mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 10:14:25 +07:00
4c12ab7e5e
Pull f2fs updates from Jaegeuk Kim: "The major work includes fixing and enhancing the existing extent_cache feature, which has been well settling down so far and now it becomes a default mount option accordingly. Also, this version newly registers a f2fs memory shrinker to reclaim several objects consumed by a couple of data structures in order to avoid memory pressures. Another new feature is to add ioctl(F2FS_GARBAGE_COLLECT) which triggers a cleaning job explicitly by users. Most of the other patches are to fix bugs occurred in the corner cases across the whole code area" * tag 'for-f2fs-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (85 commits) f2fs: upset segment_info repair f2fs: avoid accessing NULL pointer in f2fs_drop_largest_extent f2fs: update extent tree in batches f2fs: fix to release inode correctly f2fs: handle f2fs_truncate error correctly f2fs: avoid unneeded initializing when converting inline dentry f2fs: atomically set inode->i_flags f2fs: fix wrong pointer access during try_to_free_nids f2fs: use __GFP_NOFAIL to avoid infinite loop f2fs: lookup neighbor extent nodes for merging later f2fs: split __insert_extent_tree_ret for readability f2fs: kill dead code in __insert_extent_tree f2fs: adjust showing of extent cache stat f2fs: add largest/cached stat in extent cache f2fs: fix incorrect mapping for bmap f2fs: add annotation for space utilization of regular/inline dentry f2fs: fix to update cached_en of extent tree properly f2fs: fix typo f2fs: check the node block address of newly allocated nid f2fs: go out for insert_inode_locked failure ...
1661 lines
38 KiB
C
1661 lines
38 KiB
C
/*
|
|
* fs/f2fs/data.c
|
|
*
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com/
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/prefetch.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/cleancache.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include "trace.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static void f2fs_read_end_io(struct bio *bio)
|
|
{
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
if (f2fs_bio_encrypted(bio)) {
|
|
if (bio->bi_error) {
|
|
f2fs_release_crypto_ctx(bio->bi_private);
|
|
} else {
|
|
f2fs_end_io_crypto_work(bio->bi_private, bio);
|
|
return;
|
|
}
|
|
}
|
|
|
|
bio_for_each_segment_all(bvec, bio, i) {
|
|
struct page *page = bvec->bv_page;
|
|
|
|
if (!bio->bi_error) {
|
|
SetPageUptodate(page);
|
|
} else {
|
|
ClearPageUptodate(page);
|
|
SetPageError(page);
|
|
}
|
|
unlock_page(page);
|
|
}
|
|
bio_put(bio);
|
|
}
|
|
|
|
static void f2fs_write_end_io(struct bio *bio)
|
|
{
|
|
struct f2fs_sb_info *sbi = bio->bi_private;
|
|
struct bio_vec *bvec;
|
|
int i;
|
|
|
|
bio_for_each_segment_all(bvec, bio, i) {
|
|
struct page *page = bvec->bv_page;
|
|
|
|
f2fs_restore_and_release_control_page(&page);
|
|
|
|
if (unlikely(bio->bi_error)) {
|
|
set_page_dirty(page);
|
|
set_bit(AS_EIO, &page->mapping->flags);
|
|
f2fs_stop_checkpoint(sbi);
|
|
}
|
|
end_page_writeback(page);
|
|
dec_page_count(sbi, F2FS_WRITEBACK);
|
|
}
|
|
|
|
if (!get_pages(sbi, F2FS_WRITEBACK) &&
|
|
!list_empty(&sbi->cp_wait.task_list))
|
|
wake_up(&sbi->cp_wait);
|
|
|
|
bio_put(bio);
|
|
}
|
|
|
|
/*
|
|
* Low-level block read/write IO operations.
|
|
*/
|
|
static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
|
|
int npages, bool is_read)
|
|
{
|
|
struct bio *bio;
|
|
|
|
bio = f2fs_bio_alloc(npages);
|
|
|
|
bio->bi_bdev = sbi->sb->s_bdev;
|
|
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
|
|
bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
|
|
bio->bi_private = is_read ? NULL : sbi;
|
|
|
|
return bio;
|
|
}
|
|
|
|
static void __submit_merged_bio(struct f2fs_bio_info *io)
|
|
{
|
|
struct f2fs_io_info *fio = &io->fio;
|
|
|
|
if (!io->bio)
|
|
return;
|
|
|
|
if (is_read_io(fio->rw))
|
|
trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
|
|
else
|
|
trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
|
|
|
|
submit_bio(fio->rw, io->bio);
|
|
io->bio = NULL;
|
|
}
|
|
|
|
void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
|
|
enum page_type type, int rw)
|
|
{
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(type);
|
|
struct f2fs_bio_info *io;
|
|
|
|
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
|
|
|
|
down_write(&io->io_rwsem);
|
|
|
|
/* change META to META_FLUSH in the checkpoint procedure */
|
|
if (type >= META_FLUSH) {
|
|
io->fio.type = META_FLUSH;
|
|
if (test_opt(sbi, NOBARRIER))
|
|
io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
|
|
else
|
|
io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
|
|
}
|
|
__submit_merged_bio(io);
|
|
up_write(&io->io_rwsem);
|
|
}
|
|
|
|
/*
|
|
* Fill the locked page with data located in the block address.
|
|
* Return unlocked page.
