mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 01:24:30 +07:00
d45bc58dd3
The code to initialize a struct nand_hw_control is duplicated across several drivers. Factorize it using an inline function. Signed-off-by: Marc Gonzalez <marc_gonzalez@sigmadesigns.com> Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
1096 lines
30 KiB
C
1096 lines
30 KiB
C
/*
|
|
* Freescale Integrated Flash Controller NAND driver
|
|
*
|
|
* Copyright 2011-2012 Freescale Semiconductor, Inc
|
|
*
|
|
* Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/fsl_ifc.h>
|
|
|
|
#define ERR_BYTE 0xFF /* Value returned for read
|
|
bytes when read failed */
|
|
#define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait
|
|
for IFC NAND Machine */
|
|
|
|
struct fsl_ifc_ctrl;
|
|
|
|
/* mtd information per set */
|
|
struct fsl_ifc_mtd {
|
|
struct nand_chip chip;
|
|
struct fsl_ifc_ctrl *ctrl;
|
|
|
|
struct device *dev;
|
|
int bank; /* Chip select bank number */
|
|
unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
|
|
u8 __iomem *vbase; /* Chip select base virtual address */
|
|
};
|
|
|
|
/* overview of the fsl ifc controller */
|
|
struct fsl_ifc_nand_ctrl {
|
|
struct nand_hw_control controller;
|
|
struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
|
|
|
|
void __iomem *addr; /* Address of assigned IFC buffer */
|
|
unsigned int page; /* Last page written to / read from */
|
|
unsigned int read_bytes;/* Number of bytes read during command */
|
|
unsigned int column; /* Saved column from SEQIN */
|
|
unsigned int index; /* Pointer to next byte to 'read' */
|
|
unsigned int oob; /* Non zero if operating on OOB data */
|
|
unsigned int eccread; /* Non zero for a full-page ECC read */
|
|
unsigned int counter; /* counter for the initializations */
|
|
unsigned int max_bitflips; /* Saved during READ0 cmd */
|
|
};
|
|
|
|
static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
|
|
|
|
/*
|
|
* Generic flash bbt descriptors
|
|
*/
|
|
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
|
|
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
|
|
NAND_BBT_2BIT | NAND_BBT_VERSION,
|
|
.offs = 2, /* 0 on 8-bit small page */
|
|
.len = 4,
|
|
.veroffs = 6,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern,
|
|
};
|
|
|
|
static struct nand_bbt_descr bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
|
|
NAND_BBT_2BIT | NAND_BBT_VERSION,
|
|
.offs = 2, /* 0 on 8-bit small page */
|
|
.len = 4,
|
|
.veroffs = 6,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern,
|
|
};
|
|
|
|
static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = 8;
|
|
oobregion->length = chip->ecc.total;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (section > 1)
|
|
return -ERANGE;
|
|
|
|
if (mtd->writesize == 512 &&
|
|
!(chip->options & NAND_BUSWIDTH_16)) {
|
|
if (!section) {
|
|
oobregion->offset = 0;
|
|
oobregion->length = 5;
|
|
} else {
|
|
oobregion->offset = 6;
|
|
oobregion->length = 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (!section) {
|
|
oobregion->offset = 2;
|
|
oobregion->length = 6;
|
|
} else {
|
|
oobregion->offset = chip->ecc.total + 8;
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
|
|
.ecc = fsl_ifc_ooblayout_ecc,
|
|
.free = fsl_ifc_ooblayout_free,
|
|
};
|
|
|
|
/*
|
|
* Set up the IFC hardware block and page address fields, and the ifc nand
|
|
* structure addr field to point to the correct IFC buffer in memory
|
|
*/
|
|
