linux_dsm_epyc7002/drivers/net/ethernet/intel/e1000e/netdev.c
Andi Kleen c6f3148c5b e1000e: Out of line __ew32_prepare/__ew32
Out of lining these two common inlines saves about 30k text size,
due to their errata workarounds.

14131431	2008136	1507328	17646895	10d452f	vmlinux-before-e1000e
14101415	2004040	1507328	17612783	10cbfef	vmlinux-e1000e

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Tested-by: Aaron Brown <aaron.f.brown@intel.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
2014-05-27 02:10:44 -07:00

7248 lines
203 KiB
C

/* Intel PRO/1000 Linux driver
* Copyright(c) 1999 - 2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* Linux NICS <linux.nics@intel.com>
* e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/interrupt.h>
#include <linux/tcp.h>
#include <linux/ipv6.h>
#include <linux/slab.h>
#include <net/checksum.h>
#include <net/ip6_checksum.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/cpu.h>
#include <linux/smp.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/aer.h>
#include <linux/prefetch.h>
#include "e1000.h"
#define DRV_EXTRAVERSION "-k"
#define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
char e1000e_driver_name[] = "e1000e";
const char e1000e_driver_version[] = DRV_VERSION;
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
static const struct e1000_info *e1000_info_tbl[] = {
[board_82571] = &e1000_82571_info,
[board_82572] = &e1000_82572_info,
[board_82573] = &e1000_82573_info,
[board_82574] = &e1000_82574_info,
[board_82583] = &e1000_82583_info,
[board_80003es2lan] = &e1000_es2_info,
[board_ich8lan] = &e1000_ich8_info,
[board_ich9lan] = &e1000_ich9_info,
[board_ich10lan] = &e1000_ich10_info,
[board_pchlan] = &e1000_pch_info,
[board_pch2lan] = &e1000_pch2_info,
[board_pch_lpt] = &e1000_pch_lpt_info,
};
struct e1000_reg_info {
u32 ofs;
char *name;
};
static const struct e1000_reg_info e1000_reg_info_tbl[] = {
/* General Registers */
{E1000_CTRL, "CTRL"},
{E1000_STATUS, "STATUS"},
{E1000_CTRL_EXT, "CTRL_EXT"},
/* Interrupt Registers */
{E1000_ICR, "ICR"},
/* Rx Registers */
{E1000_RCTL, "RCTL"},
{E1000_RDLEN(0), "RDLEN"},
{E1000_RDH(0), "RDH"},
{E1000_RDT(0), "RDT"},
{E1000_RDTR, "RDTR"},
{E1000_RXDCTL(0), "RXDCTL"},
{E1000_ERT, "ERT"},
{E1000_RDBAL(0), "RDBAL"},
{E1000_RDBAH(0), "RDBAH"},
{E1000_RDFH, "RDFH"},
{E1000_RDFT, "RDFT"},
{E1000_RDFHS, "RDFHS"},
{E1000_RDFTS, "RDFTS"},
{E1000_RDFPC, "RDFPC"},
/* Tx Registers */
{E1000_TCTL, "TCTL"},
{E1000_TDBAL(0), "TDBAL"},
{E1000_TDBAH(0), "TDBAH"},
{E1000_TDLEN(0), "TDLEN"},
{E1000_TDH(0), "TDH"},
{E1000_TDT(0), "TDT"},
{E1000_TIDV, "TIDV"},
{E1000_TXDCTL(0), "TXDCTL"},
{E1000_TADV, "TADV"},
{E1000_TARC(0), "TARC"},
{E1000_TDFH, "TDFH"},
{E1000_TDFT, "TDFT"},
{E1000_TDFHS, "TDFHS"},
{E1000_TDFTS, "TDFTS"},
{E1000_TDFPC, "TDFPC"},
/* List Terminator */
{0, NULL}
};
/**
* __ew32_prepare - prepare to write to MAC CSR register on certain parts
* @hw: pointer to the HW structure
*
* When updating the MAC CSR registers, the Manageability Engine (ME) could
* be accessing the registers at the same time. Normally, this is handled in
* h/w by an arbiter but on some parts there is a bug that acknowledges Host
* accesses later than it should which could result in the register to have
* an incorrect value. Workaround this by checking the FWSM register which
* has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
* and try again a number of times.
**/
s32 __ew32_prepare(struct e1000_hw *hw)
{
s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
udelay(50);
return i;
}
void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
{
if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
__ew32_prepare(hw);
writel(val, hw->hw_addr + reg);
}
/**
* e1000_regdump - register printout routine
* @hw: pointer to the HW structure
* @reginfo: pointer to the register info table
**/
static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
{
int n = 0;
char rname[16];
u32 regs[8];
switch (reginfo->ofs) {
case E1000_RXDCTL(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_RXDCTL(n));
break;
case E1000_TXDCTL(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_TXDCTL(n));
break;
case E1000_TARC(0):
for (n = 0; n < 2; n++)
regs[n] = __er32(hw, E1000_TARC(n));
break;
default:
pr_info("%-15s %08x\n",
reginfo->name, __er32(hw, reginfo->ofs));
return;
}
snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
}
static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
struct e1000_buffer *bi)
{
int i;
struct e1000_ps_page *ps_page;
for (i = 0; i < adapter->rx_ps_pages; i++) {
ps_page = &bi->ps_pages[i];
if (ps_page->page) {
pr_info("packet dump for ps_page %d:\n", i);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
16, 1, page_address(ps_page->page),
PAGE_SIZE, true);
}
}
}
/**
* e1000e_dump - Print registers, Tx-ring and Rx-ring
* @adapter: board private structure
**/
static void e1000e_dump(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_reg_info *reginfo;
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_tx_desc *tx_desc;
struct my_u0 {
__le64 a;
__le64 b;
} *u0;
struct e1000_buffer *buffer_info;
struct e1000_ring *rx_ring = adapter->rx_ring;
union e1000_rx_desc_packet_split *rx_desc_ps;
union e1000_rx_desc_extended *rx_desc;
struct my_u1 {
__le64 a;
__le64 b;
__le64 c;
__le64 d;
} *u1;
u32 staterr;
int i = 0;
if (!netif_msg_hw(adapter))
return;
/* Print netdevice Info */
if (netdev) {
dev_info(&adapter->pdev->dev, "Net device Info\n");
pr_info("Device Name state trans_start last_rx\n");
pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
netdev->state, netdev->trans_start, netdev->last_rx);
}
/* Print Registers */
dev_info(&adapter->pdev->dev, "Register Dump\n");
pr_info(" Register Name Value\n");
for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
reginfo->name; reginfo++) {
e1000_regdump(hw, reginfo);
}
/* Print Tx Ring Summary */
if (!netdev || !netif_running(netdev))
return;
dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
0, tx_ring->next_to_use, tx_ring->next_to_clean,
(unsigned long long)buffer_info->dma,
buffer_info->length,
buffer_info->next_to_watch,
(unsigned long long)buffer_info->time_stamp);
/* Print Tx Ring */
if (!netif_msg_tx_done(adapter))
goto rx_ring_summary;
dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
*
* Legacy Transmit Descriptor
* +--------------------------------------------------------------+
* 0 | Buffer Address [63:0] (Reserved on Write Back) |
* +--------------------------------------------------------------+
* 8 | Special | CSS | Status | CMD | CSO | Length |
* +--------------------------------------------------------------+
* 63 48 47 36 35 32 31 24 23 16 15 0
*
* Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
* 63 48 47 40 39 32 31 16 15 8 7 0
* +----------------------------------------------------------------+
* 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
* +----------------------------------------------------------------+
* 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
* +----------------------------------------------------------------+
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
*
* Extended Data Descriptor (DTYP=0x1)