|
|
*/
|
|
int f2fs_submit_page_bio(struct f2fs_io_info *fio)
|
|
{
|
|
struct bio *bio;
|
|
struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
|
|
|
|
trace_f2fs_submit_page_bio(page, fio);
|
|
f2fs_trace_ios(fio, 0);
|
|
|
|
/* Allocate a new bio */
|
|
bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
|
|
|
|
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
|
|
bio_put(bio);
|
|
return -EFAULT;
|
|
}
|
|
|
|
submit_bio(fio->rw, bio);
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
|
|
{
|
|
struct f2fs_sb_info *sbi = fio->sbi;
|
|
enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
|
|
struct f2fs_bio_info *io;
|
|
bool is_read = is_read_io(fio->rw);
|
|
struct page *bio_page;
|
|
|
|
io = is_read ? &sbi->read_io : &sbi->write_io[btype];
|
|
|
|
verify_block_addr(sbi, fio->blk_addr);
|
|
|
|
down_write(&io->io_rwsem);
|
|
|
|
if (!is_read)
|
|
inc_page_count(sbi, F2FS_WRITEBACK);
|
|
|
|
if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
|
|
io->fio.rw != fio->rw))
|
|
__submit_merged_bio(io);
|
|
alloc_new:
|
|
if (io->bio == NULL) {
|
|
int bio_blocks = MAX_BIO_BLOCKS(sbi);
|
|
|
|
io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
|
|
io->fio = *fio;
|
|
}
|
|
|
|
bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
|
|
|
|
if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
|
|
PAGE_CACHE_SIZE) {
|
|
__submit_merged_bio(io);
|
|
goto alloc_new;
|
|
}
|
|
|
|
io->last_block_in_bio = fio->blk_addr;
|
|
f2fs_trace_ios(fio, 0);
|
|
|
|
up_write(&io->io_rwsem);
|
|
trace_f2fs_submit_page_mbio(fio->page, fio);
|
|
}
|
|
|
|
/*
|
|
* Lock ordering for the change of data block address:
|
|
* ->data_page
|
|
* ->node_page
|
|
* update block addresses in the node page
|
|
*/
|
|
void set_data_blkaddr(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_node *rn;
|
|
__le32 *addr_array;
|
|
struct page *node_page = dn->node_page;
|
|
unsigned int ofs_in_node = dn->ofs_in_node;
|
|
|
|
f2fs_wait_on_page_writeback(node_page, NODE);
|
|
|
|
rn = F2FS_NODE(node_page);
|
|
|
|
/* Get physical address of data block */
|
|
addr_array = blkaddr_in_node(rn);
|
|
addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
|
|
set_page_dirty(node_page);
|
|
}
|
|
|
|
int reserve_new_block(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
|
|
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
|
|
return -ENOSPC;
|
|
|
|
trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
|
|
|
|
dn->data_blkaddr = NEW_ADDR;
|
|
set_data_blkaddr(dn);
|
|
mark_inode_dirty(dn->inode);
|
|
sync_inode_page(dn);
|
|
return 0;
|
|
}
|
|
|
|
int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
bool need_put = dn->inode_page ? false : true;
|
|
int err;
|
|
|
|
err = get_dnode_of_data(dn, index, ALLOC_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
if (dn->data_blkaddr == NULL_ADDR)
|
|
err = reserve_new_block(dn);
|
|
if (err || need_put)
|
|
f2fs_put_dnode(dn);
|
|
return err;
|
|
}
|
|
|
|
int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
|
|
{
|
|
struct extent_info ei;
|
|
struct inode *inode = dn->inode;
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn->data_blkaddr = ei.blk + index - ei.fofs;
|
|
return 0;
|
|
}
|
|
|
|
return f2fs_reserve_block(dn, index);
|
|
}
|
|
|
|
struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct dnode_of_data dn;
|
|
struct page *page;
|
|
struct extent_info ei;
|
|
int err;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = F2FS_I_SB(inode),
|
|
.type = DATA,
|
|
.rw = rw,
|
|
.encrypted_page = NULL,
|
|
};
|
|
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
|
|
return read_mapping_page(mapping, index, NULL);
|
|
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
if (f2fs_lookup_extent_cache(inode, index, &ei)) {
|
|
dn.data_blkaddr = ei.blk + index - ei.fofs;
|
|
goto got_it;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
|
|
if (err)
|
|
goto put_err;
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
|
|
err = -ENOENT;
|
|
goto put_err;
|
|
}
|
|
got_it:
|
|
if (PageUptodate(page)) {
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* A new dentry page is allocated but not able to be written, since its
|
|
* new inode page couldn't be allocated due to -ENOSPC.
|
|
* In such the case, its blkaddr can be remained as NEW_ADDR.
|
|
* see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
|
|
*/
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
return page;
|
|
}
|
|
|
|
fio.blk_addr = dn.data_blkaddr;
|
|
fio.page = page;
|
|
err = f2fs_submit_page_bio(&fio);
|
|
if (err)
|
|
goto put_err;
|
|
return page;
|
|
|
|
put_err:
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct page *find_data_page(struct inode *inode, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
|
|
page = find_get_page(mapping, index);
|
|
if (page && PageUptodate(page))
|
|
return page;
|
|
f2fs_put_page(page, 0);
|
|
|
|
page = get_read_data_page(inode, index, READ_SYNC);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
|
|
if (PageUptodate(page))
|
|
return page;
|
|
|
|
wait_on_page_locked(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 0);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* If it tries to access a hole, return an error.
|
|
* Because, the callers, functions in dir.c and GC, should be able to know
|
|
* whether this page exists or not.
|
|
*/
|
|
struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
repeat:
|
|
page = get_read_data_page(inode, index, READ_SYNC);
|
|
if (IS_ERR(page))
|
|
return page;
|
|
|
|
/* wait for read completion */
|
|
lock_page(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(-EIO);
|
|
}
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
return page;
|
|
}
|
|
|
|
/*
|
|
* Caller ensures that this data page is never allocated.
|
|
* A new zero-filled data page is allocated in the page cache.
|
|
*
|
|
* Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
|
|
* f2fs_unlock_op().
|
|
* Note that, ipage is set only by make_empty_dir, and if any error occur,
|
|
* ipage should be released by this function.
|
|
*/
|
|
struct page *get_new_data_page(struct inode *inode,
|
|
struct page *ipage, pgoff_t index, bool new_i_size)
|
|
{
|
|
struct address_space *mapping = inode->i_mapping;
|
|
struct page *page;
|
|
struct dnode_of_data dn;
|
|
int err;
|
|
repeat:
|
|
page = grab_cache_page(mapping, index);
|
|
if (!page) {
|
|
/*
|
|
* before exiting, we should make sure ipage will be released
|
|
* if any error occur.