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
|
|
int buf_num;
|
|
|
|
ifc_nand_ctrl->page = page_addr;
|
|
/* Program ROW0/COL0 */
|
|
ifc_out32(page_addr, &ifc->ifc_nand.row0);
|
|
ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
|
|
|
|
buf_num = page_addr & priv->bufnum_mask;
|
|
|
|
ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
|
|
ifc_nand_ctrl->index = column;
|
|
|
|
/* for OOB data point to the second half of the buffer */
|
|
if (oob)
|
|
ifc_nand_ctrl->index += mtd->writesize;
|
|
}
|
|
|
|
static int is_blank(struct mtd_info *mtd, unsigned int bufnum)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2);
|
|
u32 __iomem *mainarea = (u32 __iomem *)addr;
|
|
u8 __iomem *oob = addr + mtd->writesize;
|
|
struct mtd_oob_region oobregion = { };
|
|
int i, section = 0;
|
|
|
|
for (i = 0; i < mtd->writesize / 4; i++) {
|
|
if (__raw_readl(&mainarea[i]) != 0xffffffff)
|
|
return 0;
|
|
}
|
|
|
|
mtd_ooblayout_ecc(mtd, section++, &oobregion);
|
|
while (oobregion.length) {
|
|
for (i = 0; i < oobregion.length; i++) {
|
|
if (__raw_readb(&oob[oobregion.offset + i]) != 0xff)
|
|
return 0;
|
|
}
|
|
|
|
mtd_ooblayout_ecc(mtd, section++, &oobregion);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* returns nonzero if entire page is blank */
|
|
static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
|
|
u32 *eccstat, unsigned int bufnum)
|
|
{
|
|
u32 reg = eccstat[bufnum / 4];
|
|
int errors;
|
|
|
|
errors = (reg >> ((3 - bufnum % 4) * 8)) & 15;
|
|
|
|
return errors;
|
|
}
|
|
|
|
/*
|
|
* execute IFC NAND command and wait for it to complete
|
|
*/
|
|
static void fsl_ifc_run_command(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
|
|
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
|
|
u32 eccstat[4];
|
|
int i;
|
|
|
|
/* set the chip select for NAND Transaction */
|
|
ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
|
|
&ifc->ifc_nand.nand_csel);
|
|
|
|
dev_vdbg(priv->dev,
|
|
"%s: fir0=%08x fcr0=%08x\n",
|
|
__func__,
|
|
ifc_in32(&ifc->ifc_nand.nand_fir0),
|
|
ifc_in32(&ifc->ifc_nand.nand_fcr0));
|
|
|
|
ctrl->nand_stat = 0;
|
|
|
|
/* start read/write seq */
|
|
ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
|
|
|
|
/* wait for command complete flag or timeout */
|
|
wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
|
|
msecs_to_jiffies(IFC_TIMEOUT_MSECS));
|
|
|
|
/* ctrl->nand_stat will be updated from IRQ context */
|
|
if (!ctrl->nand_stat)
|
|
dev_err(priv->dev, "Controller is not responding\n");
|
|
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
|
|
dev_err(priv->dev, "NAND Flash Timeout Error\n");
|
|
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
|
|
dev_err(priv->dev, "NAND Flash Write Protect Error\n");
|
|
|
|
nctrl->max_bitflips = 0;
|
|
|
|
if (nctrl->eccread) {
|
|
int errors;
|
|
int bufnum = nctrl->page & priv->bufnum_mask;
|
|
int sector = bufnum * chip->ecc.steps;
|
|
int sector_end = sector + chip->ecc.steps - 1;
|
|
|
|
for (i = sector / 4; i <= sector_end / 4; i++)
|
|
eccstat[i] = ifc_in32(&ifc->ifc_nand.nand_eccstat[i]);
|
|
|
|
for (i = sector; i <= sector_end; i++) {
|
|
errors = check_read_ecc(mtd, ctrl, eccstat, i);
|
|
|
|
if (errors == 15) {
|
|
/*
|
|
* Uncorrectable error.
|
|
* OK only if the whole page is blank.
|
|
*
|
|
* We disable ECCER reporting due to...
|
|
* erratum IFC-A002770 -- so report it now if we
|
|
* see an uncorrectable error in ECCSTAT.