* +----------------------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +----------------------------------------------------------------+
* 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
* +----------------------------------------------------------------+
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
*/
pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
const char *next_desc;
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
u0 = (struct my_u0 *)tx_desc;
if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
next_desc = " NTC/U";
else if (i == tx_ring->next_to_use)
next_desc = " NTU";
else if (i == tx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
i,
(unsigned long long)le64_to_cpu(u0->a),
(unsigned long long)le64_to_cpu(u0->b),
(unsigned long long)buffer_info->dma,
buffer_info->length, buffer_info->next_to_watch,
(unsigned long long)buffer_info->time_stamp,
buffer_info->skb, next_desc);
if (netif_msg_pktdata(adapter) && buffer_info->skb)
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
16, 1, buffer_info->skb->data,
buffer_info->skb->len, true);
}
/* Print Rx Ring Summary */
rx_ring_summary:
dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
pr_info("Queue [NTU] [NTC]\n");
pr_info(" %5d %5X %5X\n",
0, rx_ring->next_to_use, rx_ring->next_to_clean);
/* Print Rx Ring */
if (!netif_msg_rx_status(adapter))
return;
dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
switch (adapter->rx_ps_pages) {
case 1:
case 2:
case 3:
/* [Extended] Packet Split Receive Descriptor Format
*
* +-----------------------------------------------------+
* 0 | Buffer Address 0 [63:0] |
* +-----------------------------------------------------+
* 8 | Buffer Address 1 [63:0] |
* +-----------------------------------------------------+
* 16 | Buffer Address 2 [63:0] |
* +-----------------------------------------------------+
* 24 | Buffer Address 3 [63:0] |
* +-----------------------------------------------------+
*/
pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
/* [Extended] Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 13 12 8 7 4 3 0
* +------------------------------------------------------+
* 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
* | Checksum | Ident | | Queue | | Type |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
for (i = 0; i < rx_ring->count; i++) {
const char *next_desc;
buffer_info = &rx_ring->buffer_info[i];
rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
u1 = (struct my_u1 *)rx_desc_ps;
staterr =
le32_to_cpu(rx_desc_ps->wb.middle.status_error);
if (i == rx_ring->next_to_use)
next_desc = " NTU";
else if (i == rx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
"RWB", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)le64_to_cpu(u1->c),
(unsigned long long)le64_to_cpu(u1->d),
buffer_info->skb, next_desc);
} else {
pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
"R ", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)le64_to_cpu(u1->c),
(unsigned long long)le64_to_cpu(u1->d),
(unsigned long long)buffer_info->dma,
buffer_info->skb, next_desc);
if (netif_msg_pktdata(adapter))
e1000e_dump_ps_pages(adapter,
buffer_info);
}
}
break;
default:
case 0:
/* Extended Receive Descriptor (Read) Format
*
* +-----------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +-----------------------------------------------------+
* 8 | Reserved |
* +-----------------------------------------------------+
*/
pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
/* Extended Receive Descriptor (Write-Back) Format
*
* 63 48 47 32 31 24 23 4 3 0
* +------------------------------------------------------+
* | RSS Hash | | | |
* 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
* | Packet | IP | | | Type |
* | Checksum | Ident | | | |
* +------------------------------------------------------+
* 8 | VLAN Tag | Length | Extended Error | Extended Status |
* +------------------------------------------------------+
* 63 48 47 32 31 20 19 0
*/
pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
for (i = 0; i < rx_ring->count; i++) {
const char *next_desc;
buffer_info = &rx_ring->buffer_info[i];
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
u1 = (struct my_u1 *)rx_desc;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
if (i == rx_ring->next_to_use)
next_desc = " NTU";
else if (i == rx_ring->next_to_clean)
next_desc = " NTC";
else
next_desc = "";
if (staterr & E1000_RXD_STAT_DD) {
/* Descriptor Done */
pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
"RWB", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
buffer_info->skb, next_desc);
} else {
pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
"R ", i,
(unsigned long long)le64_to_cpu(u1->a),
(unsigned long long)le64_to_cpu(u1->b),
(unsigned long long)buffer_info->dma,
buffer_info->skb, next_desc);
if (netif_msg_pktdata(adapter) &&
buffer_info->skb)
print_hex_dump(KERN_INFO, "",
DUMP_PREFIX_ADDRESS, 16,
1,
buffer_info->skb->data,
adapter->rx_buffer_len,
true);
}
}
}
}
/**
* e1000_desc_unused - calculate if we have unused descriptors
**/
static int e1000_desc_unused(struct e1000_ring *ring)
{
if (ring->next_to_clean > ring->next_to_use)
return ring->next_to_clean - ring->next_to_use - 1;
return ring->count + ring->next_to_clean - ring->next_to_use - 1;
}
/**
* e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
* @adapter: board private structure
* @hwtstamps: time stamp structure to update
* @systim: unsigned 64bit system time value.
*
* Convert the system time value stored in the RX/TXSTMP registers into a
* hwtstamp which can be used by the upper level time stamping functions.
*
* The 'systim_lock' spinlock is used to protect the consistency of the
* system time value. This is needed because reading the 64 bit time
* value involves reading two 32 bit registers. The first read latches the
* value.
**/
static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
struct skb_shared_hwtstamps *hwtstamps,
u64 systim)
{
u64 ns;
unsigned long flags;
spin_lock_irqsave(&adapter->systim_lock, flags);
ns = timecounter_cyc2time(&adapter->tc, systim);
spin_unlock_irqrestore(&adapter->systim_lock, flags);
memset(hwtstamps, 0, sizeof(*hwtstamps));
hwtstamps->hwtstamp = ns_to_ktime(ns);
}
/**
* e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
* @adapter: board private structure
* @status: descriptor extended error and status field
* @skb: particular skb to include time stamp
*
* If the time stamp is valid, convert it into the timecounter ns value
* and store that result into the shhwtstamps structure which is passed
* up the network stack.
**/
static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
struct sk_buff *skb)
{
struct e1000_hw *hw = &adapter->hw;
u64 rxstmp;
if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
!(status & E1000_RXDEXT_STATERR_TST) ||
!(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
return;
/* The Rx time stamp registers contain the time stamp. No other
* received packet will be time stamped until the Rx time stamp
* registers are read. Because only one packet can be time stamped
* at a time, the register values must belong to this packet and
* therefore none of the other additional attributes need to be
* compared.
