irq_desc *desc;
|
|
int retval;
|
|
|
|
if (irq == IRQ_NOTCONNECTED)
|
|
return -ENOTCONN;
|
|
|
|
/*
|
|
* Sanity-check: shared interrupts must pass in a real dev-ID,
|
|
* otherwise we'll have trouble later trying to figure out
|
|
* which interrupt is which (messes up the interrupt freeing
|
|
* logic etc).
|
|
*
|
|
* Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
|
|
* it cannot be set along with IRQF_NO_SUSPEND.
|
|
*/
|
|
if (((irqflags & IRQF_SHARED) && !dev_id) ||
|
|
(!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
|
|
((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
|
|
return -EINVAL;
|
|
|
|
desc = irq_to_desc(irq);
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
if (!irq_settings_can_request(desc) ||
|
|
WARN_ON(irq_settings_is_per_cpu_devid(desc)))
|
|
return -EINVAL;
|
|
|
|
if (!handler) {
|
|
if (!thread_fn)
|
|
return -EINVAL;
|
|
handler = irq_default_primary_handler;
|
|
}
|
|
|
|
action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
|
|
if (!action)
|
|
return -ENOMEM;
|
|
|
|
action->handler = handler;
|
|
action->thread_fn = thread_fn;
|
|
action->flags = irqflags;
|
|
action->name = devname;
|
|
action->dev_id = dev_id;
|
|
|
|
retval = irq_chip_pm_get(&desc->irq_data);
|
|
if (retval < 0) {
|
|
kfree(action);
|
|
return retval;
|
|
}
|
|
|
|
retval = __setup_irq(irq, desc, action);
|
|
|
|
if (retval) {
|
|
irq_chip_pm_put(&desc->irq_data);
|
|
kfree(action->secondary);
|
|
kfree(action);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_SHIRQ_FIXME
|
|
if (!retval && (irqflags & IRQF_SHARED)) {
|
|
/*
|
|
* It's a shared IRQ -- the driver ought to be prepared for it
|
|
* to happen immediately, so let's make sure....
|
|
* We disable the irq to make sure that a 'real' IRQ doesn't
|
|
* run in parallel with our fake.
|
|
*/
|
|
unsigned long flags;
|
|
|
|
disable_irq(irq);
|
|
local_irq_save(flags);
|
|
|
|
handler(irq, dev_id);
|
|
|
|
local_irq_restore(flags);
|
|
enable_irq(irq);
|
|
}
|
|
#endif
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL(request_threaded_irq);
|
|
|
|
/**
|
|
* request_any_context_irq - allocate an interrupt line
|
|
* @irq: Interrupt line to allocate
|
|
* @handler: Function to be called when the IRQ occurs.
|
|
* Threaded handler for threaded interrupts.
|
|
* @flags: Interrupt type flags
|
|
* @name: An ascii name for the claiming device
|
|
* @dev_id: A cookie passed back to the handler function
|
|
*
|
|
* This call allocates interrupt resources and enables the
|
|
* interrupt line and IRQ handling. It selects either a
|
|
* hardirq or threaded handling method depending on the
|
|
* context.
|
|
*
|
|
* On failure, it returns a negative value. On success,
|
|
* it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
|
|
*/
|
|
int request_any_context_irq(unsigned int irq, irq_handler_t handler,
|
|
unsigned long flags, const char *name, void *dev_id)
|
|
{
|
|
struct irq_desc *desc;
|
|
int ret;
|
|
|
|
if (irq == IRQ_NOTCONNECTED)
|
|
return -ENOTCONN;
|
|
|
|
desc = irq_to_desc(irq);
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
if (irq_settings_is_nested_thread(desc)) {
|
|
ret = request_threaded_irq(irq, NULL, handler,
|
|
flags, name, dev_id);
|
|
return !ret ? IRQC_IS_NESTED : ret;
|
|
}
|
|
|
|
ret = request_irq(irq, handler, flags, name, dev_id);
|
|
return !ret ? IRQC_IS_HARDIRQ : ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(request_any_context_irq);
|
|
|
|
/**
|
|
* request_nmi - allocate an interrupt line for NMI delivery
|
|
* @irq: Interrupt line to allocate
|
|
* @handler: Function to be called when the IRQ occurs.