|
|
*/
|
|
f2fs_put_page(ipage, 1);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, NULL, 0);
|
|
err = f2fs_reserve_block(&dn, index);
|
|
if (err) {
|
|
f2fs_put_page(page, 1);
|
|
return ERR_PTR(err);
|
|
}
|
|
if (!ipage)
|
|
f2fs_put_dnode(&dn);
|
|
|
|
if (PageUptodate(page))
|
|
goto got_it;
|
|
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
SetPageUptodate(page);
|
|
} else {
|
|
f2fs_put_page(page, 1);
|
|
|
|
page = get_read_data_page(inode, index, READ_SYNC);
|
|
if (IS_ERR(page))
|
|
goto repeat;
|
|
|
|
/* wait for read completion */
|
|
lock_page(page);
|
|
}
|
|
got_it:
|
|
if (new_i_size &&
|
|
i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
|
|
i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
|
|
/* Only the directory inode sets new_i_size */
|
|
set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
|
|
}
|
|
return page;
|
|
}
|
|
|
|
static int __allocate_data_block(struct dnode_of_data *dn)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(dn->inode);
|
|
struct f2fs_summary sum;
|
|
struct node_info ni;
|
|
int seg = CURSEG_WARM_DATA;
|
|
pgoff_t fofs;
|
|
|
|
if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
|
|
return -EPERM;
|
|
|
|
dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
|
|
if (dn->data_blkaddr == NEW_ADDR)
|
|
goto alloc;
|
|
|
|
if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
|
|
return -ENOSPC;
|
|
|
|
alloc:
|
|
get_node_info(sbi, dn->nid, &ni);
|
|
set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
|
|
|
|
if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
|
|
seg = CURSEG_DIRECT_IO;
|
|
|
|
allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
|
|
&sum, seg);
|
|
set_data_blkaddr(dn);
|
|
|
|
/* update i_size */
|
|
fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
|
|
dn->ofs_in_node;
|
|
if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
|
|
i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
|
|
|
|
/* direct IO doesn't use extent cache to maximize the performance */
|
|
f2fs_drop_largest_extent(dn->inode, fofs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __allocate_data_blocks(struct inode *inode, loff_t offset,
|
|
size_t count)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct dnode_of_data dn;
|
|
u64 start = F2FS_BYTES_TO_BLK(offset);
|
|
u64 len = F2FS_BYTES_TO_BLK(count);
|
|
bool allocated;
|
|
u64 end_offset;
|
|
|
|
while (len) {
|
|
f2fs_balance_fs(sbi);
|
|
f2fs_lock_op(sbi);
|
|
|
|
/* When reading holes, we need its node page */
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
if (get_dnode_of_data(&dn, start, ALLOC_NODE))
|
|
goto out;
|
|
|
|
allocated = false;
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
|
|
|
|
while (dn.ofs_in_node < end_offset && len) {
|
|
block_t blkaddr;
|
|
|
|
blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
|
|
if (__allocate_data_block(&dn))
|
|
goto sync_out;
|
|
allocated = true;
|
|
}
|
|
len--;
|
|
start++;
|
|
dn.ofs_in_node++;
|
|
}
|
|
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
}
|
|
return;
|
|
|
|
sync_out:
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
f2fs_put_dnode(&dn);
|
|
out:
|
|
f2fs_unlock_op(sbi);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
|
|
* f2fs_map_blocks structure.
|
|
* If original data blocks are allocated, then give them to blockdev.
|
|
* Otherwise,
|
|
* a. preallocate requested block addresses
|
|
* b. do not use extent cache for better performance
|
|
* c. give the block addresses to blockdev
|
|
*/
|
|
static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
|
|
int create, int flag)
|
|
{
|
|
unsigned int maxblocks = map->m_len;
|
|
struct dnode_of_data dn;
|
|
int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
|
|
pgoff_t pgofs, end_offset;
|
|
int err = 0, ofs = 1;
|
|
struct extent_info ei;
|
|
bool allocated = false;
|
|
|
|
map->m_len = 0;
|
|
map->m_flags = 0;
|
|
|
|
/* it only supports block size == page size */
|
|
pgofs = (pgoff_t)map->m_lblk;
|
|
|
|
if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
|
|
map->m_pblk = ei.blk + pgofs - ei.fofs;
|
|
map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
|
|
map->m_flags = F2FS_MAP_MAPPED;
|
|
goto out;
|
|
}
|
|
|
|
if (create)
|
|
f2fs_lock_op(F2FS_I_SB(inode));
|
|
|
|
/* When reading holes, we need its node page */
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, pgofs, mode);
|
|
if (err) {
|
|
if (err == -ENOENT)
|
|
err = 0;
|
|
goto unlock_out;
|
|
}
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
if (flag == F2FS_GET_BLOCK_BMAP) {
|
|
err = -ENOENT;
|
|
goto put_out;
|
|
} else if (flag == F2FS_GET_BLOCK_READ ||
|
|
flag == F2FS_GET_BLOCK_DIO) {
|
|
goto put_out;
|
|
}
|
|
/*
|
|
* if it is in fiemap call path (flag = F2FS_GET_BLOCK_FIEMAP),
|
|
* mark it as mapped and unwritten block.
