mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 16:23:03 +07:00
5451781dad
In general when the consumer of a regulator requests that the regulator be disabled it no longer will be drawing much load from the regulator--it should just be the leakage current and that should be very close to 0. Up to this point the regulator framework has continued to count a consumer's load request for disabled regulators. This has led to code patterns that look like this: enable_my_thing(): regular_set_load(reg, load_uA) regulator_enable(reg) disable_my_thing(): regulator_disable(reg) regulator_set_load(reg, 0) Sometimes disable_my_thing() sets a nominal (<= 100 uA) load instead of setting a 0 uA load. I will make the assertion that nearly all (if not all) places where we set a nominal load of 100 uA or less we end up with a result that is the same as if we had set a load of 0 uA. Specifically: - The whole point of setting the load is to help set the operating mode of the regulator. Higher loads may need less efficient operating modes. - The only time this matters at all is if there is another consumer of the regulator that wants the regulator on. If there are no other consumers of the regulator then the regulator will turn off and we don't care about the operating mode. - If there's another consumer that actually wants the regulator on then presumably it is requesting a load that makes our nominal <= 100 uA load insignificant. A quick survey of the existing callers to regulator_set_load() to see how everyone uses it: Signed-off-by: Douglas Anderson <dianders@chromium.org> Signed-off-by: Mark Brown <broonie@kernel.org>
552 lines
21 KiB
C
552 lines
21 KiB
C
/*
|
|
* driver.h -- SoC Regulator driver support.
|
|
*
|
|
* Copyright (C) 2007, 2008 Wolfson Microelectronics PLC.
|
|
*
|
|
* Author: Liam Girdwood <lrg@slimlogic.co.uk>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Regulator Driver Interface.
|
|
*/
|
|
|
|
#ifndef __LINUX_REGULATOR_DRIVER_H_
|
|
#define __LINUX_REGULATOR_DRIVER_H_
|
|
|
|
#define MAX_COUPLED 2
|
|
|
|
#include <linux/device.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/ww_mutex.h>
|
|
|
|
struct gpio_desc;
|
|
struct regmap;
|
|
struct regulator_dev;
|
|
struct regulator_config;
|
|
struct regulator_init_data;
|
|
struct regulator_enable_gpio;
|
|
|
|
enum regulator_status {
|
|
REGULATOR_STATUS_OFF,
|
|
REGULATOR_STATUS_ON,
|
|
REGULATOR_STATUS_ERROR,
|
|
/* fast/normal/idle/standby are flavors of "on" */
|
|
REGULATOR_STATUS_FAST,
|
|
REGULATOR_STATUS_NORMAL,
|
|
REGULATOR_STATUS_IDLE,
|
|
REGULATOR_STATUS_STANDBY,
|
|
/* The regulator is enabled but not regulating */
|
|
REGULATOR_STATUS_BYPASS,
|
|
/* in case that any other status doesn't apply */
|
|
REGULATOR_STATUS_UNDEFINED,
|
|
};
|
|
|
|
/**
|
|
* struct regulator_linear_range - specify linear voltage ranges
|
|
*
|
|
* Specify a range of voltages for regulator_map_linear_range() and
|
|
* regulator_list_linear_range().
|
|
*
|
|
* @min_uV: Lowest voltage in range
|
|
* @min_sel: Lowest selector for range
|
|
* @max_sel: Highest selector for range
|
|
* @uV_step: Step size
|
|
*/
|
|
struct regulator_linear_range {
|
|
unsigned int min_uV;
|
|
unsigned int min_sel;
|
|
unsigned int max_sel;
|
|
unsigned int uV_step;
|
|
};
|
|
|
|
/* Initialize struct regulator_linear_range */
|
|
#define REGULATOR_LINEAR_RANGE(_min_uV, _min_sel, _max_sel, _step_uV) \
|
|
{ \
|
|
.min_uV = _min_uV, \
|
|
.min_sel = _min_sel, \
|
|
.max_sel = _max_sel, \
|
|
.uV_step = _step_uV, \
|
|
}
|
|
|
|
/**
|
|
* struct regulator_ops - regulator operations.
|
|
*
|
|
* @enable: Configure the regulator as enabled.
|
|
* @disable: Configure the regulator as disabled.
|
|
* @is_enabled: Return 1 if the regulator is enabled, 0 if not.
|
|
* May also return negative errno.