|
|
*/
|
|
if (!is_blank(mtd, bufnum))
|
|
ctrl->nand_stat |=
|
|
IFC_NAND_EVTER_STAT_ECCER;
|
|
break;
|
|
}
|
|
|
|
mtd->ecc_stats.corrected += errors;
|
|
nctrl->max_bitflips = max_t(unsigned int,
|
|
nctrl->max_bitflips,
|
|
errors);
|
|
}
|
|
|
|
nctrl->eccread = 0;
|
|
}
|
|
}
|
|
|
|
static void fsl_ifc_do_read(struct nand_chip *chip,
|
|
int oob,
|
|
struct mtd_info *mtd)
|
|
{
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
|
|
|
|
/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
|
|
if (mtd->writesize > 512) {
|
|
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
|
|
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
|
|
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
|
|
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
|
|
&ifc->ifc_nand.nand_fir0);
|
|
ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
|
|
|
|
ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
|
|
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
|
|
&ifc->ifc_nand.nand_fcr0);
|
|
} else {
|
|
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
|
|
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
|
|
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
|
|
&ifc->ifc_nand.nand_fir0);
|
|
ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
|
|
|
|
if (oob)
|
|
ifc_out32(NAND_CMD_READOOB <<
|
|
IFC_NAND_FCR0_CMD0_SHIFT,
|
|
&ifc->ifc_nand.nand_fcr0);
|
|
else
|
|
ifc_out32(NAND_CMD_READ0 <<
|
|
IFC_NAND_FCR0_CMD0_SHIFT,
|
|
&ifc->ifc_nand.nand_fcr0);
|
|
}
|
|
}
|
|
|
|
/* cmdfunc send commands to the IFC NAND Machine */
|
|
static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command,
|
|
int column, int page_addr) {
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
|
|
|
|
/* clear the read buffer */
|
|
ifc_nand_ctrl->read_bytes = 0;
|
|
if (command != NAND_CMD_PAGEPROG)
|
|
ifc_nand_ctrl->index = 0;
|
|
|
|
switch (command) {
|
|
/* READ0 read the entire buffer to use hardware ECC. */
|
|
case NAND_CMD_READ0:
|
|
ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
|
|
set_addr(mtd, 0, page_addr, 0);
|
|
|
|
ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
|
|
ifc_nand_ctrl->index += column;
|
|
|
|
if (chip->ecc.mode == NAND_ECC_HW)
|
|
ifc_nand_ctrl->eccread = 1;
|
|
|
|
fsl_ifc_do_read(chip, 0, mtd);
|
|
fsl_ifc_run_command(mtd);
|
|
return;
|
|
|
|
/* READOOB reads only the OOB because no ECC is performed. */
|
|
case NAND_CMD_READOOB:
|
|
ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
|
|
set_addr(mtd, column, page_addr, 1);
|
|
|
|
ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
|
|
|
|
fsl_ifc_do_read(chip, 1, mtd);
|
|
fsl_ifc_run_command(mtd);
|
|
|
|
return;
|
|
|
|
case NAND_CMD_READID:
|
|
case NAND_CMD_PARAM: {
|
|
int timing = IFC_FIR_OP_RB;
|
|
if (command == NAND_CMD_PARAM)
|
|
timing = IFC_FIR_OP_RBCD;
|
|
|
|
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
|
|
(timing << IFC_NAND_FIR0_OP2_SHIFT),
|
|
&ifc->ifc_nand.nand_fir0);
|
|
ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
|
|
&ifc->ifc_nand.nand_fcr0);
|
|
ifc_out32(column, &ifc->ifc_nand.row3);
|
|
|
|
/*
|
|
* although currently it's 8 bytes for READID, we always read
|
|
* the maximum 256 bytes(for PARAM)
|
|
*/
|
|
ifc_out32(256, &ifc->ifc_nand.nand_fbcr);
|
|
ifc_nand_ctrl->read_bytes = 256;
|
|
|
|
set_addr(mtd, 0, 0, 0);
|
|
fsl_ifc_run_command(mtd);
|
|
return;
|
|
}
|
|
|
|
/* ERASE1 stores the block and page address */
|
|
case NAND_CMD_ERASE1:
|
|
set_addr(mtd, 0, page_addr, 0);
|
|
return;
|
|
|
|
