mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 06:06:09 +07:00
2923b27e54
* memory_failure() gets confused by dev_pagemap backed mappings. The recovery code has specific enabling for several possible page states that needs new enabling to handle poison in dax mappings. Teach memory_failure() about ZONE_DEVICE pages. -----BEGIN PGP SIGNATURE----- iQIzBAABCAAdFiEE5DAy15EJMCV1R6v9YGjFFmlTOEoFAlt9ui8ACgkQYGjFFmlT OEpNRw//XGj9s7sezfJFeol4psJlRUd935yii/gmJRgi/yPf2VxxQG9qyM6SMBUc 75jASfOL6FSsfxHz0kplyWzMDNdrTkNNAD+9rv80FmY7GqWgcas9DaJX7jZ994vI 5SRO7pfvNZcXlo7IhqZippDw3yxkIU9Ufi0YQKaEUm7GFieptvCZ0p9x3VYfdvwM BExrxQe0X1XUF4xErp5P78+WUbKxP47DLcucRDig8Q7dmHELUdyNzo3E1SVoc7m+ 3CmvyTj6XuFQgOZw7ZKun1BJYfx/eD5ZlRJLZbx6wJHRtTXv/Uea8mZ8mJ31ykN9 F7QVd0Pmlyxys8lcXfK+nvpL09QBE0/PhwWKjmZBoU8AdgP/ZvBXLDL/D6YuMTg6 T4wwtPNJorfV4lVD06OliFkVI4qbKbmNsfRq43Ns7PCaLueu4U/eMaSwSH99UMaZ MGbO140XW2RZsHiU9yTRUmZq73AplePEjxtzR8oHmnjo45nPDPy8mucWPlkT9kXA oUFMhgiviK7dOo19H4eaPJGqLmHM93+x5tpYxGqTr0dUOXUadKWxMsTnkID+8Yi7 /kzQWCFvySz3VhiEHGuWkW08GZT6aCcpkREDomnRh4MEnETlZI8bblcuXYOCLs6c nNf1SIMtLdlsl7U1fEX89PNeQQ2y237vEDhFQZftaalPeu/JJV0= =Ftop -----END PGP SIGNATURE----- Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm memory-failure update from Dave Jiang: "As it stands, memory_failure() gets thoroughly confused by dev_pagemap backed mappings. The recovery code has specific enabling for several possible page states and needs new enabling to handle poison in dax mappings. In order to support reliable reverse mapping of user space addresses: 1/ Add new locking in the memory_failure() rmap path to prevent races that would typically be handled by the page lock. 2/ Since dev_pagemap pages are hidden from the page allocator and the "compound page" accounting machinery, add a mechanism to determine the size of the mapping that encompasses a given poisoned pfn. 3/ Given pmem errors can be repaired, change the speculatively accessed poison protection, mce_unmap_kpfn(), to be reversible and otherwise allow ongoing access from the kernel. A side effect of this enabling is that MADV_HWPOISON becomes usable for dax mappings, however the primary motivation is to allow the system to survive userspace consumption of hardware-poison via dax. Specifically the current behavior is: mce: Uncorrected hardware memory error in user-access at af34214200 {1}[Hardware Error]: It has been corrected by h/w and requires no further action mce: [Hardware Error]: Machine check events logged {1}[Hardware Error]: event severity: corrected Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users [..] Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed mce: Memory error not recovered <reboot> ...and with these changes: Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000 Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption Memory failure: 0x20cb00: recovery action for dax page: Recovered Given all the cross dependencies I propose taking this through nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax folks" * tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm: libnvdimm, pmem: Restore page attributes when clearing errors x86/memory_failure: Introduce {set, clear}_mce_nospec() x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses mm, memory_failure: Teach memory_failure() about dev_pagemap pages filesystem-dax: Introduce dax_lock_mapping_entry() mm, memory_failure: Collect mapping size in collect_procs() mm, madvise_inject_error: Let memory_failure() optionally take a page reference mm, dev_pagemap: Do not clear ->mapping on final put mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages filesystem-dax: Set page->index device-dax: Set page->index device-dax: Enable page_mapping() device-dax: Convert to vmf_insert_mixed and vm_fault_t
1820 lines
49 KiB
C
1820 lines
49 KiB
C
/*
|
|
* fs/dax.c - Direct Access filesystem code
|
|
* Copyright (c) 2013-2014 Intel Corporation
|
|
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
|
|
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*/
|
|
|
|
#include <linux/atomic.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/buffer_head.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/iomap.h>
|
|
#include "internal.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/fs_dax.h>
|
|
|
|
/* We choose 4096 entries - same as per-zone page wait tables */
|
|
#define DAX_WAIT_TABLE_BITS 12
|
|
#define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
|
|
|
|
/* The 'colour' (ie low bits) within a PMD of a page offset. */
|
|
#define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1)
|
|
#define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT)
|
|
|
|
static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
|
|
|
|
static int __init init_dax_wait_table(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
|
|
init_waitqueue_head(wait_table + i);
|
|
return 0;
|
|
}
|
|
fs_initcall(init_dax_wait_table);
|
|
|
|
/*
|
|
* We use lowest available bit in exceptional entry for locking, one bit for
|
|
* the entry size (PMD) and two more to tell us if the entry is a zero page or
|
|
* an empty entry that is just used for locking. In total four special bits.
|
|
*
|
|
* If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
|
|
* and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
|
|
* block allocation.
|
|
*/
|
|
#define RADIX_DAX_SHIFT (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
|
|
#define RADIX_DAX_ENTRY_LOCK (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
|
|
#define RADIX_DAX_PMD (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
|
|
#define RADIX_DAX_ZERO_PAGE (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
|
|
#define RADIX_DAX_EMPTY (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
|
|
|
|
static unsigned long dax_radix_pfn(void *entry)
|
|
{
|
|
return (unsigned long)entry >> RADIX_DAX_SHIFT;
|
|
}
|
|
|
|
static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
|
|
{
|
|
return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
|
|
(pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
|
|
}
|
|
|
|
static unsigned int dax_radix_order(void *entry)
|
|
{
|
|
if ((unsigned long)entry & RADIX_DAX_PMD)
|
|
return PMD_SHIFT - PAGE_SHIFT;
|
|
return 0;
|
|
}
|
|
|
|
static int dax_is_pmd_entry(void *entry)
|
|
{
|
|
return (unsigned long)entry & RADIX_DAX_PMD;
|
|
}
|
|
|
|
static int dax_is_pte_entry(void *entry)
|
|
{
|
|
return !((unsigned long)entry & RADIX_DAX_PMD);
|
|
}
|
|
|
|
static int dax_is_zero_entry(void *entry)
|
|
{
|
|
return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
|
|
}
|
|
|
|
static int dax_is_empty_entry(void *entry)
|
|
{
|
|
return (unsigned long)entry & RADIX_DAX_EMPTY;
|
|
}
|
|
|
|
/*
|
|
* DAX radix tree locking
|
|
*/
|
|
struct exceptional_entry_key {
|
|
struct address_space *mapping;
|
|
pgoff_t entry_start;
|
|
};
|
|
|
|
struct wait_exceptional_entry_queue {
|
|
wait_queue_entry_t wait;
|
|
struct exceptional_entry_key key;
|
|
};
|
|
|
|
static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
|
|
pgoff_t index, void *entry, struct exceptional_entry_key *key)
|
|
{
|
|
unsigned long hash;
|
|
|
|
/*
|
|
* If 'entry' is a PMD, align the 'index' that we use for the wait
|
|
* queue to the start of that PMD. This ensures that all offsets in
|
|
* the range covered by the PMD map to the same bit lock.