*/
rxstmp = (u64)er32(RXSTMPL);
rxstmp |= (u64)er32(RXSTMPH) << 32;
e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
}
/**
* e1000_receive_skb - helper function to handle Rx indications
* @adapter: board private structure
* @staterr: descriptor extended error and status field as written by hardware
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
* @skb: pointer to sk_buff to be indicated to stack
**/
static void e1000_receive_skb(struct e1000_adapter *adapter,
struct net_device *netdev, struct sk_buff *skb,
u32 staterr, __le16 vlan)
{
u16 tag = le16_to_cpu(vlan);
e1000e_rx_hwtstamp(adapter, staterr, skb);
skb->protocol = eth_type_trans(skb, netdev);
if (staterr & E1000_RXD_STAT_VP)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
napi_gro_receive(&adapter->napi, skb);
}
/**
* e1000_rx_checksum - Receive Checksum Offload
* @adapter: board private structure
* @status_err: receive descriptor status and error fields
* @csum: receive descriptor csum field
* @sk_buff: socket buffer with received data
**/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
struct sk_buff *skb)
{
u16 status = (u16)status_err;
u8 errors = (u8)(status_err >> 24);
skb_checksum_none_assert(skb);
/* Rx checksum disabled */
if (!(adapter->netdev->features & NETIF_F_RXCSUM))
return;
/* Ignore Checksum bit is set */
if (status & E1000_RXD_STAT_IXSM)
return;
/* TCP/UDP checksum error bit or IP checksum error bit is set */
if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
/* let the stack verify checksum errors */
adapter->hw_csum_err++;
return;
}
/* TCP/UDP Checksum has not been calculated */
if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
return;
/* It must be a TCP or UDP packet with a valid checksum */
skb->ip_summed = CHECKSUM_UNNECESSARY;
adapter->hw_csum_good++;
}
static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct e1000_hw *hw = &adapter->hw;
s32 ret_val = __ew32_prepare(hw);
writel(i, rx_ring->tail);
if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
u32 rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
e_err("ME firmware caused invalid RDT - resetting\n");
schedule_work(&adapter->reset_task);
}
}
static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
{
struct e1000_adapter *adapter = tx_ring->adapter;
struct e1000_hw *hw = &adapter->hw;
s32 ret_val = __ew32_prepare(hw);
writel(i, tx_ring->tail);
if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
u32 tctl = er32(TCTL);
ew32(TCTL, tctl & ~E1000_TCTL_EN);
e_err("ME firmware caused invalid TDT - resetting\n");
schedule_work(&adapter->reset_task);
}
}
/**
* e1000_alloc_rx_buffers - Replace used receive buffers
* @rx_ring: Rx descriptor ring
**/
static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
int cleaned_count, gfp_t gfp)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_extended *rx_desc;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
unsigned int i;
unsigned int bufsz = adapter->rx_buffer_len;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
skb = buffer_info->skb;
if (skb) {
skb_trim(skb, 0);
goto map_skb;
}
skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
if (!skb) {
/* Better luck next round */
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
map_skb:
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
dev_err(&pdev->dev, "Rx DMA map failed\n");
adapter->rx_dma_failed++;
break;
}
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(rx_ring, i);
else
writel(i, rx_ring->tail);
}
i++;
if (i == rx_ring->count)
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
rx_ring->next_to_use = i;
}
/**
* e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
* @rx_ring: Rx descriptor ring
**/
static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
int cleaned_count, gfp_t gfp)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_packet_split *rx_desc;
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct sk_buff *skb;
unsigned int i, j;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
ps_page = &buffer_info->ps_pages[j];
if (j >= adapter->rx_ps_pages) {
/* all unused desc entries get hw null ptr */
rx_desc->read.buffer_addr[j + 1] =
~cpu_to_le64(0);
continue;
}
if (!ps_page->page) {
ps_page->page = alloc_page(gfp);
if (!ps_page->page) {
adapter->alloc_rx_buff_failed++;
goto no_buffers;
}
ps_page->dma = dma_map_page(&pdev->dev,
ps_page->page,
0, PAGE_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev,
ps_page->dma)) {
dev_err(&adapter->pdev->dev,
"Rx DMA page map failed\n");
adapter->rx_dma_failed++;
goto no_buffers;
}
}
/* Refresh the desc even if buffer_addrs
* didn't change because each write-back
* erases this info.
*/
rx_desc->read.buffer_addr[j + 1] =
cpu_to_le64(ps_page->dma);
}
skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
gfp);
if (!skb) {
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
adapter->rx_ps_bsize0,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
dev_err(&pdev->dev, "Rx DMA map failed\n");
adapter->rx_dma_failed++;
/* cleanup skb */
dev_kfree_skb_any(skb);
buffer_info->skb = NULL;
break;
}
rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(rx_ring, i << 1);
else
writel(i << 1, rx_ring->tail);
}
i++;
if (i == rx_ring->count)
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
no_buffers:
rx_ring->next_to_use = i;
}
/**
* e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
* @rx_ring: Rx descriptor ring
* @cleaned_count: number of buffers to allocate this pass
**/
static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
int cleaned_count, gfp_t gfp)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_extended *rx_desc;
struct e1000_buffer *buffer_info;
struct sk_buff *skb;
unsigned int i;
unsigned int bufsz = 256 - 16; /* for skb_reserve */
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
skb = buffer_info->skb;
if (skb) {
skb_trim(skb, 0);
goto check_page;
}
skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
if (unlikely(!skb)) {
/* Better luck next round */
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->skb = skb;
check_page:
/* allocate a new page if necessary */
if (!buffer_info->page) {
buffer_info->page = alloc_page(gfp);
if (unlikely(!buffer_info->page)) {
adapter->alloc_rx_buff_failed++;
break;
}
}
if (!buffer_info->dma) {
buffer_info->dma = dma_map_page(&pdev->dev,
buffer_info->page, 0,
PAGE_SIZE,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
adapter->alloc_rx_buff_failed++;
break;
}
}
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(++i == rx_ring->count))
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
if (likely(rx_ring->next_to_use != i)) {
rx_ring->next_to_use = i;
if (unlikely(i-- == 0))
i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(rx_ring, i);
else
writel(i, rx_ring->tail);
}
}
static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
struct sk_buff *skb)
{
if (netdev->features & NETIF_F_RXHASH)
skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
}
/**
* e1000_clean_rx_irq - Send received data up the network stack
* @rx_ring: Rx descriptor ring
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
int work_to_do)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_hw *hw = &adapter->hw;
union e1000_rx_desc_extended *rx_desc, *next_rxd;
struct e1000_buffer *buffer_info, *next_buffer;
u32 length, staterr;
unsigned int i;
int cleaned_count = 0;
bool cleaned = false;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
struct sk_buff *skb;
if (*work_done >= work_to_do)
break;
(*work_done)++;
rmb(); /* read descriptor and rx_buffer_info after status DD */
skb = buffer_info->skb;
buffer_info->skb = NULL;
prefetch(skb->data - NET_IP_ALIGN);
i++;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = true;
cleaned_count++;
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len, DMA_FROM_DEVICE);
buffer_info->dma = 0;
length = le16_to_cpu(rx_desc->wb.upper.length);
/* !EOP means multiple descriptors were used to store a single
* packet, if that's the case we need to toss it. In fact, we
* need to toss every packet with the EOP bit clear and the
* next frame that _does_ have the EOP bit set, as it is by
* definition only a frame fragment
*/
if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
adapter->flags2 |= FLAG2_IS_DISCARDING;
if (adapter->flags2 & FLAG2_IS_DISCARDING) {
/* All receives must fit into a single buffer */