|
|
* Threaded handler for threaded interrupts.
|
|
* @irqflags: Interrupt type flags
|
|
* @name: An ascii name for the claiming device
|
|
* @dev_id: A cookie passed back to the handler function
|
|
*
|
|
* This call allocates interrupt resources and enables the
|
|
* interrupt line and IRQ handling. It sets up the IRQ line
|
|
* to be handled as an NMI.
|
|
*
|
|
* An interrupt line delivering NMIs cannot be shared and IRQ handling
|
|
* cannot be threaded.
|
|
*
|
|
* Interrupt lines requested for NMI delivering must produce per cpu
|
|
* interrupts and have auto enabling setting disabled.
|
|
*
|
|
* Dev_id must be globally unique. Normally the address of the
|
|
* device data structure is used as the cookie. Since the handler
|
|
* receives this value it makes sense to use it.
|
|
*
|
|
* If the interrupt line cannot be used to deliver NMIs, function
|
|
* will fail and return a negative value.
|
|
*/
|
|
int request_nmi(unsigned int irq, irq_handler_t handler,
|
|
unsigned long irqflags, const char *name, void *dev_id)
|
|
{
|
|
struct irqaction *action;
|
|
struct irq_desc *desc;
|
|
unsigned long flags;
|
|
int retval;
|
|
|
|
if (irq == IRQ_NOTCONNECTED)
|
|
return -ENOTCONN;
|
|
|
|
/* NMI cannot be shared, used for Polling */
|
|
if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
|
|
return -EINVAL;
|
|
|
|
if (!(irqflags & IRQF_PERCPU))
|
|
return -EINVAL;
|
|
|
|
if (!handler)
|
|
return -EINVAL;
|
|
|
|
desc = irq_to_desc(irq);
|
|
|
|
if (!desc || irq_settings_can_autoenable(desc) ||
|
|
!irq_settings_can_request(desc) ||
|
|
WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
|
|
!irq_supports_nmi(desc))
|
|
return -EINVAL;
|
|
|
|
action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
|
|
if (!action)
|
|
return -ENOMEM;
|
|
|
|
action->handler = handler;
|
|
action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
|
|
action->name = name;
|
|
action->dev_id = dev_id;
|
|
|
|
retval = irq_chip_pm_get(&desc->irq_data);
|
|
if (retval < 0)
|
|
goto err_out;
|
|
|
|
retval = __setup_irq(irq, desc, action);
|
|
if (retval)
|
|
goto err_irq_setup;
|
|
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
|
|
/* Setup NMI state */
|
|
desc->istate |= IRQS_NMI;
|
|
retval = irq_nmi_setup(desc);
|
|
if (retval) {
|
|
__cleanup_nmi(irq, desc);
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
return -EINVAL;
|
|
}
|
|
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
return 0;
|
|
|
|
err_irq_setup:
|
|
irq_chip_pm_put(&desc->irq_data);
|
|
err_out:
|
|
kfree(action);
|
|
|
|
return retval;
|
|
}
|
|
|
|
void enable_percpu_irq(unsigned int irq, unsigned int type)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
|
|
|
|
if (!desc)
|
|
return;
|
|
|
|
/*
|
|
* If the trigger type is not specified by the caller, then
|
|
* use the default for this interrupt.