|
|
*/
|
|
if (dax_is_pmd_entry(entry))
|
|
index &= ~PG_PMD_COLOUR;
|
|
|
|
key->mapping = mapping;
|
|
key->entry_start = index;
|
|
|
|
hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
|
|
return wait_table + hash;
|
|
}
|
|
|
|
static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
|
|
int sync, void *keyp)
|
|
{
|
|
struct exceptional_entry_key *key = keyp;
|
|
struct wait_exceptional_entry_queue *ewait =
|
|
container_of(wait, struct wait_exceptional_entry_queue, wait);
|
|
|
|
if (key->mapping != ewait->key.mapping ||
|
|
key->entry_start != ewait->key.entry_start)
|
|
return 0;
|
|
return autoremove_wake_function(wait, mode, sync, NULL);
|
|
}
|
|
|
|
/*
|
|
* @entry may no longer be the entry at the index in the mapping.
|
|
* The important information it's conveying is whether the entry at
|
|
* this index used to be a PMD entry.
|
|
*/
|
|
static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
|
|
pgoff_t index, void *entry, bool wake_all)
|
|
{
|
|
struct exceptional_entry_key key;
|
|
wait_queue_head_t *wq;
|
|
|
|
wq = dax_entry_waitqueue(mapping, index, entry, &key);
|
|
|
|
/*
|
|
* Checking for locked entry and prepare_to_wait_exclusive() happens
|
|
* under the i_pages lock, ditto for entry handling in our callers.
|
|
* So at this point all tasks that could have seen our entry locked
|
|
* must be in the waitqueue and the following check will see them.
|
|
*/
|
|
if (waitqueue_active(wq))
|
|
__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
|
|
}
|
|
|
|
/*
|
|
* Check whether the given slot is locked. Must be called with the i_pages
|
|
* lock held.
|
|
*/
|
|
static inline int slot_locked(struct address_space *mapping, void **slot)
|
|
{
|
|
unsigned long entry = (unsigned long)
|
|
radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
|
|
return entry & RADIX_DAX_ENTRY_LOCK;
|
|
}
|
|
|
|
/*
|
|
* Mark the given slot as locked. Must be called with the i_pages lock held.
|
|
*/
|
|
static inline void *lock_slot(struct address_space *mapping, void **slot)
|
|
{
|
|
unsigned long entry = (unsigned long)
|
|
radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
|
|
|
|
entry |= RADIX_DAX_ENTRY_LOCK;
|
|
radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
|
|
return (void *)entry;
|
|
}
|
|
|
|
/*
|
|
* Mark the given slot as unlocked. Must be called with the i_pages lock held.
|
|
*/
|
|
static inline void *unlock_slot(struct address_space *mapping, void **slot)
|
|
{
|
|
unsigned long entry = (unsigned long)
|
|
radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
|
|
|
|
entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
|
|
radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
|
|
return (void *)entry;
|
|
}
|
|
|
|
/*
|
|
* Lookup entry in radix tree, wait for it to become unlocked if it is
|
|
* exceptional entry and return it. The caller must call
|
|
* put_unlocked_mapping_entry() when he decided not to lock the entry or
|
|
* put_locked_mapping_entry() when he locked the entry and now wants to
|
|
* unlock it.
|
|
*
|
|
* Must be called with the i_pages lock held.
|
|
*/
|
|
static void *__get_unlocked_mapping_entry(struct address_space *mapping,
|
|
pgoff_t index, void ***slotp, bool (*wait_fn)(void))
|
|
{
|
|
void *entry, **slot;
|
|
struct wait_exceptional_entry_queue ewait;
|
|
wait_queue_head_t *wq;
|
|
|
|
init_wait(&ewait.wait);
|
|
ewait.wait.func = wake_exceptional_entry_func;
|
|
|
|
for (;;) {
|
|
bool revalidate;
|
|
|
|
entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
|
|
&slot);
|
|
if (!entry ||
|
|
WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
|
|
!slot_locked(mapping, slot)) {
|
|
if (slotp)
|
|
*slotp = slot;
|
|
return entry;
|
|
}
|
|
|
|
wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
|
|
prepare_to_wait_exclusive(wq, &ewait.wait,
|
|
TASK_UNINTERRUPTIBLE);
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
revalidate = wait_fn();
|
|
finish_wait(wq, &ewait.wait);
|
|
xa_lock_irq(&mapping->i_pages);
|
|
if (revalidate)
|
|
return ERR_PTR(-EAGAIN);
|
|
}
|
|
}
|
|
|
|
static bool entry_wait(void)
|
|
{
|
|
schedule();
|
|
/*
|
|
* Never return an ERR_PTR() from
|
|
* __get_unlocked_mapping_entry(), just keep looping.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
static void *get_unlocked_mapping_entry(struct address_space *mapping,
|
|
pgoff_t index, void ***slotp)
|
|
{
|
|
return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
|
|
}
|
|
|
|
static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
|
|
{
|
|
void *entry, **slot;
|
|
|
|
xa_lock_irq(&mapping->i_pages);
|
|
entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
|
|
if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
|
|
!slot_locked(mapping, slot))) {
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
return;
|
|
}
|
|
unlock_slot(mapping, slot);
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
dax_wake_mapping_entry_waiter(mapping, index, entry, false);
|
|
}
|
|
|
|
static void put_locked_mapping_entry(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
unlock_mapping_entry(mapping, index);
|
|
}
|
|
|
|
/*
|
|
* Called when we are done with radix tree entry we looked up via
|
|
* get_unlocked_mapping_entry() and which we didn't lock in the end.
|
|
*/
|
|
static void put_unlocked_mapping_entry(struct address_space *mapping,
|
|
pgoff_t index, void *entry)
|
|
{
|
|
if (!entry)
|
|
return;
|
|
|
|
/* We have to wake up next waiter for the radix tree entry lock */
|
|
dax_wake_mapping_entry_waiter(mapping, index, entry, false);
|
|
}
|
|
|
|
static unsigned long dax_entry_size(void *entry)
|
|
{
|
|
if (dax_is_zero_entry(entry))
|
|
return 0;
|
|
else if (dax_is_empty_entry(entry))
|
|
return 0;
|
|
else if (dax_is_pmd_entry(entry))
|
|
return PMD_SIZE;
|
|
else
|
|
return PAGE_SIZE;
|
|
}
|
|
|
|
static unsigned long dax_radix_end_pfn(void *entry)
|
|
{
|
|
return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Iterate through all mapped pfns represented by an entry, i.e. skip
|
|
* 'empty' and 'zero' entries.
|
|
*/
|
|
#define for_each_mapped_pfn(entry, pfn) \
|
|
for (pfn = dax_radix_pfn(entry); \
|
|
pfn < dax_radix_end_pfn(entry); pfn++)
|
|
|
|
/*
|
|
* TODO: for reflink+dax we need a way to associate a single page with
|
|
* multiple address_space instances at different linear_page_index()
|
|
* offsets.