e_dbg("Receive packet consumed multiple buffers\n");
/* recycle */
buffer_info->skb = skb;
if (staterr & E1000_RXD_STAT_EOP)
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
goto next_desc;
}
if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
!(netdev->features & NETIF_F_RXALL))) {
/* recycle */
buffer_info->skb = skb;
goto next_desc;
}
/* adjust length to remove Ethernet CRC */
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
/* If configured to store CRC, don't subtract FCS,
* but keep the FCS bytes out of the total_rx_bytes
* counter
*/
if (netdev->features & NETIF_F_RXFCS)
total_rx_bytes -= 4;
else
length -= 4;
}
total_rx_bytes += length;
total_rx_packets++;
/* code added for copybreak, this should improve
* performance for small packets with large amounts
* of reassembly being done in the stack
*/
if (length < copybreak) {
struct sk_buff *new_skb =
netdev_alloc_skb_ip_align(netdev, length);
if (new_skb) {
skb_copy_to_linear_data_offset(new_skb,
-NET_IP_ALIGN,
(skb->data -
NET_IP_ALIGN),
(length +
NET_IP_ALIGN));
/* save the skb in buffer_info as good */
buffer_info->skb = skb;
skb = new_skb;
}
/* else just continue with the old one */
}
/* end copybreak code */
skb_put(skb, length);
/* Receive Checksum Offload */
e1000_rx_checksum(adapter, staterr, skb);
e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
e1000_receive_skb(adapter, netdev, skb, staterr,
rx_desc->wb.upper.vlan);
next_desc:
rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
adapter->alloc_rx_buf(rx_ring, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
static void e1000_put_txbuf(struct e1000_ring *tx_ring,
struct e1000_buffer *buffer_info)
{
struct e1000_adapter *adapter = tx_ring->adapter;
if (buffer_info->dma) {
if (buffer_info->mapped_as_page)
dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
buffer_info->length, DMA_TO_DEVICE);
else
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
buffer_info->length, DMA_TO_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb_any(buffer_info->skb);
buffer_info->skb = NULL;
}
buffer_info->time_stamp = 0;
}
static void e1000_print_hw_hang(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
print_hang_task);
struct net_device *netdev = adapter->netdev;
struct e1000_ring *tx_ring = adapter->tx_ring;
unsigned int i = tx_ring->next_to_clean;
unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
struct e1000_hw *hw = &adapter->hw;
u16 phy_status, phy_1000t_status, phy_ext_status;
u16 pci_status;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
/* May be block on write-back, flush and detect again
* flush pending descriptor writebacks to memory
*/
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
/* execute the writes immediately */
e1e_flush();
/* Due to rare timing issues, write to TIDV again to ensure
* the write is successful
*/
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
/* execute the writes immediately */
e1e_flush();
adapter->tx_hang_recheck = true;
return;
}
adapter->tx_hang_recheck = false;
if (er32(TDH(0)) == er32(TDT(0))) {
e_dbg("false hang detected, ignoring\n");
return;
}
/* Real hang detected */
netif_stop_queue(netdev);
e1e_rphy(hw, MII_BMSR, &phy_status);
e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
/* detected Hardware unit hang */
e_err("Detected Hardware Unit Hang:\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]:\n"
" time_stamp <%lx>\n"
" next_to_watch <%x>\n"
" jiffies <%lx>\n"
" next_to_watch.status <%x>\n"
"MAC Status <%x>\n"
"PHY Status <%x>\n"
"PHY 1000BASE-T Status <%x>\n"
"PHY Extended Status <%x>\n"
"PCI Status <%x>\n",
readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
phy_status, phy_1000t_status, phy_ext_status, pci_status);
e1000e_dump(adapter);
/* Suggest workaround for known h/w issue */
if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
e_err("Try turning off Tx pause (flow control) via ethtool\n");
}
/**
* e1000e_tx_hwtstamp_work - check for Tx time stamp
* @work: pointer to work struct
*
* This work function polls the TSYNCTXCTL valid bit to determine when a
* timestamp has been taken for the current stored skb. The timestamp must
* be for this skb because only one such packet is allowed in the queue.
*/
static void e1000e_tx_hwtstamp_work(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
tx_hwtstamp_work);
struct e1000_hw *hw = &adapter->hw;
if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
struct skb_shared_hwtstamps shhwtstamps;
u64 txstmp;
txstmp = er32(TXSTMPL);
txstmp |= (u64)er32(TXSTMPH) << 32;
e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
adapter->tx_hwtstamp_skb = NULL;
} else if (time_after(jiffies, adapter->tx_hwtstamp_start
+ adapter->tx_timeout_factor * HZ)) {
dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
adapter->tx_hwtstamp_skb = NULL;
adapter->tx_hwtstamp_timeouts++;
e_warn("clearing Tx timestamp hang\n");
} else {
/* reschedule to check later */
schedule_work(&adapter->tx_hwtstamp_work);
}
}
/**
* e1000_clean_tx_irq - Reclaim resources after transmit completes
* @tx_ring: Tx descriptor ring
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
{
struct e1000_adapter *adapter = tx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_desc *tx_desc, *eop_desc;
struct e1000_buffer *buffer_info;
unsigned int i, eop;
unsigned int count = 0;
unsigned int total_tx_bytes = 0, total_tx_packets = 0;
unsigned int bytes_compl = 0, pkts_compl = 0;
i = tx_ring->next_to_clean;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
(count < tx_ring->count)) {
bool cleaned = false;
rmb(); /* read buffer_info after eop_desc */
for (; !cleaned; count++) {
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
cleaned = (i == eop);
if (cleaned) {
total_tx_packets += buffer_info->segs;
total_tx_bytes += buffer_info->bytecount;
if (buffer_info->skb) {
bytes_compl += buffer_info->skb->len;
pkts_compl++;
}
}
e1000_put_txbuf(tx_ring, buffer_info);
tx_desc->upper.data = 0;
i++;
if (i == tx_ring->count)
i = 0;
}
if (i == tx_ring->next_to_use)
break;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
}
tx_ring->next_to_clean = i;
netdev_completed_queue(netdev, pkts_compl, bytes_compl);
#define TX_WAKE_THRESHOLD 32
if (count && netif_carrier_ok(netdev) &&
e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_queue_stopped(netdev) &&
!(test_bit(__E1000_DOWN, &adapter->state))) {
netif_wake_queue(netdev);
++adapter->restart_queue;
}
}
if (adapter->detect_tx_hung) {
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i
*/
adapter->detect_tx_hung = false;
if (tx_ring->buffer_info[i].time_stamp &&
time_after(jiffies, tx_ring->buffer_info[i].time_stamp
+ (adapter->tx_timeout_factor * HZ)) &&
!(er32(STATUS) & E1000_STATUS_TXOFF))
schedule_work(&adapter->print_hang_task);
else
adapter->tx_hang_recheck = false;
}
adapter->total_tx_bytes += total_tx_bytes;
adapter->total_tx_packets += total_tx_packets;
return count < tx_ring->count;
}
/**
* e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
* @rx_ring: Rx descriptor ring
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
int work_to_do)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct e1000_hw *hw = &adapter->hw;
union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_buffer *buffer_info, *next_buffer;
struct e1000_ps_page *ps_page;
struct sk_buff *skb;
unsigned int i, j;
u32 length, staterr;
int cleaned_count = 0;
bool cleaned = false;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
if (*work_done >= work_to_do)
break;
(*work_done)++;
skb = buffer_info->skb;
rmb(); /* read descriptor and rx_buffer_info after status DD */
/* in the packet split case this is header only */
prefetch(skb->data - NET_IP_ALIGN);
i++;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = true;
cleaned_count++;
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
buffer_info->dma = 0;
/* see !EOP comment in other Rx routine */
if (!(staterr & E1000_RXD_STAT_EOP))
adapter->flags2 |= FLAG2_IS_DISCARDING;
if (adapter->flags2 & FLAG2_IS_DISCARDING) {
e_dbg("Packet Split buffers didn't pick up the full packet\n");
dev_kfree_skb_irq(skb);
if (staterr & E1000_RXD_STAT_EOP)
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
goto next_desc;
}
if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
!(netdev->features & NETIF_F_RXALL))) {
dev_kfree_skb_irq(skb);
goto next_desc;
}
length = le16_to_cpu(rx_desc->wb.middle.length0);