|
|
*/
|
|
type &= IRQ_TYPE_SENSE_MASK;
|
|
if (type == IRQ_TYPE_NONE)
|
|
type = irqd_get_trigger_type(&desc->irq_data);
|
|
|
|
if (type != IRQ_TYPE_NONE) {
|
|
int ret;
|
|
|
|
ret = __irq_set_trigger(desc, type);
|
|
|
|
if (ret) {
|
|
WARN(1, "failed to set type for IRQ%d\n", irq);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
irq_percpu_enable(desc, cpu);
|
|
out:
|
|
irq_put_desc_unlock(desc, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(enable_percpu_irq);
|
|
|
|
void enable_percpu_nmi(unsigned int irq, unsigned int type)
|
|
{
|
|
enable_percpu_irq(irq, type);
|
|
}
|
|
|
|
/**
|
|
* irq_percpu_is_enabled - Check whether the per cpu irq is enabled
|
|
* @irq: Linux irq number to check for
|
|
*
|
|
* Must be called from a non migratable context. Returns the enable
|
|
* state of a per cpu interrupt on the current cpu.
|
|
*/
|
|
bool irq_percpu_is_enabled(unsigned int irq)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
struct irq_desc *desc;
|
|
unsigned long flags;
|
|
bool is_enabled;
|
|
|
|
desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
|
|
if (!desc)
|
|
return false;
|
|
|
|
is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
|
|
irq_put_desc_unlock(desc, flags);
|
|
|
|
return is_enabled;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
|
|
|
|
void disable_percpu_irq(unsigned int irq)
|
|
{
|
|
unsigned int cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
|
|
|
|
if (!desc)
|
|
return;
|
|
|
|
irq_percpu_disable(desc, cpu);
|
|
irq_put_desc_unlock(desc, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(disable_percpu_irq);
|
|
|
|
void disable_percpu_nmi(unsigned int irq)
|
|
{
|
|
disable_percpu_irq(irq);
|
|
}
|
|
|
|
/*
|
|
* Internal function to unregister a percpu irqaction.
|
|
*/
|
|
static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
struct irqaction *action;
|
|
unsigned long flags;
|
|
|
|
WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
|
|
|
|
if (!desc)
|
|
return NULL;
|
|
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
|
|
action = desc->action;
|
|
if (!action || action->percpu_dev_id != dev_id) {
|
|
WARN(1, "Trying to free already-free IRQ %d\n", irq);
|
|
goto bad;
|
|
}
|
|
|
|
if (!cpumask_empty(desc->percpu_enabled)) {
|
|
WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
|
|
irq, cpumask_first(desc->percpu_enabled));
|
|
goto bad;
|
|
}
|
|
|
|
/* Found it - now remove it from the list of entries: */
|
|
desc->action = NULL;
|
|
|
|
desc->istate &= ~IRQS_NMI;
|
|
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
unregister_handler_proc(irq, action);
|
|
|
|
irq_chip_pm_put(&desc->irq_data);
|
|
module_put(desc->owner);
|
|
return action;
|
|
|
|
bad:
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* remove_percpu_irq - free a per-cpu interrupt
|
|
* @irq: Interrupt line to free
|
|
* @act: irqaction for the interrupt
|
|
*
|
|
* Used to remove interrupts statically setup by the early boot process.
|
|
*/
|
|
void remove_percpu_irq(unsigned int irq, struct irqaction *act)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
|
|
if (desc && irq_settings_is_per_cpu_devid(desc))
|
|
__free_percpu_irq(irq, act->percpu_dev_id);
|
|
}
|
|
|
|
/**
|
|
* free_percpu_irq - free an interrupt allocated with request_percpu_irq
|
|
* @irq: Interrupt line to free
|
|
* @dev_id: Device identity to free
|
|
*
|
|
* Remove a percpu interrupt handler. The handler is removed, but
|
|
* the interrupt line is not disabled. This must be done on each
|
|
* CPU before calling this function. The function does not return
|
|
* until any executing interrupts for this IRQ have completed.
|
|
*
|
|
* This function must not be called from interrupt context.