|
|
*/
|
|
}
|
|
|
|
if (dn.data_blkaddr != NULL_ADDR) {
|
|
map->m_flags = F2FS_MAP_MAPPED;
|
|
map->m_pblk = dn.data_blkaddr;
|
|
if (dn.data_blkaddr == NEW_ADDR)
|
|
map->m_flags |= F2FS_MAP_UNWRITTEN;
|
|
} else if (create) {
|
|
err = __allocate_data_block(&dn);
|
|
if (err)
|
|
goto put_out;
|
|
allocated = true;
|
|
map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
|
|
map->m_pblk = dn.data_blkaddr;
|
|
} else {
|
|
if (flag == F2FS_GET_BLOCK_BMAP)
|
|
err = -ENOENT;
|
|
goto put_out;
|
|
}
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
|
|
map->m_len = 1;
|
|
dn.ofs_in_node++;
|
|
pgofs++;
|
|
|
|
get_next:
|
|
if (dn.ofs_in_node >= end_offset) {
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
allocated = false;
|
|
f2fs_put_dnode(&dn);
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, pgofs, mode);
|
|
if (err) {
|
|
if (err == -ENOENT)
|
|
err = 0;
|
|
goto unlock_out;
|
|
}
|
|
|
|
if (dn.data_blkaddr == NEW_ADDR &&
|
|
flag != F2FS_GET_BLOCK_FIEMAP)
|
|
goto put_out;
|
|
|
|
end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
|
|
}
|
|
|
|
if (maxblocks > map->m_len) {
|
|
block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
|
|
if (blkaddr == NULL_ADDR && create) {
|
|
err = __allocate_data_block(&dn);
|
|
if (err)
|
|
goto sync_out;
|
|
allocated = true;
|
|
map->m_flags |= F2FS_MAP_NEW;
|
|
blkaddr = dn.data_blkaddr;
|
|
}
|
|
/* Give more consecutive addresses for the readahead */
|
|
if ((map->m_pblk != NEW_ADDR &&
|
|
blkaddr == (map->m_pblk + ofs)) ||
|
|
(map->m_pblk == NEW_ADDR &&
|
|
blkaddr == NEW_ADDR)) {
|
|
ofs++;
|
|
dn.ofs_in_node++;
|
|
pgofs++;
|
|
map->m_len++;
|
|
goto get_next;
|
|
}
|
|
}
|
|
sync_out:
|
|
if (allocated)
|
|
sync_inode_page(&dn);
|
|
put_out:
|
|
f2fs_put_dnode(&dn);
|
|
unlock_out:
|
|
if (create)
|
|
f2fs_unlock_op(F2FS_I_SB(inode));
|
|
out:
|
|
trace_f2fs_map_blocks(inode, map, err);
|
|
return err;
|
|
}
|
|
|
|
static int __get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh, int create, int flag)
|
|
{
|
|
struct f2fs_map_blocks map;
|
|
int ret;
|
|
|
|
map.m_lblk = iblock;
|
|
map.m_len = bh->b_size >> inode->i_blkbits;
|
|
|
|
ret = f2fs_map_blocks(inode, &map, create, flag);
|
|
if (!ret) {
|
|
map_bh(bh, inode->i_sb, map.m_pblk);
|
|
bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
|
|
bh->b_size = map.m_len << inode->i_blkbits;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int get_data_block(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create, int flag)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create, flag);
|
|
}
|
|
|
|
static int get_data_block_dio(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_DIO);
|
|
}
|
|
|
|
static int get_data_block_bmap(struct inode *inode, sector_t iblock,
|
|
struct buffer_head *bh_result, int create)
|
|
{
|
|
return __get_data_block(inode, iblock, bh_result, create,
|
|
F2FS_GET_BLOCK_BMAP);
|
|
}
|
|
|
|
static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
|
|
{
|
|
return (offset >> inode->i_blkbits);
|
|
}
|
|
|
|
static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
|
|
{
|
|
return (blk << inode->i_blkbits);
|
|
}
|
|
|
|
int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
|
|
u64 start, u64 len)
|
|
{
|
|
struct buffer_head map_bh;
|
|
sector_t start_blk, last_blk;
|
|
loff_t isize = i_size_read(inode);
|
|
u64 logical = 0, phys = 0, size = 0;
|
|
u32 flags = 0;
|
|
bool past_eof = false, whole_file = false;
|
|
int ret = 0;
|
|
|
|
ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
|
|
if (len >= isize) {
|
|
whole_file = true;
|
|
len = isize;
|
|
}
|
|
|
|
if (logical_to_blk(inode, len) == 0)
|
|
len = blk_to_logical(inode, 1);
|
|
|
|
start_blk = logical_to_blk(inode, start);
|
|
last_blk = logical_to_blk(inode, start + len - 1);
|
|
next:
|
|
memset(&map_bh, 0, sizeof(struct buffer_head));
|
|
map_bh.b_size = len;
|
|
|
|
ret = get_data_block(inode, start_blk, &map_bh, 0,
|
|
F2FS_GET_BLOCK_FIEMAP);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* HOLE */
|
|
if (!buffer_mapped(&map_bh)) {
|
|
start_blk++;
|
|
|
|
if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
|
|
past_eof = 1;
|
|
|
|
if (past_eof && size) {
|
|
flags |= FIEMAP_EXTENT_LAST;
|
|
ret = fiemap_fill_next_extent(fieinfo, logical,
|
|
phys, size, flags);
|
|
} else if (size) {
|
|
ret = fiemap_fill_next_extent(fieinfo, logical,
|
|
phys, size, flags);
|
|
size = 0;
|
|
}
|
|
|
|
/* if we have holes up to/past EOF then we're done */
|
|
if (start_blk > last_blk || past_eof || ret)
|
|
goto out;
|
|
} else {
|
|
if (start_blk > last_blk && !whole_file) {
|
|
ret = fiemap_fill_next_extent(fieinfo, logical,
|
|
phys, size, flags);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* if size != 0 then we know we already have an extent
|
|
* to add, so add it.
|
|
*/
|
|
if (size) {
|
|
ret = fiemap_fill_next_extent(fieinfo, logical,
|
|
phys, size, flags);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
logical = blk_to_logical(inode, start_blk);
|
|
phys = blk_to_logical(inode, map_bh.b_blocknr);
|
|
size = map_bh.b_size;
|
|
flags = 0;
|
|
if (buffer_unwritten(&map_bh))
|
|
flags = FIEMAP_EXTENT_UNWRITTEN;
|
|
|
|
start_blk += logical_to_blk(inode, size);
|
|
|
|
/*
|
|
* If we are past the EOF, then we need to make sure as
|
|
* soon as we find a hole that the last extent we found
|
|
* is marked with FIEMAP_EXTENT_LAST
|
|
*/
|
|
if (!past_eof && logical + size >= isize)
|
|
past_eof = true;
|
|
}
|
|
cond_resched();
|
|
if (fatal_signal_pending(current))
|
|
ret = -EINTR;
|
|
else
|
|
goto next;
|
|
out:
|
|
if (ret == 1)
|
|
ret = 0;
|
|
|
|
mutex_unlock(&inode->i_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function was originally taken from fs/mpage.c, and customized for f2fs.