|
|
*/
|
|
static void dax_associate_entry(void *entry, struct address_space *mapping,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
unsigned long size = dax_entry_size(entry), pfn, index;
|
|
int i = 0;
|
|
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return;
|
|
|
|
index = linear_page_index(vma, address & ~(size - 1));
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
WARN_ON_ONCE(page->mapping);
|
|
page->mapping = mapping;
|
|
page->index = index + i++;
|
|
}
|
|
}
|
|
|
|
static void dax_disassociate_entry(void *entry, struct address_space *mapping,
|
|
bool trunc)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return;
|
|
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
|
|
WARN_ON_ONCE(page->mapping && page->mapping != mapping);
|
|
page->mapping = NULL;
|
|
page->index = 0;
|
|
}
|
|
}
|
|
|
|
static struct page *dax_busy_page(void *entry)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for_each_mapped_pfn(entry, pfn) {
|
|
struct page *page = pfn_to_page(pfn);
|
|
|
|
if (page_ref_count(page) > 1)
|
|
return page;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool entry_wait_revalidate(void)
|
|
{
|
|
rcu_read_unlock();
|
|
schedule();
|
|
rcu_read_lock();
|
|
|
|
/*
|
|
* Tell __get_unlocked_mapping_entry() to take a break, we need
|
|
* to revalidate page->mapping after dropping locks
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
bool dax_lock_mapping_entry(struct page *page)
|
|
{
|
|
pgoff_t index;
|
|
struct inode *inode;
|
|
bool did_lock = false;
|
|
void *entry = NULL, **slot;
|
|
struct address_space *mapping;
|
|
|
|
rcu_read_lock();
|
|
for (;;) {
|
|
mapping = READ_ONCE(page->mapping);
|
|
|
|
if (!dax_mapping(mapping))
|
|
break;
|
|
|
|
/*
|
|
* In the device-dax case there's no need to lock, a
|
|
* struct dev_pagemap pin is sufficient to keep the
|
|
* inode alive, and we assume we have dev_pagemap pin
|
|
* otherwise we would not have a valid pfn_to_page()
|
|
* translation.
|
|
*/
|
|
inode = mapping->host;
|
|
if (S_ISCHR(inode->i_mode)) {
|
|
did_lock = true;
|
|
break;
|
|
}
|
|
|
|
xa_lock_irq(&mapping->i_pages);
|
|
if (mapping != page->mapping) {
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
continue;
|
|
}
|
|
index = page->index;
|
|
|
|
entry = __get_unlocked_mapping_entry(mapping, index, &slot,
|
|
entry_wait_revalidate);
|
|
if (!entry) {
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
break;
|
|
} else if (IS_ERR(entry)) {
|
|
WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
|
|
continue;
|
|
}
|
|
lock_slot(mapping, slot);
|
|
did_lock = true;
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return did_lock;
|
|
}
|
|
|
|
void dax_unlock_mapping_entry(struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode = mapping->host;
|
|
|
|
if (S_ISCHR(inode->i_mode))
|
|
return;
|
|
|
|
unlock_mapping_entry(mapping, page->index);
|
|
}
|
|
|
|
/*
|
|
* Find radix tree entry at given index. If it points to an exceptional entry,
|
|
* return it with the radix tree entry locked. If the radix tree doesn't
|
|
* contain given index, create an empty exceptional entry for the index and
|
|
* return with it locked.
|
|
*
|
|
* When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
|
|
* either return that locked entry or will return an error. This error will
|
|
* happen if there are any 4k entries within the 2MiB range that we are
|
|
* requesting.
|
|
*
|
|
* We always favor 4k entries over 2MiB entries. There isn't a flow where we
|
|
* evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB
|
|
* insertion will fail if it finds any 4k entries already in the tree, and a
|
|
* 4k insertion will cause an existing 2MiB entry to be unmapped and
|
|
* downgraded to 4k entries. This happens for both 2MiB huge zero pages as
|
|
* well as 2MiB empty entries.
|
|
*
|
|
* The exception to this downgrade path is for 2MiB DAX PMD entries that have
|
|
* real storage backing them. We will leave these real 2MiB DAX entries in
|
|
* the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
|
|
*
|
|
* Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
|
|
* persistent memory the benefit is doubtful. We can add that later if we can
|
|
* show it helps.
|
|
*/
|
|
static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
|
|
unsigned long size_flag)
|
|
{
|
|
bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
|
|
void *entry, **slot;
|
|
|
|
restart:
|
|
xa_lock_irq(&mapping->i_pages);
|
|
entry = get_unlocked_mapping_entry(mapping, index, &slot);
|
|
|
|
if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
|
|
entry = ERR_PTR(-EIO);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (entry) {
|
|
if (size_flag & RADIX_DAX_PMD) {
|
|
if (dax_is_pte_entry(entry)) {
|
|
put_unlocked_mapping_entry(mapping, index,
|
|
entry);
|
|
entry = ERR_PTR(-EEXIST);
|
|
goto out_unlock;
|
|
}
|
|
} else { /* trying to grab a PTE entry */
|
|
if (dax_is_pmd_entry(entry) &&
|
|
(dax_is_zero_entry(entry) ||
|
|
dax_is_empty_entry(entry))) {
|
|
pmd_downgrade = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No entry for given index? Make sure radix tree is big enough. */
|
|
if (!entry || pmd_downgrade) {
|
|
int err;
|
|
|
|
if (pmd_downgrade) {
|
|
/*
|
|
* Make sure 'entry' remains valid while we drop
|
|
* the i_pages lock.
|
|
*/
|
|
entry = lock_slot(mapping, slot);
|
|
}
|
|
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
/*
|
|
* Besides huge zero pages the only other thing that gets
|
|
* downgraded are empty entries which don't need to be
|
|
* unmapped.
|
|
*/
|
|
if (pmd_downgrade && dax_is_zero_entry(entry))
|
|
unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
|
|
PG_PMD_NR, false);
|
|
|
|
err = radix_tree_preload(
|
|
mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
|
|
if (err) {
|
|
if (pmd_downgrade)
|
|
put_locked_mapping_entry(mapping, index);
|
|
return ERR_PTR(err);
|
|
}
|
|
xa_lock_irq(&mapping->i_pages);
|
|
|
|
if (!entry) {
|
|
/*
|
|
* We needed to drop the i_pages lock while calling
|
|
* radix_tree_preload() and we didn't have an entry to
|
|
* lock. See if another thread inserted an entry at
|
|
* our index during this time.
|
|
*/
|
|
entry = __radix_tree_lookup(&mapping->i_pages, index,
|
|
NULL, &slot);
|
|
if (entry) {
|
|
radix_tree_preload_end();
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
goto restart;
|
|
}
|
|
}
|
|
|
|
if (pmd_downgrade) {
|
|
dax_disassociate_entry(entry, mapping, false);
|
|
radix_tree_delete(&mapping->i_pages, index);
|
|
mapping->nrexceptional--;
|
|
dax_wake_mapping_entry_waiter(mapping, index, entry,
|
|
true);
|
|
}
|
|
|
|
entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
|
|
|
|
err = __radix_tree_insert(&mapping->i_pages, index,
|
|
dax_radix_order(entry), entry);
|
|
radix_tree_preload_end();
|
|
if (err) {
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
/*
|
|
* Our insertion of a DAX entry failed, most likely
|
|
* because we were inserting a PMD entry and it
|
|
* collided with a PTE sized entry at a different
|
|
* index in the PMD range. We haven't inserted
|
|
* anything into the radix tree and have no waiters to
|
|
* wake.
|
|
*/
|
|
return ERR_PTR(err);
|
|
}
|
|
/* Good, we have inserted empty locked entry into the tree. */
|
|
mapping->nrexceptional++;
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
return entry;
|
|
}
|
|
entry = lock_slot(mapping, slot);
|
|
out_unlock:
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
return entry;
|
|
}
|
|
|
|
/**
|
|
* dax_layout_busy_page - find first pinned page in @mapping
|
|
* @mapping: address space to scan for a page with ref count > 1
|
|
*
|
|
* DAX requires ZONE_DEVICE mapped pages. These pages are never
|
|
* 'onlined' to the page allocator so they are considered idle when
|
|
* page->count == 1. A filesystem uses this interface to determine if
|
|
* any page in the mapping is busy, i.e. for DMA, or other
|
|
* get_user_pages() usages.
|
|
*
|
|
* It is expected that the filesystem is holding locks to block the
|
|
* establishment of new mappings in this address_space. I.e. it expects
|
|
* to be able to run unmap_mapping_range() and subsequently not race
|
|
* mapping_mapped() becoming true.