|
|
*/
|
|
void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
|
|
if (!desc || !irq_settings_is_per_cpu_devid(desc))
|
|
return;
|
|
|
|
chip_bus_lock(desc);
|
|
kfree(__free_percpu_irq(irq, dev_id));
|
|
chip_bus_sync_unlock(desc);
|
|
}
|
|
EXPORT_SYMBOL_GPL(free_percpu_irq);
|
|
|
|
void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
|
|
if (!desc || !irq_settings_is_per_cpu_devid(desc))
|
|
return;
|
|
|
|
if (WARN_ON(!(desc->istate & IRQS_NMI)))
|
|
return;
|
|
|
|
kfree(__free_percpu_irq(irq, dev_id));
|
|
}
|
|
|
|
/**
|
|
* setup_percpu_irq - setup a per-cpu interrupt
|
|
* @irq: Interrupt line to setup
|
|
* @act: irqaction for the interrupt
|
|
*
|
|
* Used to statically setup per-cpu interrupts in the early boot process.
|
|
*/
|
|
int setup_percpu_irq(unsigned int irq, struct irqaction *act)
|
|
{
|
|
struct irq_desc *desc = irq_to_desc(irq);
|
|
int retval;
|
|
|
|
if (!desc || !irq_settings_is_per_cpu_devid(desc))
|
|
return -EINVAL;
|
|
|
|
retval = irq_chip_pm_get(&desc->irq_data);
|
|
if (retval < 0)
|
|
return retval;
|
|
|
|
retval = __setup_irq(irq, desc, act);
|
|
|
|
if (retval)
|
|
irq_chip_pm_put(&desc->irq_data);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* __request_percpu_irq - allocate a percpu interrupt line
|
|
* @irq: Interrupt line to allocate
|
|
* @handler: Function to be called when the IRQ occurs.
|
|
* @flags: Interrupt type flags (IRQF_TIMER only)
|
|
* @devname: An ascii name for the claiming device
|
|
* @dev_id: A percpu cookie passed back to the handler function
|
|
*
|
|
* This call allocates interrupt resources and enables the
|
|
* interrupt on the local CPU. If the interrupt is supposed to be
|
|
* enabled on other CPUs, it has to be done on each CPU using
|
|
* enable_percpu_irq().
|
|
*
|
|
* Dev_id must be globally unique. It is a per-cpu variable, and
|
|
* the handler gets called with the interrupted CPU's instance of
|
|
* that variable.
|
|
*/
|
|
int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
|
|
unsigned long flags, const char *devname,
|
|
void __percpu *dev_id)
|
|
{
|
|
struct irqaction *action;
|
|
struct irq_desc *desc;
|
|
int retval;
|
|
|
|
if (!dev_id)
|
|
return -EINVAL;
|
|
|
|
desc = irq_to_desc(irq);
|
|
if (!desc || !irq_settings_can_request(desc) ||
|
|
!irq_settings_is_per_cpu_devid(desc))
|
|
return -EINVAL;
|
|
|
|
if (flags && flags != IRQF_TIMER)
|
|
return -EINVAL;
|
|
|
|
action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
|
|
if (!action)
|
|
return -ENOMEM;
|
|
|
|
action->handler = handler;
|
|
action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
|
|
action->name = devname;
|
|
action->percpu_dev_id = dev_id;
|
|
|
|
retval = irq_chip_pm_get(&desc->irq_data);
|
|
if (retval < 0) {
|
|
kfree(action);
|
|
return retval;
|
|
}
|
|
|
|
retval = __setup_irq(irq, desc, action);
|
|
|
|
if (retval) {
|
|
irq_chip_pm_put(&desc->irq_data);
|
|
kfree(action);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__request_percpu_irq);
|
|
|
|
/**
|
|
* request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
|
|
* @irq: Interrupt line to allocate
|
|
* @handler: Function to be called when the IRQ occurs.
|
|
* @name: An ascii name for the claiming device
|
|
* @dev_id: A percpu cookie passed back to the handler function
|
|
*
|
|
* This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
|
|
* have to be setup on each CPU by calling prepare_percpu_nmi() before
|
|
* being enabled on the same CPU by using enable_percpu_nmi().