/* ERASE2 uses the block and page address from ERASE1 */
|
|
case NAND_CMD_ERASE2:
|
|
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
|
|
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
|
|
&ifc->ifc_nand.nand_fir0);
|
|
|
|
ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
|
|
(NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
|
|
&ifc->ifc_nand.nand_fcr0);
|
|
|
|
ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
|
|
ifc_nand_ctrl->read_bytes = 0;
|
|
fsl_ifc_run_command(mtd);
|
|
return;
|
|
|
|
/* SEQIN sets up the addr buffer and all registers except the length */
|
|
case NAND_CMD_SEQIN: {
|
|
u32 nand_fcr0;
|
|
ifc_nand_ctrl->column = column;
|
|
ifc_nand_ctrl->oob = 0;
|
|
|
|
if (mtd->writesize > 512) {
|
|
nand_fcr0 =
|
|
(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
|
|
(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
|
|
(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
|
|
|
|
ifc_out32(
|
|
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
|
|
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
|
|
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
|
|
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
|
|
&ifc->ifc_nand.nand_fir0);
|
|
ifc_out32(
|
|
(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
|
|
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
|
|
(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
|
|
&ifc->ifc_nand.nand_fir1);
|
|
} else {
|
|
nand_fcr0 = ((NAND_CMD_PAGEPROG <<
|
|
IFC_NAND_FCR0_CMD1_SHIFT) |
|
|
(NAND_CMD_SEQIN <<
|
|
IFC_NAND_FCR0_CMD2_SHIFT) |
|
|
(NAND_CMD_STATUS <<
|
|
IFC_NAND_FCR0_CMD3_SHIFT));
|
|
|
|
ifc_out32(
|
|
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
|
|
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
|
|
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
|
|
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
|
|
&ifc->ifc_nand.nand_fir0);
|
|
ifc_out32(
|
|
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
|
|
(IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
|
|
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
|
|
(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
|
|
&ifc->ifc_nand.nand_fir1);
|
|
|
|
if (column >= mtd->writesize)
|
|
nand_fcr0 |=
|
|
NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
|
|
else
|
|
nand_fcr0 |=
|
|
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
|
|
}
|
|
|
|
if (column >= mtd->writesize) {
|
|
/* OOB area --> READOOB */
|
|
column -= mtd->writesize;
|
|
ifc_nand_ctrl->oob = 1;
|
|
}
|
|
ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
|
|
set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
|
|
return;
|
|
}
|
|
|
|
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
|
|
case NAND_CMD_PAGEPROG: {
|
|
if (ifc_nand_ctrl->oob) {
|
|
ifc_out32(ifc_nand_ctrl->index -
|
|
ifc_nand_ctrl->column,
|
|
&ifc->ifc_nand.nand_fbcr);
|
|
} else {
|
|
ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
|
|
}
|
|
|
|
fsl_ifc_run_command(mtd);
|
|
return;
|
|
}
|
|
|
|
case NAND_CMD_STATUS: {
|
|
void __iomem *addr;
|
|
|
|
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
|
|
&ifc->ifc_nand.nand_fir0);
|
|
ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
|
|
&ifc->ifc_nand.nand_fcr0);
|
|
ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
|
|
set_addr(mtd, 0, 0, 0);
|
|
ifc_nand_ctrl->read_bytes = 1;
|
|
|
|
fsl_ifc_run_command(mtd);
|
|
|
|
/*
|
|
* The chip always seems to report that it is
|
|
* write-protected, even when it is not.