|
|
*/
|
|
struct page *dax_layout_busy_page(struct address_space *mapping)
|
|
{
|
|
pgoff_t indices[PAGEVEC_SIZE];
|
|
struct page *page = NULL;
|
|
struct pagevec pvec;
|
|
pgoff_t index, end;
|
|
unsigned i;
|
|
|
|
/*
|
|
* In the 'limited' case get_user_pages() for dax is disabled.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
|
|
return NULL;
|
|
|
|
if (!dax_mapping(mapping) || !mapping_mapped(mapping))
|
|
return NULL;
|
|
|
|
pagevec_init(&pvec);
|
|
index = 0;
|
|
end = -1;
|
|
|
|
/*
|
|
* If we race get_user_pages_fast() here either we'll see the
|
|
* elevated page count in the pagevec_lookup and wait, or
|
|
* get_user_pages_fast() will see that the page it took a reference
|
|
* against is no longer mapped in the page tables and bail to the
|
|
* get_user_pages() slow path. The slow path is protected by
|
|
* pte_lock() and pmd_lock(). New references are not taken without
|
|
* holding those locks, and unmap_mapping_range() will not zero the
|
|
* pte or pmd without holding the respective lock, so we are
|
|
* guaranteed to either see new references or prevent new
|
|
* references from being established.
|
|
*/
|
|
unmap_mapping_range(mapping, 0, 0, 1);
|
|
|
|
while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
|
|
min(end - index, (pgoff_t)PAGEVEC_SIZE),
|
|
indices)) {
|
|
for (i = 0; i < pagevec_count(&pvec); i++) {
|
|
struct page *pvec_ent = pvec.pages[i];
|
|
void *entry;
|
|
|
|
index = indices[i];
|
|
if (index >= end)
|
|
break;
|
|
|
|
if (WARN_ON_ONCE(
|
|
!radix_tree_exceptional_entry(pvec_ent)))
|
|
continue;
|
|
|
|
xa_lock_irq(&mapping->i_pages);
|
|
entry = get_unlocked_mapping_entry(mapping, index, NULL);
|
|
if (entry)
|
|
page = dax_busy_page(entry);
|
|
put_unlocked_mapping_entry(mapping, index, entry);
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
if (page)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We don't expect normal struct page entries to exist in our
|
|
* tree, but we keep these pagevec calls so that this code is
|
|
* consistent with the common pattern for handling pagevecs
|
|
* throughout the kernel.
|
|
*/
|
|
pagevec_remove_exceptionals(&pvec);
|
|
pagevec_release(&pvec);
|
|
index++;
|
|
|
|
if (page)
|
|
break;
|
|
}
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_layout_busy_page);
|
|
|
|
static int __dax_invalidate_mapping_entry(struct address_space *mapping,
|
|
pgoff_t index, bool trunc)
|
|
{
|
|
int ret = 0;
|
|
void *entry;
|
|
struct radix_tree_root *pages = &mapping->i_pages;
|
|
|
|
xa_lock_irq(pages);
|
|
entry = get_unlocked_mapping_entry(mapping, index, NULL);
|
|
if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
|
|
goto out;
|
|
if (!trunc &&
|
|
(radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
|
|
radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
|
|
goto out;
|
|
dax_disassociate_entry(entry, mapping, trunc);
|
|
radix_tree_delete(pages, index);
|
|
mapping->nrexceptional--;
|
|
ret = 1;
|
|
out:
|
|
put_unlocked_mapping_entry(mapping, index, entry);
|
|
xa_unlock_irq(pages);
|
|
return ret;
|
|
}
|
|
/*
|
|
* Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
|
|
* entry to get unlocked before deleting it.
|
|
*/
|
|
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
|
|
{
|
|
int ret = __dax_invalidate_mapping_entry(mapping, index, true);
|
|
|
|
/*
|
|
* This gets called from truncate / punch_hole path. As such, the caller
|
|
* must hold locks protecting against concurrent modifications of the
|
|
* radix tree (usually fs-private i_mmap_sem for writing). Since the
|
|
* caller has seen exceptional entry for this index, we better find it
|
|
* at that index as well...
|
|
*/
|
|
WARN_ON_ONCE(!ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Invalidate exceptional DAX entry if it is clean.
|
|
*/
|
|
int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
|
|
pgoff_t index)
|
|
{
|
|
return __dax_invalidate_mapping_entry(mapping, index, false);
|
|
}
|
|
|
|
static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
|
|
sector_t sector, size_t size, struct page *to,
|
|
unsigned long vaddr)
|
|
{
|
|
void *vto, *kaddr;
|
|
pgoff_t pgoff;
|
|
long rc;
|
|
int id;
|
|
|
|
rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
|
|
if (rc)
|
|
return rc;
|
|
|
|
id = dax_read_lock();
|
|
rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
|
|
if (rc < 0) {
|
|
dax_read_unlock(id);
|
|
return rc;
|
|
}
|
|
vto = kmap_atomic(to);
|
|
copy_user_page(vto, (void __force *)kaddr, vaddr, to);
|
|
kunmap_atomic(vto);
|
|
dax_read_unlock(id);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* By this point grab_mapping_entry() has ensured that we have a locked entry
|
|
* of the appropriate size so we don't have to worry about downgrading PMDs to
|
|
* PTEs. If we happen to be trying to insert a PTE and there is a PMD
|
|
* already in the tree, we will skip the insertion and just dirty the PMD as
|
|
* appropriate.
|
|
*/
|
|
static void *dax_insert_mapping_entry(struct address_space *mapping,
|
|
struct vm_fault *vmf,
|
|
void *entry, pfn_t pfn_t,
|
|
unsigned long flags, bool dirty)
|
|
{
|
|
struct radix_tree_root *pages = &mapping->i_pages;
|
|
unsigned long pfn = pfn_t_to_pfn(pfn_t);
|
|
pgoff_t index = vmf->pgoff;
|
|
void *new_entry;
|
|
|
|
if (dirty)
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
|
|
if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
|
|
/* we are replacing a zero page with block mapping */
|
|
if (dax_is_pmd_entry(entry))
|
|
unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
|
|
PG_PMD_NR, false);
|
|
else /* pte entry */
|
|
unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
|
|
}
|
|
|
|
xa_lock_irq(pages);
|
|
new_entry = dax_radix_locked_entry(pfn, flags);
|
|
if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
|
|
dax_disassociate_entry(entry, mapping, false);
|
|
dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
|
|
}
|
|
|
|
if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
|
|
/*
|
|
* Only swap our new entry into the radix tree if the current
|
|
* entry is a zero page or an empty entry. If a normal PTE or
|
|
* PMD entry is already in the tree, we leave it alone. This
|
|
* means that if we are trying to insert a PTE and the
|
|
* existing entry is a PMD, we will just leave the PMD in the
|
|
* tree and dirty it if necessary.
|
|
*/
|
|
struct radix_tree_node *node;
|
|
void **slot;
|
|
void *ret;
|
|
|
|
ret = __radix_tree_lookup(pages, index, &node, &slot);
|
|
WARN_ON_ONCE(ret != entry);
|
|
__radix_tree_replace(pages, node, slot,
|
|
new_entry, NULL);
|
|
entry = new_entry;
|
|
}
|
|
|
|
if (dirty)
|
|
radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
|
|
|
|
xa_unlock_irq(pages);
|
|
return entry;
|
|
}
|
|
|
|
static inline unsigned long
|
|
pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
|
|
{
|
|
unsigned long address;
|
|
|
|
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
|
|
return address;
|
|
}
|
|
|
|
/* Walk all mappings of a given index of a file and writeprotect them */
|
|
static void dax_mapping_entry_mkclean(struct address_space *mapping,
|
|
pgoff_t index, unsigned long pfn)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
pte_t pte, *ptep = NULL;
|
|
pmd_t *pmdp = NULL;
|
|
spinlock_t *ptl;
|
|
|
|
i_mmap_lock_read(mapping);
|
|
vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
|
|
unsigned long address, start, end;
|
|
|
|
cond_resched();
|
|
|
|
if (!(vma->vm_flags & VM_SHARED))
|
|
continue;
|
|
|
|
address = pgoff_address(index, vma);
|
|
|
|
/*
|
|
* Note because we provide start/end to follow_pte_pmd it will
|
|
* call mmu_notifier_invalidate_range_start() on our behalf
|
|
* before taking any lock.