|
|
*
|
|
* Dev_id must be globally unique. It is a per-cpu variable, and
|
|
* the handler gets called with the interrupted CPU's instance of
|
|
* that variable.
|
|
*
|
|
* Interrupt lines requested for NMI delivering should have auto enabling
|
|
* setting disabled.
|
|
*
|
|
* If the interrupt line cannot be used to deliver NMIs, function
|
|
* will fail returning a negative value.
|
|
*/
|
|
int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
|
|
const char *name, void __percpu *dev_id)
|
|
{
|
|
struct irqaction *action;
|
|
struct irq_desc *desc;
|
|
unsigned long flags;
|
|
int retval;
|
|
|
|
if (!handler)
|
|
return -EINVAL;
|
|
|
|
desc = irq_to_desc(irq);
|
|
|
|
if (!desc || !irq_settings_can_request(desc) ||
|
|
!irq_settings_is_per_cpu_devid(desc) ||
|
|
irq_settings_can_autoenable(desc) ||
|
|
!irq_supports_nmi(desc))
|
|
return -EINVAL;
|
|
|
|
/* The line cannot already be NMI */
|
|
if (desc->istate & IRQS_NMI)
|
|
return -EINVAL;
|
|
|
|
action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
|
|
if (!action)
|
|
return -ENOMEM;
|
|
|
|
action->handler = handler;
|
|
action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
|
|
| IRQF_NOBALANCING;
|
|
action->name = name;
|
|
action->percpu_dev_id = dev_id;
|
|
|
|
retval = irq_chip_pm_get(&desc->irq_data);
|
|
if (retval < 0)
|
|
goto err_out;
|
|
|
|
retval = __setup_irq(irq, desc, action);
|
|
if (retval)
|
|
goto err_irq_setup;
|
|
|
|
raw_spin_lock_irqsave(&desc->lock, flags);
|
|
desc->istate |= IRQS_NMI;
|
|
raw_spin_unlock_irqrestore(&desc->lock, flags);
|
|
|
|
return 0;
|
|
|
|
err_irq_setup:
|
|
irq_chip_pm_put(&desc->irq_data);
|
|
err_out:
|
|
kfree(action);
|
|
|
|
return retval;
|
|
}
|
|
|
|
/**
|
|
* prepare_percpu_nmi - performs CPU local setup for NMI delivery
|
|
* @irq: Interrupt line to prepare for NMI delivery
|
|
*
|
|
* This call prepares an interrupt line to deliver NMI on the current CPU,
|
|
* before that interrupt line gets enabled with enable_percpu_nmi().
|
|
*
|
|
* As a CPU local operation, this should be called from non-preemptible
|
|
* context.
|
|
*
|
|
* If the interrupt line cannot be used to deliver NMIs, function
|
|
* will fail returning a negative value.
|
|
*/
|
|
int prepare_percpu_nmi(unsigned int irq)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc;
|
|
int ret = 0;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
desc = irq_get_desc_lock(irq, &flags,
|
|
IRQ_GET_DESC_CHECK_PERCPU);
|
|
if (!desc)
|
|
return -EINVAL;
|
|
|
|
if (WARN(!(desc->istate & IRQS_NMI),
|
|
KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
|
|
irq)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
ret = irq_nmi_setup(desc);
|
|
if (ret) {
|
|
pr_err("Failed to setup NMI delivery: irq %u\n", irq);
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
irq_put_desc_unlock(desc, flags);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* teardown_percpu_nmi - undoes NMI setup of IRQ line
|
|
* @irq: Interrupt line from which CPU local NMI configuration should be
|
|
* removed
|
|
*
|
|
* This call undoes the setup done by prepare_percpu_nmi().
|
|
*
|
|
* IRQ line should not be enabled for the current CPU.
|
|
*
|
|
* As a CPU local operation, this should be called from non-preemptible
|
|
* context.