|
|
* Major change was from block_size == page_size in f2fs by default.
|
|
*/
|
|
static int f2fs_mpage_readpages(struct address_space *mapping,
|
|
struct list_head *pages, struct page *page,
|
|
unsigned nr_pages)
|
|
{
|
|
struct bio *bio = NULL;
|
|
unsigned page_idx;
|
|
sector_t last_block_in_bio = 0;
|
|
struct inode *inode = mapping->host;
|
|
const unsigned blkbits = inode->i_blkbits;
|
|
const unsigned blocksize = 1 << blkbits;
|
|
sector_t block_in_file;
|
|
sector_t last_block;
|
|
sector_t last_block_in_file;
|
|
sector_t block_nr;
|
|
struct block_device *bdev = inode->i_sb->s_bdev;
|
|
struct f2fs_map_blocks map;
|
|
|
|
map.m_pblk = 0;
|
|
map.m_lblk = 0;
|
|
map.m_len = 0;
|
|
map.m_flags = 0;
|
|
|
|
for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
|
|
|
|
prefetchw(&page->flags);
|
|
if (pages) {
|
|
page = list_entry(pages->prev, struct page, lru);
|
|
list_del(&page->lru);
|
|
if (add_to_page_cache_lru(page, mapping,
|
|
page->index, GFP_KERNEL))
|
|
goto next_page;
|
|
}
|
|
|
|
block_in_file = (sector_t)page->index;
|
|
last_block = block_in_file + nr_pages;
|
|
last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
|
|
blkbits;
|
|
if (last_block > last_block_in_file)
|
|
last_block = last_block_in_file;
|
|
|
|
/*
|
|
* Map blocks using the previous result first.
|
|
*/
|
|
if ((map.m_flags & F2FS_MAP_MAPPED) &&
|
|
block_in_file > map.m_lblk &&
|
|
block_in_file < (map.m_lblk + map.m_len))
|
|
goto got_it;
|
|
|
|
/*
|
|
* Then do more f2fs_map_blocks() calls until we are
|
|
* done with this page.
|
|
*/
|
|
map.m_flags = 0;
|
|
|
|
if (block_in_file < last_block) {
|
|
map.m_lblk = block_in_file;
|
|
map.m_len = last_block - block_in_file;
|
|
|
|
if (f2fs_map_blocks(inode, &map, 0, false))
|
|
goto set_error_page;
|
|
}
|
|
got_it:
|
|
if ((map.m_flags & F2FS_MAP_MAPPED)) {
|
|
block_nr = map.m_pblk + block_in_file - map.m_lblk;
|
|
SetPageMappedToDisk(page);
|
|
|
|
if (!PageUptodate(page) && !cleancache_get_page(page)) {
|
|
SetPageUptodate(page);
|
|
goto confused;
|
|
}
|
|
} else {
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
SetPageUptodate(page);
|
|
unlock_page(page);
|
|
goto next_page;
|
|
}
|
|
|
|
/*
|
|
* This page will go to BIO. Do we need to send this
|
|
* BIO off first?
|
|
*/
|
|
if (bio && (last_block_in_bio != block_nr - 1)) {
|
|
submit_and_realloc:
|
|
submit_bio(READ, bio);
|
|
bio = NULL;
|
|
}
|
|
if (bio == NULL) {
|
|
struct f2fs_crypto_ctx *ctx = NULL;
|
|
|
|
if (f2fs_encrypted_inode(inode) &&
|
|
S_ISREG(inode->i_mode)) {
|
|
struct page *cpage;
|
|
|
|
ctx = f2fs_get_crypto_ctx(inode);
|
|
if (IS_ERR(ctx))
|
|
goto set_error_page;
|
|
|
|
/* wait the page to be moved by cleaning */
|
|
cpage = find_lock_page(
|
|
META_MAPPING(F2FS_I_SB(inode)),
|
|
block_nr);
|
|
if (cpage) {
|
|
f2fs_wait_on_page_writeback(cpage,
|
|
DATA);
|
|
f2fs_put_page(cpage, 1);
|
|
}
|
|
}
|
|
|
|
bio = bio_alloc(GFP_KERNEL,
|
|
min_t(int, nr_pages, BIO_MAX_PAGES));
|
|
if (!bio) {
|
|
if (ctx)
|
|
f2fs_release_crypto_ctx(ctx);
|
|
goto set_error_page;
|
|
}
|
|
bio->bi_bdev = bdev;
|
|
bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
|
|
bio->bi_end_io = f2fs_read_end_io;
|
|
bio->bi_private = ctx;
|
|
}
|
|
|
|
if (bio_add_page(bio, page, blocksize, 0) < blocksize)
|
|
goto submit_and_realloc;
|
|
|
|
last_block_in_bio = block_nr;
|
|
goto next_page;
|
|
set_error_page:
|
|
SetPageError(page);
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
unlock_page(page);
|
|
goto next_page;
|
|
confused:
|
|
if (bio) {
|
|
submit_bio(READ, bio);
|
|
bio = NULL;
|
|
}
|
|
unlock_page(page);
|
|
next_page:
|
|
if (pages)
|
|
page_cache_release(page);
|
|
}
|
|
BUG_ON(pages && !list_empty(pages));
|
|
if (bio)
|
|
submit_bio(READ, bio);
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_read_data_page(struct file *file, struct page *page)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
int ret = -EAGAIN;
|
|
|
|
trace_f2fs_readpage(page, DATA);
|
|
|
|
/* If the file has inline data, try to read it directly */
|
|
if (f2fs_has_inline_data(inode))
|
|
ret = f2fs_read_inline_data(inode, page);
|
|
if (ret == -EAGAIN)
|
|
ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_read_data_pages(struct file *file,
|
|
struct address_space *mapping,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
|
|
/* If the file has inline data, skip readpages */
|
|
if (f2fs_has_inline_data(inode))
|
|
return 0;
|
|
|
|
return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
|
|
}
|
|
|
|
int do_write_data_page(struct f2fs_io_info *fio)
|
|
{
|
|
struct page *page = fio->page;
|
|
struct inode *inode = page->mapping->host;
|
|
struct dnode_of_data dn;
|
|
int err = 0;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
|
|
if (err)
|
|
return err;
|
|
|
|
fio->blk_addr = dn.data_blkaddr;
|
|
|
|
/* This page is already truncated */
|
|
if (fio->blk_addr == NULL_ADDR) {
|
|
ClearPageUptodate(page);
|
|
goto out_writepage;
|
|
}
|
|
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
|
|
fio->encrypted_page = f2fs_encrypt(inode, fio->page);
|
|
if (IS_ERR(fio->encrypted_page)) {
|
|
err = PTR_ERR(fio->encrypted_page);
|
|
goto out_writepage;
|
|
}
|
|
}
|
|
|
|
set_page_writeback(page);
|
|
|
|
/*
|
|
* If current allocation needs SSR,
|
|
* it had better in-place writes for updated data.