|
|
*
|
|
* @set_voltage: Set the voltage for the regulator within the range specified.
|
|
* The driver should select the voltage closest to min_uV.
|
|
* @set_voltage_sel: Set the voltage for the regulator using the specified
|
|
* selector.
|
|
* @map_voltage: Convert a voltage into a selector
|
|
* @get_voltage: Return the currently configured voltage for the regulator;
|
|
* return -ENOTRECOVERABLE if regulator can't be read at
|
|
* bootup and hasn't been set yet.
|
|
* @get_voltage_sel: Return the currently configured voltage selector for the
|
|
* regulator; return -ENOTRECOVERABLE if regulator can't
|
|
* be read at bootup and hasn't been set yet.
|
|
* @list_voltage: Return one of the supported voltages, in microvolts; zero
|
|
* if the selector indicates a voltage that is unusable on this system;
|
|
* or negative errno. Selectors range from zero to one less than
|
|
* regulator_desc.n_voltages. Voltages may be reported in any order.
|
|
*
|
|
* @set_current_limit: Configure a limit for a current-limited regulator.
|
|
* The driver should select the current closest to max_uA.
|
|
* @get_current_limit: Get the configured limit for a current-limited regulator.
|
|
* @set_input_current_limit: Configure an input limit.
|
|
*
|
|
* @set_over_current_protection: Support capability of automatically shutting
|
|
* down when detecting an over current event.
|
|
*
|
|
* @set_active_discharge: Set active discharge enable/disable of regulators.
|
|
*
|
|
* @set_mode: Set the configured operating mode for the regulator.
|
|
* @get_mode: Get the configured operating mode for the regulator.
|
|
* @get_error_flags: Get the current error(s) for the regulator.
|
|
* @get_status: Return actual (not as-configured) status of regulator, as a
|
|
* REGULATOR_STATUS value (or negative errno)
|
|
* @get_optimum_mode: Get the most efficient operating mode for the regulator
|
|
* when running with the specified parameters.
|
|
* @set_load: Set the load for the regulator.
|
|
*
|
|
* @set_bypass: Set the regulator in bypass mode.
|
|
* @get_bypass: Get the regulator bypass mode state.
|
|
*
|
|
* @enable_time: Time taken for the regulator voltage output voltage to
|
|
* stabilise after being enabled, in microseconds.
|
|
* @set_ramp_delay: Set the ramp delay for the regulator. The driver should
|
|
* select ramp delay equal to or less than(closest) ramp_delay.
|
|
* @set_voltage_time: Time taken for the regulator voltage output voltage
|
|
* to stabilise after being set to a new value, in microseconds.
|
|
* The function receives the from and to voltage as input, it
|
|
* should return the worst case.
|
|
* @set_voltage_time_sel: Time taken for the regulator voltage output voltage
|
|
* to stabilise after being set to a new value, in microseconds.
|
|
* The function receives the from and to voltage selector as
|
|
* input, it should return the worst case.
|
|
* @set_soft_start: Enable soft start for the regulator.
|
|
*
|
|
* @set_suspend_voltage: Set the voltage for the regulator when the system
|
|
* is suspended.
|
|
* @set_suspend_enable: Mark the regulator as enabled when the system is
|
|
* suspended.
|
|
* @set_suspend_disable: Mark the regulator as disabled when the system is
|
|
* suspended.
|
|
* @set_suspend_mode: Set the operating mode for the regulator when the
|
|
* system is suspended.
|
|
*
|
|
* @set_pull_down: Configure the regulator to pull down when the regulator
|
|
* is disabled.
|
|
*
|
|
* This struct describes regulator operations which can be implemented by
|
|
* regulator chip drivers.