if (!length) {
e_dbg("Last part of the packet spanning multiple descriptors\n");
dev_kfree_skb_irq(skb);
goto next_desc;
}
/* Good Receive */
skb_put(skb, length);
{
/* this looks ugly, but it seems compiler issues make
* it more efficient than reusing j
*/
int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
/* page alloc/put takes too long and effects small
* packet throughput, so unsplit small packets and
* save the alloc/put only valid in softirq (napi)
* context to call kmap_*
*/
if (l1 && (l1 <= copybreak) &&
((length + l1) <= adapter->rx_ps_bsize0)) {
u8 *vaddr;
ps_page = &buffer_info->ps_pages[0];
/* there is no documentation about how to call
* kmap_atomic, so we can't hold the mapping
* very long
*/
dma_sync_single_for_cpu(&pdev->dev,
ps_page->dma,
PAGE_SIZE,
DMA_FROM_DEVICE);
vaddr = kmap_atomic(ps_page->page);
memcpy(skb_tail_pointer(skb), vaddr, l1);
kunmap_atomic(vaddr);
dma_sync_single_for_device(&pdev->dev,
ps_page->dma,
PAGE_SIZE,
DMA_FROM_DEVICE);
/* remove the CRC */
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
if (!(netdev->features & NETIF_F_RXFCS))
l1 -= 4;
}
skb_put(skb, l1);
goto copydone;
} /* if */
}
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
length = le16_to_cpu(rx_desc->wb.upper.length[j]);
if (!length)
break;
ps_page = &buffer_info->ps_pages[j];
dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
ps_page->dma = 0;
skb_fill_page_desc(skb, j, ps_page->page, 0, length);
ps_page->page = NULL;
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE;
}
/* strip the ethernet crc, problem is we're using pages now so
* this whole operation can get a little cpu intensive
*/
if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
if (!(netdev->features & NETIF_F_RXFCS))
pskb_trim(skb, skb->len - 4);
}
copydone:
total_rx_bytes += skb->len;
total_rx_packets++;
e1000_rx_checksum(adapter, staterr, skb);
e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
if (rx_desc->wb.upper.header_status &
cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
adapter->rx_hdr_split++;
e1000_receive_skb(adapter, netdev, skb, staterr,
rx_desc->wb.middle.vlan);
next_desc:
rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
buffer_info->skb = NULL;
/* return some buffers to hardware, one at a time is too slow */
if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
adapter->alloc_rx_buf(rx_ring, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
/**
* e1000_consume_page - helper function
**/
static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
u16 length)
{
bi->page = NULL;
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE;
}
/**
* e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
**/
static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
int work_to_do)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
union e1000_rx_desc_extended *rx_desc, *next_rxd;
struct e1000_buffer *buffer_info, *next_buffer;
u32 length, staterr;
unsigned int i;
int cleaned_count = 0;
bool cleaned = false;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
struct skb_shared_info *shinfo;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
buffer_info = &rx_ring->buffer_info[i];
while (staterr & E1000_RXD_STAT_DD) {
struct sk_buff *skb;
if (*work_done >= work_to_do)
break;
(*work_done)++;
rmb(); /* read descriptor and rx_buffer_info after status DD */
skb = buffer_info->skb;
buffer_info->skb = NULL;
++i;
if (i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = true;
cleaned_count++;
dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
length = le16_to_cpu(rx_desc->wb.upper.length);
/* errors is only valid for DD + EOP descriptors */
if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
!(netdev->features & NETIF_F_RXALL)))) {
/* recycle both page and skb */
buffer_info->skb = skb;
/* an error means any chain goes out the window too */
if (rx_ring->rx_skb_top)
dev_kfree_skb_irq(rx_ring->rx_skb_top);
rx_ring->rx_skb_top = NULL;
goto next_desc;
}
#define rxtop (rx_ring->rx_skb_top)
if (!(staterr & E1000_RXD_STAT_EOP)) {
/* this descriptor is only the beginning (or middle) */
if (!rxtop) {
/* this is the beginning of a chain */
rxtop = skb;
skb_fill_page_desc(rxtop, 0, buffer_info->page,
0, length);
} else {
/* this is the middle of a chain */
shinfo = skb_shinfo(rxtop);
skb_fill_page_desc(rxtop, shinfo->nr_frags,
buffer_info->page, 0,
length);
/* re-use the skb, only consumed the page */
buffer_info->skb = skb;
}
e1000_consume_page(buffer_info, rxtop, length);
goto next_desc;
} else {
if (rxtop) {
/* end of the chain */
shinfo = skb_shinfo(rxtop);
skb_fill_page_desc(rxtop, shinfo->nr_frags,
buffer_info->page, 0,
length);
/* re-use the current skb, we only consumed the
* page
*/
buffer_info->skb = skb;
skb = rxtop;
rxtop = NULL;
e1000_consume_page(buffer_info, skb, length);
} else {
/* no chain, got EOP, this buf is the packet
* copybreak to save the put_page/alloc_page
*/
if (length <= copybreak &&
skb_tailroom(skb) >= length) {
u8 *vaddr;
vaddr = kmap_atomic(buffer_info->page);
memcpy(skb_tail_pointer(skb), vaddr,
length);
kunmap_atomic(vaddr);
/* re-use the page, so don't erase
* buffer_info->page
*/
skb_put(skb, length);
} else {
skb_fill_page_desc(skb, 0,
buffer_info->page, 0,
length);
e1000_consume_page(buffer_info, skb,
length);
}
}
}
/* Receive Checksum Offload */
e1000_rx_checksum(adapter, staterr, skb);
e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
/* probably a little skewed due to removing CRC */
total_rx_bytes += skb->len;
total_rx_packets++;
/* eth type trans needs skb->data to point to something */
if (!pskb_may_pull(skb, ETH_HLEN)) {
e_err("pskb_may_pull failed.\n");
dev_kfree_skb_irq(skb);
goto next_desc;
}
e1000_receive_skb(adapter, netdev, skb, staterr,
rx_desc->wb.upper.vlan);
next_desc:
rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
/* return some buffers to hardware, one at a time is too slow */
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
adapter->alloc_rx_buf(rx_ring, cleaned_count,
GFP_ATOMIC);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
}
rx_ring->next_to_clean = i;
cleaned_count = e1000_desc_unused(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
adapter->total_rx_bytes += total_rx_bytes;
adapter->total_rx_packets += total_rx_packets;
return cleaned;
}
/**
* e1000_clean_rx_ring - Free Rx Buffers per Queue
* @rx_ring: Rx descriptor ring
**/
static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct e1000_buffer *buffer_info;
struct e1000_ps_page *ps_page;
struct pci_dev *pdev = adapter->pdev;
unsigned int i, j;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if (buffer_info->dma) {
if (adapter->clean_rx == e1000_clean_rx_irq)
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
dma_unmap_page(&pdev->dev, buffer_info->dma,
PAGE_SIZE, DMA_FROM_DEVICE);
else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_ps_bsize0,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->page) {
put_page(buffer_info->page);
buffer_info->page = NULL;
}
if (buffer_info->skb) {
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
for (j = 0; j < PS_PAGE_BUFFERS; j++) {
ps_page = &buffer_info->ps_pages[j];
if (!ps_page->page)
break;
dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
DMA_FROM_DEVICE);
ps_page->dma = 0;
put_page(ps_page->page);
ps_page->page = NULL;
}
}
/* there also may be some cached data from a chained receive */
if (rx_ring->rx_skb_top) {
dev_kfree_skb(rx_ring->rx_skb_top);
rx_ring->rx_skb_top = NULL;
}
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
adapter->flags2 &= ~FLAG2_IS_DISCARDING;
writel(0, rx_ring->head);
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_rdt_wa(rx_ring, 0);
else
writel(0, rx_ring->tail);
}
static void e1000e_downshift_workaround(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
downshift_task);
if (test_bit(__E1000_DOWN, &adapter->state))
return;
e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
}
/**
* e1000_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
/* read ICR disables interrupts using IAM */
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = true;
/* ICH8 workaround-- Call gig speed drop workaround on cable
* disconnect (LSC) before accessing any PHY registers
*/
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
(!(er32(STATUS) & E1000_STATUS_LU)))
schedule_work(&adapter->downshift_task);