|
|
*/
|
|
if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
|
|
continue;
|
|
|
|
/*
|
|
* No need to call mmu_notifier_invalidate_range() as we are
|
|
* downgrading page table protection not changing it to point
|
|
* to a new page.
|
|
*
|
|
* See Documentation/vm/mmu_notifier.rst
|
|
*/
|
|
if (pmdp) {
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
pmd_t pmd;
|
|
|
|
if (pfn != pmd_pfn(*pmdp))
|
|
goto unlock_pmd;
|
|
if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
|
|
goto unlock_pmd;
|
|
|
|
flush_cache_page(vma, address, pfn);
|
|
pmd = pmdp_huge_clear_flush(vma, address, pmdp);
|
|
pmd = pmd_wrprotect(pmd);
|
|
pmd = pmd_mkclean(pmd);
|
|
set_pmd_at(vma->vm_mm, address, pmdp, pmd);
|
|
unlock_pmd:
|
|
#endif
|
|
spin_unlock(ptl);
|
|
} else {
|
|
if (pfn != pte_pfn(*ptep))
|
|
goto unlock_pte;
|
|
if (!pte_dirty(*ptep) && !pte_write(*ptep))
|
|
goto unlock_pte;
|
|
|
|
flush_cache_page(vma, address, pfn);
|
|
pte = ptep_clear_flush(vma, address, ptep);
|
|
pte = pte_wrprotect(pte);
|
|
pte = pte_mkclean(pte);
|
|
set_pte_at(vma->vm_mm, address, ptep, pte);
|
|
unlock_pte:
|
|
pte_unmap_unlock(ptep, ptl);
|
|
}
|
|
|
|
mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
|
|
}
|
|
i_mmap_unlock_read(mapping);
|
|
}
|
|
|
|
static int dax_writeback_one(struct dax_device *dax_dev,
|
|
struct address_space *mapping, pgoff_t index, void *entry)
|
|
{
|
|
struct radix_tree_root *pages = &mapping->i_pages;
|
|
void *entry2, **slot;
|
|
unsigned long pfn;
|
|
long ret = 0;
|
|
size_t size;
|
|
|
|
/*
|
|
* A page got tagged dirty in DAX mapping? Something is seriously
|
|
* wrong.
|
|
*/
|
|
if (WARN_ON(!radix_tree_exceptional_entry(entry)))
|
|
return -EIO;
|
|
|
|
xa_lock_irq(pages);
|
|
entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
|
|
/* Entry got punched out / reallocated? */
|
|
if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
|
|
goto put_unlocked;
|
|
/*
|
|
* Entry got reallocated elsewhere? No need to writeback. We have to
|
|
* compare pfns as we must not bail out due to difference in lockbit
|
|
* or entry type.
|
|
*/
|
|
if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
|
|
goto put_unlocked;
|
|
if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
|
|
dax_is_zero_entry(entry))) {
|
|
ret = -EIO;
|
|
goto put_unlocked;
|
|
}
|
|
|
|
/* Another fsync thread may have already written back this entry */
|
|
if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
|
|
goto put_unlocked;
|
|
/* Lock the entry to serialize with page faults */
|
|
entry = lock_slot(mapping, slot);
|
|
/*
|
|
* We can clear the tag now but we have to be careful so that concurrent
|
|
* dax_writeback_one() calls for the same index cannot finish before we
|
|
* actually flush the caches. This is achieved as the calls will look
|
|
* at the entry only under the i_pages lock and once they do that
|
|
* they will see the entry locked and wait for it to unlock.
|
|
*/
|
|
radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
|
|
xa_unlock_irq(pages);
|
|
|
|
/*
|
|
* Even if dax_writeback_mapping_range() was given a wbc->range_start
|
|
* in the middle of a PMD, the 'index' we are given will be aligned to
|
|
* the start index of the PMD, as will the pfn we pull from 'entry'.
|
|
* This allows us to flush for PMD_SIZE and not have to worry about
|
|
* partial PMD writebacks.
|
|
*/
|
|
pfn = dax_radix_pfn(entry);
|
|
size = PAGE_SIZE << dax_radix_order(entry);
|
|
|
|
dax_mapping_entry_mkclean(mapping, index, pfn);
|
|
dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
|
|
/*
|
|
* After we have flushed the cache, we can clear the dirty tag. There
|
|
* cannot be new dirty data in the pfn after the flush has completed as
|
|
* the pfn mappings are writeprotected and fault waits for mapping
|
|
* entry lock.
|
|
*/
|
|
xa_lock_irq(pages);
|
|
radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
|
|
xa_unlock_irq(pages);
|
|
trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
|
|
put_locked_mapping_entry(mapping, index);
|
|
return ret;
|
|
|
|
put_unlocked:
|
|
put_unlocked_mapping_entry(mapping, index, entry2);
|
|
xa_unlock_irq(pages);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Flush the mapping to the persistent domain within the byte range of [start,
|
|
* end]. This is required by data integrity operations to ensure file data is
|
|
* on persistent storage prior to completion of the operation.
|
|
*/
|
|
int dax_writeback_mapping_range(struct address_space *mapping,
|
|
struct block_device *bdev, struct writeback_control *wbc)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
pgoff_t start_index, end_index;
|
|
pgoff_t indices[PAGEVEC_SIZE];
|
|
struct dax_device *dax_dev;
|
|
struct pagevec pvec;
|
|
bool done = false;
|
|
int i, ret = 0;
|
|
|
|
if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
|
|
return -EIO;
|
|
|
|
if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
|
|
return 0;
|
|
|
|
dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
|
|
if (!dax_dev)
|
|
return -EIO;
|
|
|
|
start_index = wbc->range_start >> PAGE_SHIFT;
|
|
end_index = wbc->range_end >> PAGE_SHIFT;
|
|
|
|
trace_dax_writeback_range(inode, start_index, end_index);
|
|
|
|
tag_pages_for_writeback(mapping, start_index, end_index);
|
|
|
|
pagevec_init(&pvec);
|
|
while (!done) {
|
|
pvec.nr = find_get_entries_tag(mapping, start_index,
|
|
PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
|
|
pvec.pages, indices);
|
|
|
|
if (pvec.nr == 0)
|
|
break;
|
|
|
|
for (i = 0; i < pvec.nr; i++) {
|
|
if (indices[i] > end_index) {
|
|
done = true;
|
|
break;
|
|
}
|
|
|
|
ret = dax_writeback_one(dax_dev, mapping, indices[i],
|
|
pvec.pages[i]);
|
|
if (ret < 0) {
|
|
mapping_set_error(mapping, ret);
|
|
goto out;
|
|
}
|
|
}
|
|
start_index = indices[pvec.nr - 1] + 1;
|
|
}
|
|
out:
|
|
put_dax(dax_dev);
|
|
trace_dax_writeback_range_done(inode, start_index, end_index);
|
|
return (ret < 0 ? ret : 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
|
|
|
|
static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
|
|
{
|
|
return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
|
|
}
|
|
|
|
static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
|
|
pfn_t *pfnp)
|
|
{
|
|
const sector_t sector = dax_iomap_sector(iomap, pos);
|
|
pgoff_t pgoff;
|
|
int id, rc;
|
|
long length;
|
|
|
|
rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
|
|
if (rc)
|
|
return rc;
|
|
id = dax_read_lock();
|
|
length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
|
|
NULL, pfnp);
|
|
if (length < 0) {
|
|
rc = length;
|
|
goto out;
|
|
}
|
|
rc = -EINVAL;
|
|
if (PFN_PHYS(length) < size)
|
|
goto out;
|
|
if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
|
|
goto out;
|
|
/* For larger pages we need devmap */
|
|
if (length > 1 && !pfn_t_devmap(*pfnp))
|
|
goto out;
|
|
rc = 0;
|
|
out:
|
|
dax_read_unlock(id);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The user has performed a load from a hole in the file. Allocating a new
|
|
* page in the file would cause excessive storage usage for workloads with
|
|
* sparse files. Instead we insert a read-only mapping of the 4k zero page.