|
|
*/
|
|
void teardown_percpu_nmi(unsigned int irq)
|
|
{
|
|
unsigned long flags;
|
|
struct irq_desc *desc;
|
|
|
|
WARN_ON(preemptible());
|
|
|
|
desc = irq_get_desc_lock(irq, &flags,
|
|
IRQ_GET_DESC_CHECK_PERCPU);
|
|
if (!desc)
|
|
return;
|
|
|
|
if (WARN_ON(!(desc->istate & IRQS_NMI)))
|
|
goto out;
|
|
|
|
irq_nmi_teardown(desc);
|
|
out:
|
|
irq_put_desc_unlock(desc, flags);
|
|
}
|
|
|
|
int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
|
|
bool *state)
|
|
{
|
|
struct irq_chip *chip;
|
|
int err = -EINVAL;
|
|
|
|
do {
|
|
chip = irq_data_get_irq_chip(data);
|
|
if (WARN_ON_ONCE(!chip))
|
|
return -ENODEV;
|
|
if (chip->irq_get_irqchip_state)
|
|
break;
|
|
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
|
|
data = data->parent_data;
|
|
#else
|
|
data = NULL;
|
|
#endif
|
|
} while (data);
|
|
|
|
if (data)
|
|
err = chip->irq_get_irqchip_state(data, which, state);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* irq_get_irqchip_state - returns the irqchip state of a interrupt.
|
|
* @irq: Interrupt line that is forwarded to a VM
|
|
* @which: One of IRQCHIP_STATE_* the caller wants to know about
|
|
* @state: a pointer to a boolean where the state is to be storeed
|
|
*
|
|
* This call snapshots the internal irqchip state of an
|
|
* interrupt, returning into @state the bit corresponding to
|
|
* stage @which
|
|
*
|
|
* This function should be called with preemption disabled if the
|
|
* interrupt controller has per-cpu registers.
|
|
*/
|
|
int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
|
|
bool *state)
|
|
{
|
|
struct irq_desc *desc;
|
|
struct irq_data *data;
|
|
unsigned long flags;
|
|
int err = -EINVAL;
|
|
|
|
desc = irq_get_desc_buslock(irq, &flags, 0);
|
|
if (!desc)
|
|
return err;
|
|
|
|
data = irq_desc_get_irq_data(desc);
|
|
|
|
err = __irq_get_irqchip_state(data, which, state);
|
|
|
|
irq_put_desc_busunlock(desc, flags);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
|
|
|
|
/**
|
|
* irq_set_irqchip_state - set the state of a forwarded interrupt.
|
|
* @irq: Interrupt line that is forwarded to a VM
|
|
* @which: State to be restored (one of IRQCHIP_STATE_*)
|
|
* @val: Value corresponding to @which
|
|
*
|
|
* This call sets the internal irqchip state of an interrupt,
|
|
* depending on the value of @which.
|
|
*
|
|
* This function should be called with preemption disabled if the
|
|
* interrupt controller has per-cpu registers.
|
|
*/
|
|
int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
|
|
bool val)
|
|
{
|
|
struct irq_desc *desc;
|
|
struct irq_data *data;
|
|
struct irq_chip *chip;
|
|
unsigned long flags;
|
|
int err = -EINVAL;
|
|
|
|
desc = irq_get_desc_buslock(irq, &flags, 0);
|
|
if (!desc)
|
|
return err;
|
|
|
|
data = irq_desc_get_irq_data(desc);
|
|
|
|
do {
|
|
chip = irq_data_get_irq_chip(data);
|
|
if (WARN_ON_ONCE(!chip)) {
|
|
err = -ENODEV;
|
|
goto out_unlock;
|
|
}
|
|
if (chip->irq_set_irqchip_state)
|
|
break;
|
|
#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
|
|
data = data->parent_data;
|
|
#else
|
|
data = NULL;
|
|
#endif
|
|
} while (data);
|
|
|
|
if (data)
|
|
err = chip->irq_set_irqchip_state(data, which, val);
|
|
|
|
out_unlock:
|
|
irq_put_desc_busunlock(desc, flags);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
|