|
|
*/
|
|
struct regulator_ops {
|
|
|
|
/* enumerate supported voltages */
|
|
int (*list_voltage) (struct regulator_dev *, unsigned selector);
|
|
|
|
/* get/set regulator voltage */
|
|
int (*set_voltage) (struct regulator_dev *, int min_uV, int max_uV,
|
|
unsigned *selector);
|
|
int (*map_voltage)(struct regulator_dev *, int min_uV, int max_uV);
|
|
int (*set_voltage_sel) (struct regulator_dev *, unsigned selector);
|
|
int (*get_voltage) (struct regulator_dev *);
|
|
int (*get_voltage_sel) (struct regulator_dev *);
|
|
|
|
/* get/set regulator current */
|
|
int (*set_current_limit) (struct regulator_dev *,
|
|
int min_uA, int max_uA);
|
|
int (*get_current_limit) (struct regulator_dev *);
|
|
|
|
int (*set_input_current_limit) (struct regulator_dev *, int lim_uA);
|
|
int (*set_over_current_protection) (struct regulator_dev *);
|
|
int (*set_active_discharge) (struct regulator_dev *, bool enable);
|
|
|
|
/* enable/disable regulator */
|
|
int (*enable) (struct regulator_dev *);
|
|
int (*disable) (struct regulator_dev *);
|
|
int (*is_enabled) (struct regulator_dev *);
|
|
|
|
/* get/set regulator operating mode (defined in consumer.h) */
|
|
int (*set_mode) (struct regulator_dev *, unsigned int mode);
|
|
unsigned int (*get_mode) (struct regulator_dev *);
|
|
|
|
/* retrieve current error flags on the regulator */
|
|
int (*get_error_flags)(struct regulator_dev *, unsigned int *flags);
|
|
|
|
/* Time taken to enable or set voltage on the regulator */
|
|
int (*enable_time) (struct regulator_dev *);
|
|
int (*set_ramp_delay) (struct regulator_dev *, int ramp_delay);
|
|
int (*set_voltage_time) (struct regulator_dev *, int old_uV,
|
|
int new_uV);
|
|
int (*set_voltage_time_sel) (struct regulator_dev *,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector);
|
|
|
|
int (*set_soft_start) (struct regulator_dev *);
|
|
|
|
/* report regulator status ... most other accessors report
|
|
* control inputs, this reports results of combining inputs
|
|
* from Linux (and other sources) with the actual load.
|
|
* returns REGULATOR_STATUS_* or negative errno.
|
|
*/
|
|
int (*get_status)(struct regulator_dev *);
|
|
|
|
/* get most efficient regulator operating mode for load */
|
|
unsigned int (*get_optimum_mode) (struct regulator_dev *, int input_uV,
|
|
int output_uV, int load_uA);
|
|
/* set the load on the regulator */
|
|
int (*set_load)(struct regulator_dev *, int load_uA);
|
|
|
|
/* control and report on bypass mode */
|
|
int (*set_bypass)(struct regulator_dev *dev, bool enable);
|
|
int (*get_bypass)(struct regulator_dev *dev, bool *enable);
|
|
|
|
/* the operations below are for configuration of regulator state when
|
|
* its parent PMIC enters a global STANDBY/HIBERNATE state */
|
|
|
|
/* set regulator suspend voltage */
|
|
int (*set_suspend_voltage) (struct regulator_dev *, int uV);
|
|
|
|
/* enable/disable regulator in suspend state */
|
|
int (*set_suspend_enable) (struct regulator_dev *);
|
|
int (*set_suspend_disable) (struct regulator_dev *);
|
|
|
|
/* set regulator suspend operating mode (defined in consumer.h) */
|
|
int (*set_suspend_mode) (struct regulator_dev *, unsigned int mode);
|
|
|
|
int (*resume)(struct regulator_dev *rdev);
|
|
|
|
int (*set_pull_down) (struct regulator_dev *);
|
|
};
|
|
|
|
/*
|
|
* Regulators can either control voltage or current.
|
|
*/
|
|
enum regulator_type {
|
|
REGULATOR_VOLTAGE,
|
|
REGULATOR_CURRENT,
|
|
};
|
|
|
|
/**
|
|
* struct regulator_desc - Static regulator descriptor
|
|
*
|
|
* Each regulator registered with the core is described with a
|
|
* structure of this type and a struct regulator_config. This
|
|
* structure contains the non-varying parts of the regulator
|
|
* description.
|
|
*
|
|
* @name: Identifying name for the regulator.
|
|
* @supply_name: Identifying the regulator supply
|
|
* @of_match: Name used to identify regulator in DT.
|
|
* @regulators_node: Name of node containing regulator definitions in DT.
|
|
* @of_parse_cb: Optional callback called only if of_match is present.
|
|
* Will be called for each regulator parsed from DT, during
|
|
* init_data parsing.
|
|
* The regulator_config passed as argument to the callback will
|
|
* be a copy of config passed to regulator_register, valid only
|
|
* for this particular call. Callback may freely change the
|
|
* config but it cannot store it for later usage.