/* 80003ES2LAN workaround-- For packet buffer work-around on
* link down event; disable receives here in the ISR and reset
* adapter in watchdog
*/
if (netif_carrier_ok(netdev) &&
adapter->flags & FLAG_RX_NEEDS_RESTART) {
/* disable receives */
u32 rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
adapter->flags |= FLAG_RESTART_NOW;
}
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
/* Reset on uncorrectable ECC error */
if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
u32 pbeccsts = er32(PBECCSTS);
adapter->corr_errors +=
pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
adapter->uncorr_errors +=
(pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
/* Do the reset outside of interrupt context */
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return IRQ_HANDLED;
}
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
/**
* e1000_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr(int __always_unused irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 rctl, icr = er32(ICR);
if (!icr || test_bit(__E1000_DOWN, &adapter->state))
return IRQ_NONE; /* Not our interrupt */
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
if (!(icr & E1000_ICR_INT_ASSERTED))
return IRQ_NONE;
/* Interrupt Auto-Mask...upon reading ICR,
* interrupts are masked. No need for the
* IMC write
*/
if (icr & E1000_ICR_LSC) {
hw->mac.get_link_status = true;
/* ICH8 workaround-- Call gig speed drop workaround on cable
* disconnect (LSC) before accessing any PHY registers
*/
if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
(!(er32(STATUS) & E1000_STATUS_LU)))
schedule_work(&adapter->downshift_task);
/* 80003ES2LAN workaround--
* For packet buffer work-around on link down event;
* disable receives here in the ISR and
* reset adapter in watchdog
*/
if (netif_carrier_ok(netdev) &&
(adapter->flags & FLAG_RX_NEEDS_RESTART)) {
/* disable receives */
rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
adapter->flags |= FLAG_RESTART_NOW;
}
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
/* Reset on uncorrectable ECC error */
if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
u32 pbeccsts = er32(PBECCSTS);
adapter->corr_errors +=
pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
adapter->uncorr_errors +=
(pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
/* Do the reset outside of interrupt context */
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return IRQ_HANDLED;
}
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
if (!(icr & E1000_ICR_INT_ASSERTED)) {
if (!test_bit(__E1000_DOWN, &adapter->state))
ew32(IMS, E1000_IMS_OTHER);
return IRQ_NONE;
}
if (icr & adapter->eiac_mask)
ew32(ICS, (icr & adapter->eiac_mask));
if (icr & E1000_ICR_OTHER) {
if (!(icr & E1000_ICR_LSC))
goto no_link_interrupt;
hw->mac.get_link_status = true;
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
no_link_interrupt:
if (!test_bit(__E1000_DOWN, &adapter->state))
ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
return IRQ_HANDLED;
}
static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *tx_ring = adapter->tx_ring;
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
if (!e1000_clean_tx_irq(tx_ring))
/* Ring was not completely cleaned, so fire another interrupt */
ew32(ICS, tx_ring->ims_val);
return IRQ_HANDLED;
}
static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *rx_ring = adapter->rx_ring;
/* Write the ITR value calculated at the end of the
* previous interrupt.
*/
if (rx_ring->set_itr) {
writel(1000000000 / (rx_ring->itr_val * 256),
rx_ring->itr_register);
rx_ring->set_itr = 0;
}
if (napi_schedule_prep(&adapter->napi)) {
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
/**
* e1000_configure_msix - Configure MSI-X hardware
*
* e1000_configure_msix sets up the hardware to properly
* generate MSI-X interrupts.
**/
static void e1000_configure_msix(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *rx_ring = adapter->rx_ring;
struct e1000_ring *tx_ring = adapter->tx_ring;
int vector = 0;
u32 ctrl_ext, ivar = 0;
adapter->eiac_mask = 0;
/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
if (hw->mac.type == e1000_82574) {
u32 rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_ACK_DIS;
ew32(RFCTL, rfctl);
}
/* Configure Rx vector */
rx_ring->ims_val = E1000_IMS_RXQ0;
adapter->eiac_mask |= rx_ring->ims_val;
if (rx_ring->itr_val)
writel(1000000000 / (rx_ring->itr_val * 256),
rx_ring->itr_register);
else
writel(1, rx_ring->itr_register);
ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
/* Configure Tx vector */
tx_ring->ims_val = E1000_IMS_TXQ0;
vector++;
if (tx_ring->itr_val)
writel(1000000000 / (tx_ring->itr_val * 256),
tx_ring->itr_register);
else
writel(1, tx_ring->itr_register);
adapter->eiac_mask |= tx_ring->ims_val;
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
/* set vector for Other Causes, e.g. link changes */
vector++;
ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
if (rx_ring->itr_val)
writel(1000000000 / (rx_ring->itr_val * 256),
hw->hw_addr + E1000_EITR_82574(vector));
else
writel(1, hw->hw_addr + E1000_EITR_82574(vector));
/* Cause Tx interrupts on every write back */
ivar |= (1 << 31);
ew32(IVAR, ivar);
/* enable MSI-X PBA support */
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
/* Auto-Mask Other interrupts upon ICR read */
ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
ctrl_ext |= E1000_CTRL_EXT_EIAME;
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
}
void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
{
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
} else if (adapter->flags & FLAG_MSI_ENABLED) {
pci_disable_msi(adapter->pdev);
adapter->flags &= ~FLAG_MSI_ENABLED;
}
}
/**
* e1000e_set_interrupt_capability - set MSI or MSI-X if supported
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
{
int err;
int i;
switch (adapter->int_mode) {
case E1000E_INT_MODE_MSIX:
if (adapter->flags & FLAG_HAS_MSIX) {
adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
adapter->msix_entries = kcalloc(adapter->num_vectors,
sizeof(struct
msix_entry),
GFP_KERNEL);
if (adapter->msix_entries) {
struct e1000_adapter *a = adapter;
for (i = 0; i < adapter->num_vectors; i++)
adapter->msix_entries[i].entry = i;
err = pci_enable_msix_range(a->pdev,
a->msix_entries,
a->num_vectors,
a->num_vectors);
if (err > 0)
return;
}
/* MSI-X failed, so fall through and try MSI */
e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
e1000e_reset_interrupt_capability(adapter);
}
adapter->int_mode = E1000E_INT_MODE_MSI;
/* Fall through */
case E1000E_INT_MODE_MSI:
if (!pci_enable_msi(adapter->pdev)) {
adapter->flags |= FLAG_MSI_ENABLED;
} else {
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
}
/* Fall through */
case E1000E_INT_MODE_LEGACY:
/* Don't do anything; this is the system default */
break;
}
/* store the number of vectors being used */
adapter->num_vectors = 1;
}
/**
* e1000_request_msix - Initialize MSI-X interrupts
*
* e1000_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
**/
static int e1000_request_msix(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err = 0, vector = 0;
if (strlen(netdev->name) < (IFNAMSIZ - 5))
snprintf(adapter->rx_ring->name,
sizeof(adapter->rx_ring->name) - 1,
"%s-rx-0", netdev->name);
else
memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
err = request_irq(adapter->msix_entries[vector].vector,
e1000_intr_msix_rx, 0, adapter->rx_ring->name,
netdev);
if (err)
return err;
adapter->rx_ring->itr_register = adapter->hw.hw_addr +
E1000_EITR_82574(vector);
adapter->rx_ring->itr_val = adapter->itr;
vector++;
if (strlen(netdev->name) < (IFNAMSIZ - 5))
snprintf(adapter->tx_ring->name,
sizeof(adapter->tx_ring->name) - 1,
"%s-tx-0", netdev->name);
else
memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
err = request_irq(adapter->msix_entries[vector].vector,
e1000_intr_msix_tx, 0, adapter->tx_ring->name,
netdev);
if (err)
return err;
adapter->tx_ring->itr_register = adapter->hw.hw_addr +
E1000_EITR_82574(vector);
adapter->tx_ring->itr_val = adapter->itr;
vector++;
err = request_irq(adapter->msix_entries[vector].vector,
e1000_msix_other, 0, netdev->name, netdev);
if (err)
return err;
e1000_configure_msix(adapter);
return 0;
}
/**
* e1000_request_irq - initialize interrupts
*
* Attempts to configure interrupts using the best available
* capabilities of the hardware and kernel.