|
|
*/
|
|
addr = ifc_nand_ctrl->addr;
|
|
if (chip->options & NAND_BUSWIDTH_16)
|
|
ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
|
|
else
|
|
ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
|
|
return;
|
|
}
|
|
|
|
case NAND_CMD_RESET:
|
|
ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
|
|
&ifc->ifc_nand.nand_fir0);
|
|
ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
|
|
&ifc->ifc_nand.nand_fcr0);
|
|
fsl_ifc_run_command(mtd);
|
|
return;
|
|
|
|
default:
|
|
dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
|
|
__func__, command);
|
|
}
|
|
}
|
|
|
|
static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
/* The hardware does not seem to support multiple
|
|
* chips per bank.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Write buf to the IFC NAND Controller Data Buffer
|
|
*/
|
|
static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
unsigned int bufsize = mtd->writesize + mtd->oobsize;
|
|
|
|
if (len <= 0) {
|
|
dev_err(priv->dev, "%s: len %d bytes", __func__, len);
|
|
return;
|
|
}
|
|
|
|
if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
|
|
dev_err(priv->dev,
|
|
"%s: beyond end of buffer (%d requested, %u available)\n",
|
|
__func__, len, bufsize - ifc_nand_ctrl->index);
|
|
len = bufsize - ifc_nand_ctrl->index;
|
|
}
|
|
|
|
memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
|
|
ifc_nand_ctrl->index += len;
|
|
}
|
|
|
|
/*
|
|
* Read a byte from either the IFC hardware buffer
|
|
* read function for 8-bit buswidth
|
|
*/
|
|
static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
unsigned int offset;
|
|
|
|
/*
|
|
* If there are still bytes in the IFC buffer, then use the
|
|
* next byte.
|
|
*/
|
|
if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
|
|
offset = ifc_nand_ctrl->index++;
|
|
return ifc_in8(ifc_nand_ctrl->addr + offset);
|
|
}
|
|
|
|
dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
|
|
return ERR_BYTE;
|
|
}
|
|
|
|
/*
|
|
* Read two bytes from the IFC hardware buffer
|
|
* read function for 16-bit buswith
|
|
*/
|
|
static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
uint16_t data;
|
|
|
|
/*
|
|
* If there are still bytes in the IFC buffer, then use the
|
|
* next byte.
|
|
*/
|
|
if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
|
|
data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
|
|
ifc_nand_ctrl->index += 2;
|
|
return (uint8_t) data;
|
|
}
|
|
|
|
dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
|
|
return ERR_BYTE;
|
|
}
|
|
|
|
/*
|
|
* Read from the IFC Controller Data Buffer
|
|
*/
|
|
static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
int avail;
|
|
|
|
if (len < 0) {
|
|
dev_err(priv->dev, "%s: len %d bytes", __func__, len);
|
|
return;
|
|
}
|
|
|
|
avail = min((unsigned int)len,
|
|
ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
|
|
memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
|
|
ifc_nand_ctrl->index += avail;
|
|
|
|
if (len > avail)
|
|
dev_err(priv->dev,
|
|
"%s: beyond end of buffer (%d requested, %d available)\n",
|
|
__func__, len, avail);
|
|
}
|
|
|
|
/*
|
|
* This function is called after Program and Erase Operations to
|
|
* check for success or failure.
|
|
*/
|
|
static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip)
|
|
{
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
|
|
u32 nand_fsr;
|
|
|
|
/* Use READ_STATUS command, but wait for the device to be ready */
|
|
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
|
|
&ifc->ifc_nand.nand_fir0);
|
|
ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
|
|
&ifc->ifc_nand.nand_fcr0);
|
|
ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
|
|
set_addr(mtd, 0, 0, 0);
|
|
ifc_nand_ctrl->read_bytes = 1;
|
|
|
|
fsl_ifc_run_command(mtd);
|
|
|
|
nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
|
|
|
|
/*
|
|
* The chip always seems to report that it is
|
|
* write-protected, even when it is not.
|
|
*/
|
|
return nand_fsr | NAND_STATUS_WP;
|
|
}
|
|
|
|
static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
uint8_t *buf, int oob_required, int page)
|
|
{
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
|
|
|
|
fsl_ifc_read_buf(mtd, buf, mtd->writesize);
|
|
if (oob_required)
|
|
fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER)
|
|
dev_err(priv->dev, "NAND Flash ECC Uncorrectable Error\n");
|
|
|
|
if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
|
|
mtd->ecc_stats.failed++;
|
|
|
|
return nctrl->max_bitflips;
|
|
}
|
|
|
|
/* ECC will be calculated automatically, and errors will be detected in
|
|
* waitfunc.