|
|
* Callback should return 0 on success or negative ERRNO
|
|
* indicating failure.
|
|
* @id: Numerical identifier for the regulator.
|
|
* @ops: Regulator operations table.
|
|
* @irq: Interrupt number for the regulator.
|
|
* @type: Indicates if the regulator is a voltage or current regulator.
|
|
* @owner: Module providing the regulator, used for refcounting.
|
|
*
|
|
* @continuous_voltage_range: Indicates if the regulator can set any
|
|
* voltage within constrains range.
|
|
* @n_voltages: Number of selectors available for ops.list_voltage().
|
|
*
|
|
* @min_uV: Voltage given by the lowest selector (if linear mapping)
|
|
* @uV_step: Voltage increase with each selector (if linear mapping)
|
|
* @linear_min_sel: Minimal selector for starting linear mapping
|
|
* @fixed_uV: Fixed voltage of rails.
|
|
* @ramp_delay: Time to settle down after voltage change (unit: uV/us)
|
|
* @min_dropout_uV: The minimum dropout voltage this regulator can handle
|
|
* @linear_ranges: A constant table of possible voltage ranges.
|
|
* @linear_range_selectors: A constant table of voltage range selectors.
|
|
* If pickable ranges are used each range must
|
|
* have corresponding selector here.
|
|
* @n_linear_ranges: Number of entries in the @linear_ranges (and in
|
|
* linear_range_selectors if used) table(s).
|
|
* @volt_table: Voltage mapping table (if table based mapping)
|
|
*
|
|
* @vsel_range_reg: Register for range selector when using pickable ranges
|
|
* and regulator_regmap_X_voltage_X_pickable functions.
|
|
* @vsel_range_mask: Mask for register bitfield used for range selector
|
|
* @vsel_reg: Register for selector when using regulator_regmap_X_voltage_
|
|
* @vsel_mask: Mask for register bitfield used for selector
|
|
* @csel_reg: Register for TPS65218 LS3 current regulator
|
|
* @csel_mask: Mask for TPS65218 LS3 current regulator
|
|
* @apply_reg: Register for initiate voltage change on the output when
|
|
* using regulator_set_voltage_sel_regmap
|
|
* @apply_bit: Register bitfield used for initiate voltage change on the
|
|
* output when using regulator_set_voltage_sel_regmap
|
|
* @enable_reg: Register for control when using regmap enable/disable ops
|
|
* @enable_mask: Mask for control when using regmap enable/disable ops
|
|
* @enable_val: Enabling value for control when using regmap enable/disable ops
|
|
* @disable_val: Disabling value for control when using regmap enable/disable ops
|
|
* @enable_is_inverted: A flag to indicate set enable_mask bits to disable
|
|
* when using regulator_enable_regmap and friends APIs.
|
|
* @bypass_reg: Register for control when using regmap set_bypass
|
|
* @bypass_mask: Mask for control when using regmap set_bypass
|
|
* @bypass_val_on: Enabling value for control when using regmap set_bypass
|
|
* @bypass_val_off: Disabling value for control when using regmap set_bypass
|
|
* @active_discharge_off: Enabling value for control when using regmap
|
|
* set_active_discharge
|
|
* @active_discharge_on: Disabling value for control when using regmap
|
|
* set_active_discharge
|
|
* @active_discharge_mask: Mask for control when using regmap
|
|
* set_active_discharge
|
|
* @active_discharge_reg: Register for control when using regmap
|
|
* set_active_discharge
|
|
* @soft_start_reg: Register for control when using regmap set_soft_start
|
|
* @soft_start_mask: Mask for control when using regmap set_soft_start
|
|
* @soft_start_val_on: Enabling value for control when using regmap
|
|
* set_soft_start
|
|
* @pull_down_reg: Register for control when using regmap set_pull_down
|
|
* @pull_down_mask: Mask for control when using regmap set_pull_down
|
|
* @pull_down_val_on: Enabling value for control when using regmap
|
|
* set_pull_down
|
|
*
|
|
* @enable_time: Time taken for initial enable of regulator (in uS).