|
|
* If this page is ever written to we will re-fault and change the mapping to
|
|
* point to real DAX storage instead.
|
|
*/
|
|
static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
|
|
struct vm_fault *vmf)
|
|
{
|
|
struct inode *inode = mapping->host;
|
|
unsigned long vaddr = vmf->address;
|
|
vm_fault_t ret = VM_FAULT_NOPAGE;
|
|
struct page *zero_page;
|
|
pfn_t pfn;
|
|
|
|
zero_page = ZERO_PAGE(0);
|
|
if (unlikely(!zero_page)) {
|
|
ret = VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
|
|
pfn = page_to_pfn_t(zero_page);
|
|
dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
|
|
false);
|
|
ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
|
|
out:
|
|
trace_dax_load_hole(inode, vmf, ret);
|
|
return ret;
|
|
}
|
|
|
|
static bool dax_range_is_aligned(struct block_device *bdev,
|
|
unsigned int offset, unsigned int length)
|
|
{
|
|
unsigned short sector_size = bdev_logical_block_size(bdev);
|
|
|
|
if (!IS_ALIGNED(offset, sector_size))
|
|
return false;
|
|
if (!IS_ALIGNED(length, sector_size))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
int __dax_zero_page_range(struct block_device *bdev,
|
|
struct dax_device *dax_dev, sector_t sector,
|
|
unsigned int offset, unsigned int size)
|
|
{
|
|
if (dax_range_is_aligned(bdev, offset, size)) {
|
|
sector_t start_sector = sector + (offset >> 9);
|
|
|
|
return blkdev_issue_zeroout(bdev, start_sector,
|
|
size >> 9, GFP_NOFS, 0);
|
|
} else {
|
|
pgoff_t pgoff;
|
|
long rc, id;
|
|
void *kaddr;
|
|
|
|
rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
|
|
if (rc)
|
|
return rc;
|
|
|
|
id = dax_read_lock();
|
|
rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
|
|
if (rc < 0) {
|
|
dax_read_unlock(id);
|
|
return rc;
|
|
}
|
|
memset(kaddr + offset, 0, size);
|
|
dax_flush(dax_dev, kaddr + offset, size);
|
|
dax_read_unlock(id);
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__dax_zero_page_range);
|
|
|
|
static loff_t
|
|
dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
|
|
struct iomap *iomap)
|
|
{
|
|
struct block_device *bdev = iomap->bdev;
|
|
struct dax_device *dax_dev = iomap->dax_dev;
|
|
struct iov_iter *iter = data;
|
|
loff_t end = pos + length, done = 0;
|
|
ssize_t ret = 0;
|
|
size_t xfer;
|
|
int id;
|
|
|
|
if (iov_iter_rw(iter) == READ) {
|
|
end = min(end, i_size_read(inode));
|
|
if (pos >= end)
|
|
return 0;
|
|
|
|
if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
|
|
return iov_iter_zero(min(length, end - pos), iter);
|
|
}
|
|
|
|
if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
|
|
return -EIO;
|
|
|
|
/*
|
|
* Write can allocate block for an area which has a hole page mapped
|
|
* into page tables. We have to tear down these mappings so that data
|
|
* written by write(2) is visible in mmap.
|
|
*/
|
|
if (iomap->flags & IOMAP_F_NEW) {
|
|
invalidate_inode_pages2_range(inode->i_mapping,
|
|
pos >> PAGE_SHIFT,
|
|
(end - 1) >> PAGE_SHIFT);
|
|
}
|
|
|
|
id = dax_read_lock();
|
|
while (pos < end) {
|
|
unsigned offset = pos & (PAGE_SIZE - 1);
|
|
const size_t size = ALIGN(length + offset, PAGE_SIZE);
|
|
const sector_t sector = dax_iomap_sector(iomap, pos);
|
|
ssize_t map_len;
|
|
pgoff_t pgoff;
|
|
void *kaddr;
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
|
|
ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
|
|
if (ret)
|
|
break;
|
|
|
|
map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
|
|
&kaddr, NULL);
|
|
if (map_len < 0) {
|
|
ret = map_len;
|
|
break;
|
|
}
|
|
|
|
map_len = PFN_PHYS(map_len);
|
|
kaddr += offset;
|
|
map_len -= offset;
|
|
if (map_len > end - pos)
|
|
map_len = end - pos;
|
|
|
|
/*
|
|
* The userspace address for the memory copy has already been
|
|
* validated via access_ok() in either vfs_read() or
|
|
* vfs_write(), depending on which operation we are doing.
|
|
*/
|
|
if (iov_iter_rw(iter) == WRITE)
|
|
xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
|
|
map_len, iter);
|
|
else
|
|
xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
|
|
map_len, iter);
|
|
|
|
pos += xfer;
|
|
length -= xfer;
|
|
done += xfer;
|
|
|
|
if (xfer == 0)
|
|
ret = -EFAULT;
|
|
if (xfer < map_len)
|
|
break;
|
|
}
|
|
dax_read_unlock(id);
|
|
|
|
return done ? done : ret;
|
|
}
|
|
|
|
/**
|
|
* dax_iomap_rw - Perform I/O to a DAX file
|
|
* @iocb: The control block for this I/O
|
|
* @iter: The addresses to do I/O from or to
|
|
* @ops: iomap ops passed from the file system
|
|
*
|
|
* This function performs read and write operations to directly mapped
|
|
* persistent memory. The callers needs to take care of read/write exclusion
|
|
* and evicting any page cache pages in the region under I/O.
|
|
*/
|
|
ssize_t
|
|
dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct address_space *mapping = iocb->ki_filp->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
loff_t pos = iocb->ki_pos, ret = 0, done = 0;
|
|
unsigned flags = 0;
|
|
|
|
if (iov_iter_rw(iter) == WRITE) {
|
|
lockdep_assert_held_exclusive(&inode->i_rwsem);
|
|
flags |= IOMAP_WRITE;
|
|
} else {
|
|
lockdep_assert_held(&inode->i_rwsem);
|
|
}
|
|
|
|
while (iov_iter_count(iter)) {
|
|
ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
|
|
iter, dax_iomap_actor);
|
|
if (ret <= 0)
|
|
break;
|
|
pos += ret;
|
|
done += ret;
|
|
}
|
|
|
|
iocb->ki_pos += done;
|
|
return done ? done : ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_iomap_rw);
|
|
|
|
static vm_fault_t dax_fault_return(int error)
|
|
{
|
|
if (error == 0)
|
|
return VM_FAULT_NOPAGE;
|
|
if (error == -ENOMEM)
|
|
return VM_FAULT_OOM;
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
|
|
/*
|
|
* MAP_SYNC on a dax mapping guarantees dirty metadata is
|
|
* flushed on write-faults (non-cow), but not read-faults.