|
|
*/
|
|
static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required, int page)
|
|
{
|
|
fsl_ifc_write_buf(mtd, buf, mtd->writesize);
|
|
fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ifc_chip_init_tail(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
|
|
|
|
dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
|
|
chip->numchips);
|
|
dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
|
|
chip->chipsize);
|
|
dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
|
|
chip->pagemask);
|
|
dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
|
|
chip->chip_delay);
|
|
dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
|
|
chip->badblockpos);
|
|
dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
|
|
chip->chip_shift);
|
|
dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
|
|
chip->page_shift);
|
|
dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
|
|
chip->phys_erase_shift);
|
|
dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
|
|
chip->ecc.mode);
|
|
dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
|
|
chip->ecc.steps);
|
|
dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
|
|
chip->ecc.bytes);
|
|
dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
|
|
chip->ecc.total);
|
|
dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
|
|
mtd->ooblayout);
|
|
dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
|
|
dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
|
|
dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
|
|
mtd->erasesize);
|
|
dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
|
|
mtd->writesize);
|
|
dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
|
|
mtd->oobsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
|
|
{
|
|
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
|
|
struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
|
|
uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
|
|
uint32_t cs = priv->bank;
|
|
|
|
/* Save CSOR and CSOR_ext */
|
|
csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
|
|
csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
|
|
|
|
/* chage PageSize 8K and SpareSize 1K*/
|
|
csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
|
|
ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
|
|
ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
|
|
|
|
/* READID */
|
|
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
|
|
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
|
|
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
|
|
&ifc_runtime->ifc_nand.nand_fir0);
|
|
ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
|
|
&ifc_runtime->ifc_nand.nand_fcr0);
|
|
ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
|
|
|
|
ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
|
|
|
|
/* Program ROW0/COL0 */
|
|
ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
|
|
ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
|
|
|
|
/* set the chip select for NAND Transaction */
|
|
ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
|
|
&ifc_runtime->ifc_nand.nand_csel);
|
|
|
|
/* start read seq */
|
|
ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
|
|
&ifc_runtime->ifc_nand.nandseq_strt);
|
|
|
|
/* wait for command complete flag or timeout */
|
|
wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
|
|
msecs_to_jiffies(IFC_TIMEOUT_MSECS));
|
|
|
|
if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
|
|
printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n");
|
|
|
|
/* Restore CSOR and CSOR_ext */
|
|
ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
|
|
ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
|
|
}
|
|
|
|
static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
|
|
{
|
|