|
|
*/
|
|
if (unlikely(fio->blk_addr != NEW_ADDR &&
|
|
!is_cold_data(page) &&
|
|
need_inplace_update(inode))) {
|
|
rewrite_data_page(fio);
|
|
set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
|
|
trace_f2fs_do_write_data_page(page, IPU);
|
|
} else {
|
|
write_data_page(&dn, fio);
|
|
set_data_blkaddr(&dn);
|
|
f2fs_update_extent_cache(&dn);
|
|
trace_f2fs_do_write_data_page(page, OPU);
|
|
set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
|
|
if (page->index == 0)
|
|
set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
|
|
}
|
|
out_writepage:
|
|
f2fs_put_dnode(&dn);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_data_page(struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
loff_t i_size = i_size_read(inode);
|
|
const pgoff_t end_index = ((unsigned long long) i_size)
|
|
>> PAGE_CACHE_SHIFT;
|
|
unsigned offset = 0;
|
|
bool need_balance_fs = false;
|
|
int err = 0;
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = DATA,
|
|
.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
};
|
|
|
|
trace_f2fs_writepage(page, DATA);
|
|
|
|
if (page->index < end_index)
|
|
goto write;
|
|
|
|
/*
|
|
* If the offset is out-of-range of file size,
|
|
* this page does not have to be written to disk.
|
|
*/
|
|
offset = i_size & (PAGE_CACHE_SIZE - 1);
|
|
if ((page->index >= end_index + 1) || !offset)
|
|
goto out;
|
|
|
|
zero_user_segment(page, offset, PAGE_CACHE_SIZE);
|
|
write:
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto redirty_out;
|
|
if (f2fs_is_drop_cache(inode))
|
|
goto out;
|
|
if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
|
|
available_free_memory(sbi, BASE_CHECK))
|
|
goto redirty_out;
|
|
|
|
/* Dentry blocks are controlled by checkpoint */
|
|
if (S_ISDIR(inode->i_mode)) {
|
|
if (unlikely(f2fs_cp_error(sbi)))
|
|
goto redirty_out;
|
|
err = do_write_data_page(&fio);
|
|
goto done;
|
|
}
|
|
|
|
/* we should bypass data pages to proceed the kworkder jobs */
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
SetPageError(page);
|
|
goto out;
|
|
}
|
|
|
|
if (!wbc->for_reclaim)
|
|
need_balance_fs = true;
|
|
else if (has_not_enough_free_secs(sbi, 0))
|
|
goto redirty_out;
|
|
|
|
err = -EAGAIN;
|
|
f2fs_lock_op(sbi);
|
|
if (f2fs_has_inline_data(inode))
|
|
err = f2fs_write_inline_data(inode, page);
|
|
if (err == -EAGAIN)
|
|
err = do_write_data_page(&fio);
|
|
f2fs_unlock_op(sbi);
|
|
done:
|
|
if (err && err != -ENOENT)
|
|
goto redirty_out;
|
|
|
|
clear_cold_data(page);
|
|
out:
|
|
inode_dec_dirty_pages(inode);
|
|
if (err)
|
|
ClearPageUptodate(page);
|
|
unlock_page(page);
|
|
if (need_balance_fs)
|
|
f2fs_balance_fs(sbi);
|
|
if (wbc->for_reclaim)
|
|
f2fs_submit_merged_bio(sbi, DATA, WRITE);
|
|
return 0;
|
|
|
|
redirty_out:
|
|
redirty_page_for_writepage(wbc, page);
|
|
return AOP_WRITEPAGE_ACTIVATE;
|
|
}
|
|
|
|
static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
|
|
void *data)
|
|
{
|
|
struct address_space *mapping = data;
|
|
int ret = mapping->a_ops->writepage(page, wbc);
|
|
mapping_set_error(mapping, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function was copied from write_cche_pages from mm/page-writeback.c.
|
|
* The major change is making write step of cold data page separately from
|
|
* warm/hot data page.