|
|
*/
|
|
static bool dax_fault_is_synchronous(unsigned long flags,
|
|
struct vm_area_struct *vma, struct iomap *iomap)
|
|
{
|
|
return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
|
|
&& (iomap->flags & IOMAP_F_DIRTY);
|
|
}
|
|
|
|
static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
int *iomap_errp, const struct iomap_ops *ops)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
struct inode *inode = mapping->host;
|
|
unsigned long vaddr = vmf->address;
|
|
loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
|
|
struct iomap iomap = { 0 };
|
|
unsigned flags = IOMAP_FAULT;
|
|
int error, major = 0;
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
bool sync;
|
|
vm_fault_t ret = 0;
|
|
void *entry;
|
|
pfn_t pfn;
|
|
|
|
trace_dax_pte_fault(inode, vmf, ret);
|
|
/*
|
|
* Check whether offset isn't beyond end of file now. Caller is supposed
|
|
* to hold locks serializing us with truncate / punch hole so this is
|
|
* a reliable test.
|
|
*/
|
|
if (pos >= i_size_read(inode)) {
|
|
ret = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
|
|
if (write && !vmf->cow_page)
|
|
flags |= IOMAP_WRITE;
|
|
|
|
entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
|
|
if (IS_ERR(entry)) {
|
|
ret = dax_fault_return(PTR_ERR(entry));
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* It is possible, particularly with mixed reads & writes to private
|
|
* mappings, that we have raced with a PMD fault that overlaps with
|
|
* the PTE we need to set up. If so just return and the fault will be
|
|
* retried.
|
|
*/
|
|
if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
|
|
ret = VM_FAULT_NOPAGE;
|
|
goto unlock_entry;
|
|
}
|
|
|
|
/*
|
|
* Note that we don't bother to use iomap_apply here: DAX required
|
|
* the file system block size to be equal the page size, which means
|
|
* that we never have to deal with more than a single extent here.
|
|
*/
|
|
error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
|
|
if (iomap_errp)
|
|
*iomap_errp = error;
|
|
if (error) {
|
|
ret = dax_fault_return(error);
|
|
goto unlock_entry;
|
|
}
|
|
if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
|
|
error = -EIO; /* fs corruption? */
|
|
goto error_finish_iomap;
|
|
}
|
|
|
|
if (vmf->cow_page) {
|
|
sector_t sector = dax_iomap_sector(&iomap, pos);
|
|
|
|
switch (iomap.type) {
|
|
case IOMAP_HOLE:
|
|
case IOMAP_UNWRITTEN:
|
|
clear_user_highpage(vmf->cow_page, vaddr);
|
|
break;
|
|
case IOMAP_MAPPED:
|
|
error = copy_user_dax(iomap.bdev, iomap.dax_dev,
|
|
sector, PAGE_SIZE, vmf->cow_page, vaddr);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
error = -EIO;
|
|
break;
|
|
}
|
|
|
|
if (error)
|
|
goto error_finish_iomap;
|
|
|
|
__SetPageUptodate(vmf->cow_page);
|
|
ret = finish_fault(vmf);
|
|
if (!ret)
|
|
ret = VM_FAULT_DONE_COW;
|
|
goto finish_iomap;
|
|
}
|
|
|
|
sync = dax_fault_is_synchronous(flags, vma, &iomap);
|
|
|
|
switch (iomap.type) {
|
|
case IOMAP_MAPPED:
|
|
if (iomap.flags & IOMAP_F_NEW) {
|
|
count_vm_event(PGMAJFAULT);
|
|
count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
|
|
major = VM_FAULT_MAJOR;
|
|
}
|
|
error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
|
|
if (error < 0)
|
|
goto error_finish_iomap;
|
|
|
|
entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
|
|
0, write && !sync);
|
|
|
|
/*
|
|
* If we are doing synchronous page fault and inode needs fsync,
|
|
* we can insert PTE into page tables only after that happens.
|
|
* Skip insertion for now and return the pfn so that caller can
|
|
* insert it after fsync is done.
|
|
*/
|
|
if (sync) {
|
|
if (WARN_ON_ONCE(!pfnp)) {
|
|
error = -EIO;
|
|
goto error_finish_iomap;
|
|
}
|
|
*pfnp = pfn;
|
|
ret = VM_FAULT_NEEDDSYNC | major;
|
|
goto finish_iomap;
|
|
}
|
|
trace_dax_insert_mapping(inode, vmf, entry);
|
|
if (write)
|
|
ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
|
|
else
|
|
ret = vmf_insert_mixed(vma, vaddr, pfn);
|
|
|
|
goto finish_iomap;
|
|
case IOMAP_UNWRITTEN:
|
|
case IOMAP_HOLE:
|
|
if (!write) {
|
|
ret = dax_load_hole(mapping, entry, vmf);
|
|
goto finish_iomap;
|
|
}
|
|
/*FALLTHRU*/
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
error = -EIO;
|
|
break;
|
|
}
|
|
|
|
error_finish_iomap:
|
|
ret = dax_fault_return(error);
|
|
finish_iomap:
|
|
if (ops->iomap_end) {
|
|
int copied = PAGE_SIZE;
|
|
|
|
if (ret & VM_FAULT_ERROR)
|
|
copied = 0;
|
|
/*
|
|
* The fault is done by now and there's no way back (other
|
|
* thread may be already happily using PTE we have installed).
|
|
* Just ignore error from ->iomap_end since we cannot do much
|
|
* with it.
|
|
*/
|
|
ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
|
|
}
|
|
unlock_entry:
|
|
put_locked_mapping_entry(mapping, vmf->pgoff);
|
|
out:
|
|
trace_dax_pte_fault_done(inode, vmf, ret);
|
|
return ret | major;
|
|
}
|
|
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
|
|
void *entry)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
unsigned long pmd_addr = vmf->address & PMD_MASK;
|
|
struct inode *inode = mapping->host;
|
|
struct page *zero_page;
|
|
void *ret = NULL;
|
|
spinlock_t *ptl;
|
|
pmd_t pmd_entry;
|
|
pfn_t pfn;
|
|
|
|
zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
|
|
|
|
if (unlikely(!zero_page))
|
|
goto fallback;
|
|
|
|
pfn = page_to_pfn_t(zero_page);
|
|
ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
|
|
RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
|
|
|
|
ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
|
|
if (!pmd_none(*(vmf->pmd))) {
|
|
spin_unlock(ptl);
|
|
goto fallback;
|
|
}
|
|
|
|
pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
|
|
pmd_entry = pmd_mkhuge(pmd_entry);
|
|
set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
|
|
spin_unlock(ptl);
|
|
trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
|
|
return VM_FAULT_NOPAGE;
|
|
|
|
fallback:
|
|
trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
|
|
static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct address_space *mapping = vma->vm_file->f_mapping;
|
|
unsigned long pmd_addr = vmf->address & PMD_MASK;
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
bool sync;
|
|
unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
|
|
struct inode *inode = mapping->host;
|
|
vm_fault_t result = VM_FAULT_FALLBACK;
|
|
struct iomap iomap = { 0 };
|
|
pgoff_t max_pgoff, pgoff;
|
|
void *entry;
|
|
loff_t pos;
|
|
int error;
|
|
pfn_t pfn;
|
|
|
|
/*
|
|
* Check whether offset isn't beyond end of file now. Caller is
|
|
* supposed to hold locks serializing us with truncate / punch hole so
|
|
* this is a reliable test.
|
|
*/
|
|
pgoff = linear_page_index(vma, pmd_addr);
|
|
max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
|
|
|
|
trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
|
|
|
|
/*
|
|
* Make sure that the faulting address's PMD offset (color) matches
|
|
* the PMD offset from the start of the file. This is necessary so
|
|
* that a PMD range in the page table overlaps exactly with a PMD
|
|
* range in the radix tree.