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
|
|
struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
|
|
struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
|
|
struct nand_chip *chip = &priv->chip;
|
|
struct mtd_info *mtd = nand_to_mtd(&priv->chip);
|
|
u32 csor;
|
|
|
|
/* Fill in fsl_ifc_mtd structure */
|
|
mtd->dev.parent = priv->dev;
|
|
nand_set_flash_node(chip, priv->dev->of_node);
|
|
|
|
/* fill in nand_chip structure */
|
|
/* set up function call table */
|
|
if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
|
|
& CSPR_PORT_SIZE_16)
|
|
chip->read_byte = fsl_ifc_read_byte16;
|
|
else
|
|
chip->read_byte = fsl_ifc_read_byte;
|
|
|
|
chip->write_buf = fsl_ifc_write_buf;
|
|
chip->read_buf = fsl_ifc_read_buf;
|
|
chip->select_chip = fsl_ifc_select_chip;
|
|
chip->cmdfunc = fsl_ifc_cmdfunc;
|
|
chip->waitfunc = fsl_ifc_wait;
|
|
|
|
chip->bbt_td = &bbt_main_descr;
|
|
chip->bbt_md = &bbt_mirror_descr;
|
|
|
|
ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
|
|
|
|
/* set up nand options */
|
|
chip->bbt_options = NAND_BBT_USE_FLASH;
|
|
chip->options = NAND_NO_SUBPAGE_WRITE;
|
|
|
|
if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
|
|
& CSPR_PORT_SIZE_16) {
|
|
chip->read_byte = fsl_ifc_read_byte16;
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
} else {
|
|
chip->read_byte = fsl_ifc_read_byte;
|
|
}
|
|
|
|
chip->controller = &ifc_nand_ctrl->controller;
|
|
nand_set_controller_data(chip, priv);
|
|
|
|
chip->ecc.read_page = fsl_ifc_read_page;
|
|
chip->ecc.write_page = fsl_ifc_write_page;
|
|
|
|
csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
|
|
|
|
switch (csor & CSOR_NAND_PGS_MASK) {
|
|
case CSOR_NAND_PGS_512:
|
|
if (!(chip->options & NAND_BUSWIDTH_16)) {
|
|
/* Avoid conflict with bad block marker */
|
|
bbt_main_descr.offs = 0;
|
|
bbt_mirror_descr.offs = 0;
|
|
}
|
|
|
|
priv->bufnum_mask = 15;
|
|
break;
|
|
|
|
case CSOR_NAND_PGS_2K:
|
|
priv->bufnum_mask = 3;
|
|
break;
|
|
|
|
case CSOR_NAND_PGS_4K:
|
|
priv->bufnum_mask = 1;
|
|
break;
|
|
|
|
case CSOR_NAND_PGS_8K:
|
|
priv->bufnum_mask = 0;
|
|
break;
|
|
|
|
default:
|
|
dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
|
|
if (csor & CSOR_NAND_ECC_DEC_EN) {
|
|
chip->ecc.mode = NAND_ECC_HW;
|
|
mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
|
|
|
|
/* Hardware generates ECC per 512 Bytes */
|
|
chip->ecc.size = 512;
|
|
if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
|
|
chip->ecc.bytes = 8;
|
|
chip->ecc.strength = 4;
|
|
} else {
|
|
chip->ecc.bytes = 16;
|
|
chip->ecc.strength = 8;
|
|
}
|
|
} else {
|
|
chip->ecc.mode = NAND_ECC_SOFT;
|
|
chip->ecc.algo = NAND_ECC_HAMMING;
|
|
}
|
|
|
|
if (ctrl->version == FSL_IFC_VERSION_1_1_0)
|
|
fsl_ifc_sram_init(priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(&priv->chip);
|
|
|
|
nand_release(mtd);
|
|
|
|
kfree(mtd->name);
|
|
|
|
if (priv->vbase)
|
|
iounmap(priv->vbase);
|
|
|
|
ifc_nand_ctrl->chips[priv->bank] = NULL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
|
|
phys_addr_t addr)
|
|
{
|
|
u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
|
|
|
|
if (!(cspr & CSPR_V))
|
|
return 0;
|
|
if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
|
|
return 0;
|
|
|
|
return (cspr & CSPR_BA) == convert_ifc_address(addr);
|
|
}
|
|
|
|
static DEFINE_MUTEX(fsl_ifc_nand_mutex);
|
|
|
|
static int fsl_ifc_nand_probe(struct platform_device *dev)
|
|
{
|
|
struct fsl_ifc_runtime __iomem *ifc;
|
|
struct fsl_ifc_mtd *priv;
|
|
struct resource res;
|
|
static const char *part_probe_types[]
|
|
= { "cmdlinepart", "RedBoot", "ofpart", NULL };
|
|
int ret;
|
|
int bank;
|
|
struct device_node *node = dev->dev.of_node;
|
|
struct mtd_info *mtd;
|
|
|
|
if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