|
|
* @off_on_delay: guard time (in uS), before re-enabling a regulator
|
|
*
|
|
* @of_map_mode: Maps a hardware mode defined in a DeviceTree to a standard mode
|
|
*/
|
|
struct regulator_desc {
|
|
const char *name;
|
|
const char *supply_name;
|
|
const char *of_match;
|
|
const char *regulators_node;
|
|
int (*of_parse_cb)(struct device_node *,
|
|
const struct regulator_desc *,
|
|
struct regulator_config *);
|
|
int id;
|
|
unsigned int continuous_voltage_range:1;
|
|
unsigned n_voltages;
|
|
const struct regulator_ops *ops;
|
|
int irq;
|
|
enum regulator_type type;
|
|
struct module *owner;
|
|
|
|
unsigned int min_uV;
|
|
unsigned int uV_step;
|
|
unsigned int linear_min_sel;
|
|
int fixed_uV;
|
|
unsigned int ramp_delay;
|
|
int min_dropout_uV;
|
|
|
|
const struct regulator_linear_range *linear_ranges;
|
|
const unsigned int *linear_range_selectors;
|
|
|
|
int n_linear_ranges;
|
|
|
|
const unsigned int *volt_table;
|
|
|
|
unsigned int vsel_range_reg;
|
|
unsigned int vsel_range_mask;
|
|
unsigned int vsel_reg;
|
|
unsigned int vsel_mask;
|
|
unsigned int csel_reg;
|
|
unsigned int csel_mask;
|
|
unsigned int apply_reg;
|
|
unsigned int apply_bit;
|
|
unsigned int enable_reg;
|
|
unsigned int enable_mask;
|
|
unsigned int enable_val;
|
|
unsigned int disable_val;
|
|
bool enable_is_inverted;
|
|
unsigned int bypass_reg;
|
|
unsigned int bypass_mask;
|
|
unsigned int bypass_val_on;
|
|
unsigned int bypass_val_off;
|
|
unsigned int active_discharge_on;
|
|
unsigned int active_discharge_off;
|
|
unsigned int active_discharge_mask;
|
|
unsigned int active_discharge_reg;
|
|
unsigned int soft_start_reg;
|
|
unsigned int soft_start_mask;
|
|
unsigned int soft_start_val_on;
|
|
unsigned int pull_down_reg;
|
|
unsigned int pull_down_mask;
|
|
unsigned int pull_down_val_on;
|
|
|
|
unsigned int enable_time;
|
|
|
|
unsigned int off_on_delay;
|
|
|
|
unsigned int (*of_map_mode)(unsigned int mode);
|
|
};
|
|
|
|
/**
|
|
* struct regulator_config - Dynamic regulator descriptor
|
|
*
|
|
* Each regulator registered with the core is described with a
|
|
* structure of this type and a struct regulator_desc. This structure
|
|
* contains the runtime variable parts of the regulator description.
|
|
*
|
|
* @dev: struct device for the regulator
|
|
* @init_data: platform provided init data, passed through by driver
|
|
* @driver_data: private regulator data
|
|
* @of_node: OpenFirmware node to parse for device tree bindings (may be
|
|
* NULL).
|
|
* @regmap: regmap to use for core regmap helpers if dev_get_regmap() is
|
|
* insufficient.
|
|
* @ena_gpio_initialized: GPIO controlling regulator enable was properly
|
|
* initialized, meaning that >= 0 is a valid gpio
|
|
* identifier and < 0 is a non existent gpio.
|
|
* @ena_gpio: GPIO controlling regulator enable.
|
|
* @ena_gpiod: GPIO descriptor controlling regulator enable.
|
|
* @ena_gpio_invert: Sense for GPIO enable control.
|
|
* @ena_gpio_flags: Flags to use when calling gpio_request_one()
|
|
*/
|
|
struct regulator_config {
|
|
struct device *dev;
|
|
const struct regulator_init_data *init_data;
|
|
void *driver_data;
|
|
struct device_node *of_node;
|
|
struct regmap *regmap;
|
|
|
|
bool ena_gpio_initialized;
|
|
int ena_gpio;
|
|
struct gpio_desc *ena_gpiod;
|
|
unsigned int ena_gpio_invert:1;
|
|
unsigned int ena_gpio_flags;
|
|
};
|
|
|
|
/*
|
|
* struct coupling_desc
|
|
*
|
|
* Describes coupling of regulators. Each regulator should have
|
|
* at least a pointer to itself in coupled_rdevs array.
|
|
* When a new coupled regulator is resolved, n_resolved is
|
|
* incremented.