|
|
*/
|
|
if ((vmf->pgoff & PG_PMD_COLOUR) !=
|
|
((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
|
|
goto fallback;
|
|
|
|
/* Fall back to PTEs if we're going to COW */
|
|
if (write && !(vma->vm_flags & VM_SHARED))
|
|
goto fallback;
|
|
|
|
/* If the PMD would extend outside the VMA */
|
|
if (pmd_addr < vma->vm_start)
|
|
goto fallback;
|
|
if ((pmd_addr + PMD_SIZE) > vma->vm_end)
|
|
goto fallback;
|
|
|
|
if (pgoff >= max_pgoff) {
|
|
result = VM_FAULT_SIGBUS;
|
|
goto out;
|
|
}
|
|
|
|
/* If the PMD would extend beyond the file size */
|
|
if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
|
|
goto fallback;
|
|
|
|
/*
|
|
* grab_mapping_entry() will make sure we get a 2MiB empty entry, a
|
|
* 2MiB zero page entry or a DAX PMD. If it can't (because a 4k page
|
|
* is already in the tree, for instance), it will return -EEXIST and
|
|
* we just fall back to 4k entries.
|
|
*/
|
|
entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
|
|
if (IS_ERR(entry))
|
|
goto fallback;
|
|
|
|
/*
|
|
* It is possible, particularly with mixed reads & writes to private
|
|
* mappings, that we have raced with a PTE fault that overlaps with
|
|
* the PMD we need to set up. If so just return and the fault will be
|
|
* retried.
|
|
*/
|
|
if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
|
|
!pmd_devmap(*vmf->pmd)) {
|
|
result = 0;
|
|
goto unlock_entry;
|
|
}
|
|
|
|
/*
|
|
* Note that we don't use iomap_apply here. We aren't doing I/O, only
|
|
* setting up a mapping, so really we're using iomap_begin() as a way
|
|
* to look up our filesystem block.
|
|
*/
|
|
pos = (loff_t)pgoff << PAGE_SHIFT;
|
|
error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
|
|
if (error)
|
|
goto unlock_entry;
|
|
|
|
if (iomap.offset + iomap.length < pos + PMD_SIZE)
|
|
goto finish_iomap;
|
|
|
|
sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
|
|
|
|
switch (iomap.type) {
|
|
case IOMAP_MAPPED:
|
|
error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
|
|
if (error < 0)
|
|
goto finish_iomap;
|
|
|
|
entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
|
|
RADIX_DAX_PMD, write && !sync);
|
|
|
|
/*
|
|
* If we are doing synchronous page fault and inode needs fsync,
|
|
* we can insert PMD into page tables only after that happens.
|
|
* Skip insertion for now and return the pfn so that caller can
|
|
* insert it after fsync is done.
|
|
*/
|
|
if (sync) {
|
|
if (WARN_ON_ONCE(!pfnp))
|
|
goto finish_iomap;
|
|
*pfnp = pfn;
|
|
result = VM_FAULT_NEEDDSYNC;
|
|
goto finish_iomap;
|
|
}
|
|
|
|
trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
|
|
result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
|
|
write);
|
|
break;
|
|
case IOMAP_UNWRITTEN:
|
|
case IOMAP_HOLE:
|
|
if (WARN_ON_ONCE(write))
|
|
break;
|
|
result = dax_pmd_load_hole(vmf, &iomap, entry);
|
|
break;
|
|
default:
|
|
WARN_ON_ONCE(1);
|
|
break;
|
|
}
|
|
|
|
finish_iomap:
|
|
if (ops->iomap_end) {
|
|
int copied = PMD_SIZE;
|
|
|
|
if (result == VM_FAULT_FALLBACK)
|
|
copied = 0;
|
|
/*
|
|
* The fault is done by now and there's no way back (other
|
|
* thread may be already happily using PMD we have installed).
|
|
* Just ignore error from ->iomap_end since we cannot do much
|
|
* with it.
|
|
*/
|
|
ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
|
|
&iomap);
|
|
}
|
|
unlock_entry:
|
|
put_locked_mapping_entry(mapping, pgoff);
|
|
fallback:
|
|
if (result == VM_FAULT_FALLBACK) {
|
|
split_huge_pmd(vma, vmf->pmd, vmf->address);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
}
|
|
out:
|
|
trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
|
|
return result;
|
|
}
|
|
#else
|
|
static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
|
|
const struct iomap_ops *ops)
|
|
{
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
#endif /* CONFIG_FS_DAX_PMD */
|
|
|
|
/**
|
|
* dax_iomap_fault - handle a page fault on a DAX file
|
|
* @vmf: The description of the fault
|
|
* @pe_size: Size of the page to fault in
|
|
* @pfnp: PFN to insert for synchronous faults if fsync is required
|
|
* @iomap_errp: Storage for detailed error code in case of error
|
|
* @ops: Iomap ops passed from the file system
|
|
*
|
|
* When a page fault occurs, filesystems may call this helper in
|
|
* their fault handler for DAX files. dax_iomap_fault() assumes the caller
|
|
* has done all the necessary locking for page fault to proceed
|
|
* successfully.
|
|
*/
|
|
vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
|
|
pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
|
|
{
|
|
switch (pe_size) {
|
|
case PE_SIZE_PTE:
|
|
return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
|
|
case PE_SIZE_PMD:
|
|
return dax_iomap_pmd_fault(vmf, pfnp, ops);
|
|
default:
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_iomap_fault);
|
|
|
|
/**
|
|
* dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
|
|
* @vmf: The description of the fault
|
|
* @pe_size: Size of entry to be inserted
|
|
* @pfn: PFN to insert
|
|
*
|
|
* This function inserts writeable PTE or PMD entry into page tables for mmaped
|
|
* DAX file. It takes care of marking corresponding radix tree entry as dirty
|
|
* as well.
|
|
*/
|
|
static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
|
|
enum page_entry_size pe_size,
|
|
pfn_t pfn)
|
|
{
|
|
struct address_space *mapping = vmf->vma->vm_file->f_mapping;
|
|
void *entry, **slot;
|
|
pgoff_t index = vmf->pgoff;
|
|
vm_fault_t ret;
|
|
|
|
xa_lock_irq(&mapping->i_pages);
|
|
entry = get_unlocked_mapping_entry(mapping, index, &slot);
|
|
/* Did we race with someone splitting entry or so? */
|
|
if (!entry ||
|
|
(pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
|
|
(pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
|
|
put_unlocked_mapping_entry(mapping, index, entry);
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
|
|
VM_FAULT_NOPAGE);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
|
|
entry = lock_slot(mapping, slot);
|
|
xa_unlock_irq(&mapping->i_pages);
|
|
switch (pe_size) {
|
|
case PE_SIZE_PTE:
|
|
ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
|
|
break;
|
|
#ifdef CONFIG_FS_DAX_PMD
|
|
case PE_SIZE_PMD:
|
|
ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
|
|
pfn, true);
|
|
break;
|
|
#endif
|
|
default:
|
|
ret = VM_FAULT_FALLBACK;
|
|
}
|
|
put_locked_mapping_entry(mapping, index);
|
|
trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* dax_finish_sync_fault - finish synchronous page fault
|
|
* @vmf: The description of the fault
|
|
* @pe_size: Size of entry to be inserted
|
|
* @pfn: PFN to insert
|
|
*
|
|
* This function ensures that the file range touched by the page fault is
|
|
* stored persistently on the media and handles inserting of appropriate page
|
|
* table entry.
|
|
*/
|
|
vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
|
|
enum page_entry_size pe_size, pfn_t pfn)
|
|
{
|
|
int err;
|
|
loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
|
|
size_t len = 0;
|
|
|
|
if (pe_size == PE_SIZE_PTE)
|
|
len = PAGE_SIZE;
|
|
else if (pe_size == PE_SIZE_PMD)
|
|
len = PMD_SIZE;
|
|
else
|
|
WARN_ON_ONCE(1);
|
|
err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
|
|
if (err)
|
|
return VM_FAULT_SIGBUS;
|
|
return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
|
|
}
|
|
EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
|