|
|
return -ENODEV;
|
|
ifc = fsl_ifc_ctrl_dev->rregs;
|
|
|
|
/* get, allocate and map the memory resource */
|
|
ret = of_address_to_resource(node, 0, &res);
|
|
if (ret) {
|
|
dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
|
|
return ret;
|
|
}
|
|
|
|
/* find which chip select it is connected to */
|
|
for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
|
|
if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
|
|
break;
|
|
}
|
|
|
|
if (bank >= fsl_ifc_ctrl_dev->banks) {
|
|
dev_err(&dev->dev, "%s: address did not match any chip selects\n",
|
|
__func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
|
|
if (!priv)
|
|
return -ENOMEM;
|
|
|
|
mutex_lock(&fsl_ifc_nand_mutex);
|
|
if (!fsl_ifc_ctrl_dev->nand) {
|
|
ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
|
|
if (!ifc_nand_ctrl) {
|
|
mutex_unlock(&fsl_ifc_nand_mutex);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ifc_nand_ctrl->read_bytes = 0;
|
|
ifc_nand_ctrl->index = 0;
|
|
ifc_nand_ctrl->addr = NULL;
|
|
fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
|
|
|
|
nand_hw_control_init(&ifc_nand_ctrl->controller);
|
|
} else {
|
|
ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
|
|
}
|
|
mutex_unlock(&fsl_ifc_nand_mutex);
|
|
|
|
ifc_nand_ctrl->chips[bank] = priv;
|
|
priv->bank = bank;
|
|
priv->ctrl = fsl_ifc_ctrl_dev;
|
|
priv->dev = &dev->dev;
|
|
|
|
priv->vbase = ioremap(res.start, resource_size(&res));
|
|
if (!priv->vbase) {
|
|
dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
dev_set_drvdata(priv->dev, priv);
|
|
|
|
ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
|
|
IFC_NAND_EVTER_EN_FTOER_EN |
|
|
IFC_NAND_EVTER_EN_WPER_EN,
|
|
&ifc->ifc_nand.nand_evter_en);
|
|
|
|
/* enable NAND Machine Interrupts */
|
|
ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
|
|
IFC_NAND_EVTER_INTR_FTOERIR_EN |
|
|
IFC_NAND_EVTER_INTR_WPERIR_EN,
|
|
&ifc->ifc_nand.nand_evter_intr_en);
|
|
|
|
mtd = nand_to_mtd(&priv->chip);
|
|
mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
|
|
if (!mtd->name) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
ret = fsl_ifc_chip_init(priv);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = nand_scan_ident(mtd, 1, NULL);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = fsl_ifc_chip_init_tail(mtd);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = nand_scan_tail(mtd);
|
|
if (ret)
|
|
goto err;
|
|
|
|
/* First look for RedBoot table or partitions on the command
|
|
* line, these take precedence over device tree information */
|
|
mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
|
|
|
|
dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
|
|
(unsigned long long)res.start, priv->bank);
|
|
return 0;
|
|
|
|
err:
|
|
fsl_ifc_chip_remove(priv);
|
|
return ret;
|
|
}
|
|
|
|
static int fsl_ifc_nand_remove(struct platform_device *dev)
|
|
{
|
|
struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
|
|
|
|
fsl_ifc_chip_remove(priv);
|
|
|
|
mutex_lock(&fsl_ifc_nand_mutex);
|
|
ifc_nand_ctrl->counter--;
|
|
if (!ifc_nand_ctrl->counter) {
|
|
fsl_ifc_ctrl_dev->nand = NULL;
|
|
kfree(ifc_nand_ctrl);
|
|
}
|
|
mutex_unlock(&fsl_ifc_nand_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id fsl_ifc_nand_match[] = {
|
|
{
|
|
.compatible = "fsl,ifc-nand",
|
|
},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
|
|
|
|
static struct platform_driver fsl_ifc_nand_driver = {
|
|
.driver = {
|
|
.name = "fsl,ifc-nand",
|
|
.of_match_table = fsl_ifc_nand_match,
|
|
},
|
|
.probe = fsl_ifc_nand_probe,
|
|
.remove = fsl_ifc_nand_remove,
|
|
};
|
|
|
|
module_platform_driver(fsl_ifc_nand_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Freescale");
|
|
MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");
|