|
|
*/
|
|
static int f2fs_write_cache_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc, writepage_t writepage,
|
|
void *data)
|
|
{
|
|
int ret = 0;
|
|
int done = 0;
|
|
struct pagevec pvec;
|
|
int nr_pages;
|
|
pgoff_t uninitialized_var(writeback_index);
|
|
pgoff_t index;
|
|
pgoff_t end; /* Inclusive */
|
|
pgoff_t done_index;
|
|
int cycled;
|
|
int range_whole = 0;
|
|
int tag;
|
|
int step = 0;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
next:
|
|
if (wbc->range_cyclic) {
|
|
writeback_index = mapping->writeback_index; /* prev offset */
|
|
index = writeback_index;
|
|
if (index == 0)
|
|
cycled = 1;
|
|
else
|
|
cycled = 0;
|
|
end = -1;
|
|
} else {
|
|
index = wbc->range_start >> PAGE_CACHE_SHIFT;
|
|
end = wbc->range_end >> PAGE_CACHE_SHIFT;
|
|
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
|
|
range_whole = 1;
|
|
cycled = 1; /* ignore range_cyclic tests */
|
|
}
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag = PAGECACHE_TAG_TOWRITE;
|
|
else
|
|
tag = PAGECACHE_TAG_DIRTY;
|
|
retry:
|
|
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
|
|
tag_pages_for_writeback(mapping, index, end);
|
|
done_index = index;
|
|
while (!done && (index <= end)) {
|
|
int i;
|
|
|
|
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
|
|
if (nr_pages == 0)
|
|
break;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
|
|
if (page->index > end) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
done_index = page->index;
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != mapping)) {
|
|
continue_unlock:
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
/* someone wrote it for us */
|
|
goto continue_unlock;
|
|
}
|
|
|
|
if (step == is_cold_data(page))
|
|
goto continue_unlock;
|
|
|
|
if (PageWriteback(page)) {
|
|
if (wbc->sync_mode != WB_SYNC_NONE)
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
else
|
|
goto continue_unlock;
|
|
}
|
|
|
|
BUG_ON(PageWriteback(page));
|
|
if (!clear_page_dirty_for_io(page))
|
|
goto continue_unlock;
|
|
|
|
ret = (*writepage)(page, wbc, data);
|
|
if (unlikely(ret)) {
|
|
if (ret == AOP_WRITEPAGE_ACTIVATE) {
|
|
unlock_page(page);
|
|
ret = 0;
|
|
} else {
|
|
done_index = page->index + 1;
|
|
done = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (--wbc->nr_to_write <= 0 &&
|
|
wbc->sync_mode == WB_SYNC_NONE) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
}
|
|
pagevec_release(&pvec);
|
|
cond_resched();
|
|
}
|
|
|
|
if (step < 1) {
|
|
step++;
|
|
goto next;
|
|
}
|
|
|
|
if (!cycled && !done) {
|
|
cycled = 1;
|
|
index = 0;
|
|
end = writeback_index - 1;
|
|
goto retry;
|
|
}
|
|
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
|
|
mapping->writeback_index = done_index;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_write_data_pages(struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
bool locked = false;
|
|
int ret;
|
|
long diff;
|
|
|
|
trace_f2fs_writepages(mapping->host, wbc, DATA);
|
|
|
|
/* deal with chardevs and other special file */
|
|
if (!mapping->a_ops->writepage)
|
|
return 0;
|
|
|
|
/* skip writing if there is no dirty page in this inode */
|
|
if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
|
|
return 0;
|
|
|
|
if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
|
|
get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
|
|
available_free_memory(sbi, DIRTY_DENTS))
|
|
goto skip_write;
|
|
|
|
/* during POR, we don't need to trigger writepage at all. */
|
|
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
|
|
goto skip_write;
|
|
|
|
diff = nr_pages_to_write(sbi, DATA, wbc);
|
|
|
|
if (!S_ISDIR(inode->i_mode)) {
|
|
mutex_lock(&sbi->writepages);
|
|
locked = true;
|
|
}
|
|
ret = f2fs_write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
|
|
f2fs_submit_merged_bio(sbi, DATA, WRITE);
|
|
if (locked)
|
|
mutex_unlock(&sbi->writepages);
|
|
|
|
remove_dirty_dir_inode(inode);
|
|
|
|
wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
|
|
return ret;
|
|
|
|
skip_write:
|
|
wbc->pages_skipped += get_dirty_pages(inode);
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_write_failed(struct address_space *mapping, loff_t to)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
if (to > inode->i_size) {
|
|
truncate_pagecache(inode, inode->i_size);
|
|
truncate_blocks(inode, inode->i_size, true);
|
|
}
|
|
}
|
|
|
|
static int f2fs_write_begin(struct file *file, struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned flags,
|
|
struct page **pagep, void **fsdata)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct page *page = NULL;
|
|
struct page *ipage;
|
|
pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
|
|
struct dnode_of_data dn;
|
|
int err = 0;
|
|
|
|
trace_f2fs_write_begin(inode, pos, len, flags);
|
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
/*
|
|
* We should check this at this moment to avoid deadlock on inode page
|
|
* and #0 page. The locking rule for inline_data conversion should be:
|
|
* lock_page(page #0) -> lock_page(inode_page)
|
|
*/
|
|
if (index != 0) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
repeat:
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page) {
|
|
err = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
*pagep = page;
|
|
|
|
f2fs_lock_op(sbi);
|
|
|
|
/* check inline_data */
|
|
ipage = get_node_page(sbi, inode->i_ino);
|
|
if (IS_ERR(ipage)) {
|
|
err = PTR_ERR(ipage);
|
|
goto unlock_fail;
|
|
}
|
|
|
|
set_new_dnode(&dn, inode, ipage, ipage, 0);
|
|
|
|
if (f2fs_has_inline_data(inode)) {
|
|
if (pos + len <= MAX_INLINE_DATA) {
|
|
read_inline_data(page, ipage);
|
|
set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