|
|
*/
|
|
struct coupling_desc {
|
|
struct regulator_dev *coupled_rdevs[MAX_COUPLED];
|
|
int n_resolved;
|
|
int n_coupled;
|
|
};
|
|
|
|
/*
|
|
* struct regulator_dev
|
|
*
|
|
* Voltage / Current regulator class device. One for each
|
|
* regulator.
|
|
*
|
|
* This should *not* be used directly by anything except the regulator
|
|
* core and notification injection (which should take the mutex and do
|
|
* no other direct access).
|
|
*/
|
|
struct regulator_dev {
|
|
const struct regulator_desc *desc;
|
|
int exclusive;
|
|
u32 use_count;
|
|
u32 open_count;
|
|
u32 bypass_count;
|
|
|
|
/* lists we belong to */
|
|
struct list_head list; /* list of all regulators */
|
|
|
|
/* lists we own */
|
|
struct list_head consumer_list; /* consumers we supply */
|
|
|
|
struct coupling_desc coupling_desc;
|
|
|
|
struct blocking_notifier_head notifier;
|
|
struct ww_mutex mutex; /* consumer lock */
|
|
struct task_struct *mutex_owner;
|
|
int ref_cnt;
|
|
struct module *owner;
|
|
struct device dev;
|
|
struct regulation_constraints *constraints;
|
|
struct regulator *supply; /* for tree */
|
|
const char *supply_name;
|
|
struct regmap *regmap;
|
|
|
|
struct delayed_work disable_work;
|
|
|
|
void *reg_data; /* regulator_dev data */
|
|
|
|
struct dentry *debugfs;
|
|
|
|
struct regulator_enable_gpio *ena_pin;
|
|
unsigned int ena_gpio_state:1;
|
|
|
|
unsigned int is_switch:1;
|
|
|
|
/* time when this regulator was disabled last time */
|
|
unsigned long last_off_jiffy;
|
|
};
|
|
|
|
struct regulator_dev *
|
|
regulator_register(const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *config);
|
|
struct regulator_dev *
|
|
devm_regulator_register(struct device *dev,
|
|
const struct regulator_desc *regulator_desc,
|
|
const struct regulator_config *config);
|
|
void regulator_unregister(struct regulator_dev *rdev);
|
|
void devm_regulator_unregister(struct device *dev, struct regulator_dev *rdev);
|
|
|
|
int regulator_notifier_call_chain(struct regulator_dev *rdev,
|
|
unsigned long event, void *data);
|
|
|
|
void *rdev_get_drvdata(struct regulator_dev *rdev);
|
|
struct device *rdev_get_dev(struct regulator_dev *rdev);
|
|
int rdev_get_id(struct regulator_dev *rdev);
|
|
|
|
int regulator_mode_to_status(unsigned int);
|
|
|
|
int regulator_list_voltage_linear(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_list_voltage_pickable_linear_range(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_list_voltage_linear_range(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_list_voltage_table(struct regulator_dev *rdev,
|
|
unsigned int selector);
|
|
int regulator_map_voltage_linear(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_pickable_linear_range(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_linear_range(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_iterate(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_map_voltage_ascend(struct regulator_dev *rdev,
|
|
int min_uV, int max_uV);
|
|
int regulator_get_voltage_sel_pickable_regmap(struct regulator_dev *rdev);
|
|
int regulator_set_voltage_sel_pickable_regmap(struct regulator_dev *rdev,
|
|
unsigned int sel);
|
|
int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev);
|
|
int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel);
|
|
int regulator_is_enabled_regmap(struct regulator_dev *rdev);
|
|
int regulator_enable_regmap(struct regulator_dev *rdev);
|
|
int regulator_disable_regmap(struct regulator_dev *rdev);
|
|
int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
|
|
unsigned int old_selector,
|
|
unsigned int new_selector);
|
|
int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable);
|
|
int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable);
|
|
int regulator_set_soft_start_regmap(struct regulator_dev *rdev);
|
|
int regulator_set_pull_down_regmap(struct regulator_dev *rdev);
|
|
|
|
int regulator_set_active_discharge_regmap(struct regulator_dev *rdev,
|
|
bool enable);
|
|
void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data);
|
|
|
|
void regulator_lock(struct regulator_dev *rdev);
|
|
void regulator_unlock(struct regulator_dev *rdev);
|
|
|
|
#endif
|