**/
static int e1000_request_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int err;
if (adapter->msix_entries) {
err = e1000_request_msix(adapter);
if (!err)
return err;
/* fall back to MSI */
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_MSI;
e1000e_set_interrupt_capability(adapter);
}
if (adapter->flags & FLAG_MSI_ENABLED) {
err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
netdev->name, netdev);
if (!err)
return err;
/* fall back to legacy interrupt */
e1000e_reset_interrupt_capability(adapter);
adapter->int_mode = E1000E_INT_MODE_LEGACY;
}
err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
netdev->name, netdev);
if (err)
e_err("Unable to allocate interrupt, Error: %d\n", err);
return err;
}
static void e1000_free_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
if (adapter->msix_entries) {
int vector = 0;
free_irq(adapter->msix_entries[vector].vector, netdev);
vector++;
free_irq(adapter->msix_entries[vector].vector, netdev);
vector++;
/* Other Causes interrupt vector */
free_irq(adapter->msix_entries[vector].vector, netdev);
return;
}
free_irq(adapter->pdev->irq, netdev);
}
/**
* e1000_irq_disable - Mask off interrupt generation on the NIC
**/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
ew32(IMC, ~0);
if (adapter->msix_entries)
ew32(EIAC_82574, 0);
e1e_flush();
if (adapter->msix_entries) {
int i;
for (i = 0; i < adapter->num_vectors; i++)
synchronize_irq(adapter->msix_entries[i].vector);
} else {
synchronize_irq(adapter->pdev->irq);
}
}
/**
* e1000_irq_enable - Enable default interrupt generation settings
**/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->msix_entries) {
ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
} else if (hw->mac.type == e1000_pch_lpt) {
ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
} else {
ew32(IMS, IMS_ENABLE_MASK);
}
e1e_flush();
}
/**
* e1000e_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded. For AMT version (only with 82573)
* of the f/w this means that the network i/f is open.
**/
void e1000e_get_hw_control(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
u32 swsm;
/* Let firmware know the driver has taken over */
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
swsm = er32(SWSM);
ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
ctrl_ext = er32(CTRL_EXT);
ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
}
}
/**
* e1000e_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded. For AMT version (only with 82573) i
* of the f/w this means that the network i/f is closed.
*
**/
void e1000e_release_hw_control(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl_ext;
u32 swsm;
/* Let firmware taken over control of h/w */
if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
swsm = er32(SWSM);
ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
ctrl_ext = er32(CTRL_EXT);
ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
}
}
/**
* e1000_alloc_ring_dma - allocate memory for a ring structure
**/
static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
struct e1000_ring *ring)
{
struct pci_dev *pdev = adapter->pdev;
ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
return 0;
}
/**
* e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
* @tx_ring: Tx descriptor ring
*
* Return 0 on success, negative on failure
**/
int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
{
struct e1000_adapter *adapter = tx_ring->adapter;
int err = -ENOMEM, size;
size = sizeof(struct e1000_buffer) * tx_ring->count;
tx_ring->buffer_info = vzalloc(size);
if (!tx_ring->buffer_info)
goto err;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
err = e1000_alloc_ring_dma(adapter, tx_ring);
if (err)
goto err;
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
vfree(tx_ring->buffer_info);
e_err("Unable to allocate memory for the transmit descriptor ring\n");
return err;
}
/**
* e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
* @rx_ring: Rx descriptor ring
*
* Returns 0 on success, negative on failure
**/
int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct e1000_buffer *buffer_info;
int i, size, desc_len, err = -ENOMEM;
size = sizeof(struct e1000_buffer) * rx_ring->count;
rx_ring->buffer_info = vzalloc(size);
if (!rx_ring->buffer_info)
goto err;
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
sizeof(struct e1000_ps_page),
GFP_KERNEL);
if (!buffer_info->ps_pages)
goto err_pages;
}
desc_len = sizeof(union e1000_rx_desc_packet_split);
/* Round up to nearest 4K */
rx_ring->size = rx_ring->count * desc_len;
rx_ring->size = ALIGN(rx_ring->size, 4096);
err = e1000_alloc_ring_dma(adapter, rx_ring);
if (err)
goto err_pages;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
rx_ring->rx_skb_top = NULL;
return 0;
err_pages:
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
kfree(buffer_info->ps_pages);
}
err:
vfree(rx_ring->buffer_info);
e_err("Unable to allocate memory for the receive descriptor ring\n");
return err;
}
/**
* e1000_clean_tx_ring - Free Tx Buffers
* @tx_ring: Tx descriptor ring
**/
static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
{
struct e1000_adapter *adapter = tx_ring->adapter;
struct e1000_buffer *buffer_info;
unsigned long size;
unsigned int i;
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->buffer_info[i];
e1000_put_txbuf(tx_ring, buffer_info);
}
netdev_reset_queue(adapter->netdev);
size = sizeof(struct e1000_buffer) * tx_ring->count;
memset(tx_ring->buffer_info, 0, size);
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
writel(0, tx_ring->head);
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_tdt_wa(tx_ring, 0);
else
writel(0, tx_ring->tail);
}
/**
* e1000e_free_tx_resources - Free Tx Resources per Queue
* @tx_ring: Tx descriptor ring
*
* Free all transmit software resources
**/
void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
{
struct e1000_adapter *adapter = tx_ring->adapter;
struct pci_dev *pdev = adapter->pdev;
e1000_clean_tx_ring(tx_ring);
vfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* e1000e_free_rx_resources - Free Rx Resources
* @rx_ring: Rx descriptor ring
*
* Free all receive software resources
**/
void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
{
struct e1000_adapter *adapter = rx_ring->adapter;
struct pci_dev *pdev = adapter->pdev;
int i;
e1000_clean_rx_ring(rx_ring);
for (i = 0; i < rx_ring->count; i++)
kfree(rx_ring->buffer_info[i].ps_pages);
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* e1000_update_itr - update the dynamic ITR value based on statistics
* @adapter: pointer to adapter
* @itr_setting: current adapter->itr
* @packets: the number of packets during this measurement interval
* @bytes: the number of bytes during this measurement interval
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput. This functionality is controlled
* by the InterruptThrottleRate module parameter.