|
|
sync_inode_page(&dn);
|
|
goto put_next;
|
|
}
|
|
err = f2fs_convert_inline_page(&dn, page);
|
|
if (err)
|
|
goto put_fail;
|
|
}
|
|
|
|
err = f2fs_get_block(&dn, index);
|
|
if (err)
|
|
goto put_fail;
|
|
put_next:
|
|
f2fs_put_dnode(&dn);
|
|
f2fs_unlock_op(sbi);
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA);
|
|
|
|
if (len == PAGE_CACHE_SIZE)
|
|
goto out_update;
|
|
if (PageUptodate(page))
|
|
goto out_clear;
|
|
|
|
if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
|
|
unsigned start = pos & (PAGE_CACHE_SIZE - 1);
|
|
unsigned end = start + len;
|
|
|
|
/* Reading beyond i_size is simple: memset to zero */
|
|
zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
|
|
goto out_update;
|
|
}
|
|
|
|
if (dn.data_blkaddr == NEW_ADDR) {
|
|
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
|
|
} else {
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.type = DATA,
|
|
.rw = READ_SYNC,
|
|
.blk_addr = dn.data_blkaddr,
|
|
.page = page,
|
|
.encrypted_page = NULL,
|
|
};
|
|
err = f2fs_submit_page_bio(&fio);
|
|
if (err)
|
|
goto fail;
|
|
|
|
lock_page(page);
|
|
if (unlikely(!PageUptodate(page))) {
|
|
err = -EIO;
|
|
goto fail;
|
|
}
|
|
if (unlikely(page->mapping != mapping)) {
|
|
f2fs_put_page(page, 1);
|
|
goto repeat;
|
|
}
|
|
|
|
/* avoid symlink page */
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
|
|
err = f2fs_decrypt_one(inode, page);
|
|
if (err)
|
|
goto fail;
|
|
}
|
|
}
|
|
out_update:
|
|
SetPageUptodate(page);
|
|
out_clear:
|
|
clear_cold_data(page);
|
|
return 0;
|
|
|
|
put_fail:
|
|
f2fs_put_dnode(&dn);
|
|
unlock_fail:
|
|
f2fs_unlock_op(sbi);
|
|
fail:
|
|
f2fs_put_page(page, 1);
|
|
f2fs_write_failed(mapping, pos + len);
|
|
return err;
|
|
}
|
|
|
|
static int f2fs_write_end(struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos, unsigned len, unsigned copied,
|
|
struct page *page, void *fsdata)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
|
|
trace_f2fs_write_end(inode, pos, len, copied);
|
|
|
|
set_page_dirty(page);
|
|
|
|
if (pos + copied > i_size_read(inode)) {
|
|
i_size_write(inode, pos + copied);
|
|
mark_inode_dirty(inode);
|
|
update_inode_page(inode);
|
|
}
|
|
|
|
f2fs_put_page(page, 1);
|
|
return copied;
|
|
}
|
|
|
|
static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
|
|
|
|
if (offset & blocksize_mask)
|
|
return -EINVAL;
|
|
|
|
if (iov_iter_alignment(iter) & blocksize_mask)
|
|
return -EINVAL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct address_space *mapping = file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
size_t count = iov_iter_count(iter);
|
|
int err;
|
|
|
|
/* we don't need to use inline_data strictly */
|
|
if (f2fs_has_inline_data(inode)) {
|
|
err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
|
|
return 0;
|
|
|
|
err = check_direct_IO(inode, iter, offset);
|
|
if (err)
|
|
return err;
|
|
|
|
trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
|
|
|
|
if (iov_iter_rw(iter) == WRITE)
|
|
__allocate_data_blocks(inode, offset, count);
|
|
|
|
err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
|
|
if (err < 0 && iov_iter_rw(iter) == WRITE)
|
|
f2fs_write_failed(mapping, offset + count);
|
|
|
|
trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
|
|
|
|
return err;
|
|
}
|
|
|
|
void f2fs_invalidate_page(struct page *page, unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
|
|
if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
|
|
(offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
|
|
return;
|
|
|
|
if (PageDirty(page)) {
|
|
if (inode->i_ino == F2FS_META_INO(sbi))
|
|
dec_page_count(sbi, F2FS_DIRTY_META);
|
|
else if (inode->i_ino == F2FS_NODE_INO(sbi))
|
|
dec_page_count(sbi, F2FS_DIRTY_NODES);
|
|
else
|
|
inode_dec_dirty_pages(inode);
|
|
}
|
|
|
|
/* This is atomic written page, keep Private */
|
|
if (IS_ATOMIC_WRITTEN_PAGE(page))
|
|
return;
|
|
|
|
ClearPagePrivate(page);
|
|
}
|
|
|
|
int f2fs_release_page(struct page *page, gfp_t wait)
|
|
{
|
|
/* If this is dirty page, keep PagePrivate */
|
|
if (PageDirty(page))
|
|
return 0;
|
|
|
|
/* This is atomic written page, keep Private */
|
|
if (IS_ATOMIC_WRITTEN_PAGE(page))
|
|
return 0;
|
|
|
|
ClearPagePrivate(page);
|
|
return 1;
|
|
}
|
|
|
|
static int f2fs_set_data_page_dirty(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode = mapping->host;
|
|
|
|
trace_f2fs_set_page_dirty(page, DATA);
|
|
|
|
SetPageUptodate(page);
|
|
|
|
if (f2fs_is_atomic_file(inode)) {
|
|
if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
|
|
register_inmem_page(inode, page);
|
|
return 1;
|
|
}
|
|
/*
|
|
* Previously, this page has been registered, we just
|
|
* return here.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (!PageDirty(page)) {
|
|
__set_page_dirty_nobuffers(page);
|
|
update_dirty_page(inode, page);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
|
|
/* we don't need to use inline_data strictly */
|
|
if (f2fs_has_inline_data(inode)) {
|
|
int err = f2fs_convert_inline_inode(inode);
|
|
if (err)
|
|
return err;
|
|
}
|
|
return generic_block_bmap(mapping, block, get_data_block_bmap);
|
|
}
|
|
|
|
const struct address_space_operations f2fs_dblock_aops = {
|
|
.readpage = f2fs_read_data_page,
|
|
.readpages = f2fs_read_data_pages,
|
|
.writepage = f2fs_write_data_page,
|
|
.writepages = f2fs_write_data_pages,
|
|
.write_begin = f2fs_write_begin,
|
|
.write_end = f2fs_write_end,
|
|
.set_page_dirty = f2fs_set_data_page_dirty,
|
|
.invalidatepage = f2fs_invalidate_page,
|
|
.releasepage = f2fs_release_page,
|
|
.direct_IO = f2fs_direct_IO,
|
|
.bmap = f2fs_bmap,
|
|
};
|