**/
static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
{
unsigned int retval = itr_setting;
if (packets == 0)
return itr_setting;
switch (itr_setting) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes / packets > 8000)
retval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
retval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes / packets > 8000)
retval = bulk_latency;
else if ((packets < 10) || ((bytes / packets) > 1200))
retval = bulk_latency;
else if ((packets > 35))
retval = lowest_latency;
} else if (bytes / packets > 2000) {
retval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
retval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
retval = low_latency;
} else if (bytes < 6000) {
retval = low_latency;
}
break;
}
return retval;
}
static void e1000_set_itr(struct e1000_adapter *adapter)
{
u16 current_itr;
u32 new_itr = adapter->itr;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
if (adapter->link_speed != SPEED_1000) {
current_itr = 0;
new_itr = 4000;
goto set_itr_now;
}
if (adapter->flags2 & FLAG2_DISABLE_AIM) {
new_itr = 0;
goto set_itr_now;
}
adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
adapter->total_tx_packets,
adapter->total_tx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
adapter->tx_itr = low_latency;
adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
adapter->total_rx_packets,
adapter->total_rx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
adapter->rx_itr = low_latency;
current_itr = max(adapter->rx_itr, adapter->tx_itr);
/* counts and packets in update_itr are dependent on these numbers */
switch (current_itr) {
case lowest_latency:
new_itr = 70000;
break;
case low_latency:
new_itr = 20000; /* aka hwitr = ~200 */
break;
case bulk_latency:
new_itr = 4000;
break;
default:
break;
}
set_itr_now:
if (new_itr != adapter->itr) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > adapter->itr ?
min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
adapter->itr = new_itr;
adapter->rx_ring->itr_val = new_itr;
if (adapter->msix_entries)
adapter->rx_ring->set_itr = 1;
else
e1000e_write_itr(adapter, new_itr);
}
}
/**
* e1000e_write_itr - write the ITR value to the appropriate registers
* @adapter: address of board private structure
* @itr: new ITR value to program
*
* e1000e_write_itr determines if the adapter is in MSI-X mode
* and, if so, writes the EITR registers with the ITR value.
* Otherwise, it writes the ITR value into the ITR register.
**/
void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
{
struct e1000_hw *hw = &adapter->hw;
u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
if (adapter->msix_entries) {
int vector;
for (vector = 0; vector < adapter->num_vectors; vector++)
writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
} else {
ew32(ITR, new_itr);
}
}
/**
* e1000_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
**/
static int e1000_alloc_queues(struct e1000_adapter *adapter)
{
int size = sizeof(struct e1000_ring);
adapter->tx_ring = kzalloc(size, GFP_KERNEL);
if (!adapter->tx_ring)
goto err;
adapter->tx_ring->count = adapter->tx_ring_count;
adapter->tx_ring->adapter = adapter;
adapter->rx_ring = kzalloc(size, GFP_KERNEL);
if (!adapter->rx_ring)
goto err;
adapter->rx_ring->count = adapter->rx_ring_count;
adapter->rx_ring->adapter = adapter;
return 0;
err:
e_err("Unable to allocate memory for queues\n");
kfree(adapter->rx_ring);
kfree(adapter->tx_ring);
return -ENOMEM;
}
/**
* e1000e_poll - NAPI Rx polling callback
* @napi: struct associated with this polling callback
* @weight: number of packets driver is allowed to process this poll
**/
static int e1000e_poll(struct napi_struct *napi, int weight)
{
struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
napi);
struct e1000_hw *hw = &adapter->hw;
struct net_device *poll_dev = adapter->netdev;
int tx_cleaned = 1, work_done = 0;
adapter = netdev_priv(poll_dev);
if (!adapter->msix_entries ||
(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
adapter->clean_rx(adapter->rx_ring, &work_done, weight);
if (!tx_cleaned)
work_done = weight;
/* If weight not fully consumed, exit the polling mode */
if (work_done < weight) {
if (adapter->itr_setting & 3)
e1000_set_itr(adapter);
napi_complete(napi);
if (!test_bit(__E1000_DOWN, &adapter->state)) {
if (adapter->msix_entries)
ew32(IMS, adapter->rx_ring->ims_val);
else
e1000_irq_enable(adapter);
}
}
return work_done;
}
static int e1000_vlan_rx_add_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index;
/* don't update vlan cookie if already programmed */
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
(vid == adapter->mng_vlan_id))
return 0;
/* add VID to filter table */
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
vfta |= (1 << (vid & 0x1F));
hw->mac.ops.write_vfta(hw, index, vfta);
}
set_bit(vid, adapter->active_vlans);
return 0;
}
static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
__always_unused __be16 proto, u16 vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index;
if ((adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
(vid == adapter->mng_vlan_id)) {
/* release control to f/w */
e1000e_release_hw_control(adapter);
return 0;
}
/* remove VID from filter table */
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
vfta &= ~(1 << (vid & 0x1F));
hw->mac.ops.write_vfta(hw, index, vfta);
}
clear_bit(vid, adapter->active_vlans);
return 0;
}
/**
* e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
/* disable VLAN receive filtering */
rctl = er32(RCTL);
rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
ew32(RCTL, rctl);
if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
adapter->mng_vlan_id);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
}
}
}
/**
* e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
/* enable VLAN receive filtering */
rctl = er32(RCTL);
rctl |= E1000_RCTL_VFE;
rctl &= ~E1000_RCTL_CFIEN;
ew32(RCTL, rctl);
}
}
/**
* e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl;
/* disable VLAN tag insert/strip */
ctrl = er32(CTRL);
ctrl &= ~E1000_CTRL_VME;
ew32(CTRL, ctrl);
}
/**
* e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
* @adapter: board private structure to initialize
**/
static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl;
/* enable VLAN tag insert/strip */
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_VME;
ew32(CTRL, ctrl);
}
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
u16 vid = adapter->hw.mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
adapter->mng_vlan_id = vid;
}
if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
}
static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
u16 vid;
e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
}
static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 manc, manc2h, mdef, i, j;
if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
return;
manc = er32(MANC);
/* enable receiving management packets to the host. this will probably
* generate destination unreachable messages from the host OS, but
* the packets will be handled on SMBUS
*/
manc |= E1000_MANC_EN_MNG2HOST;
manc2h = er32(MANC2H);
switch (hw->mac.type) {
default:
manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
break;
case e1000_82574:
case e1000_82583:
/* Check if IPMI pass-through decision filter already exists;
* if so, enable it.
*/
for (i = 0, j = 0; i < 8; i++) {
mdef = er32(MDEF(i));
/* Ignore filters with anything other than IPMI ports */
if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
continue;
/* Enable this decision filter in MANC2H */
if (mdef)
manc2h |= (1 << i);
j |= mdef;
}
if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
break;
/* Create new decision filter in an empty filter */
for (i = 0, j = 0; i < 8; i++)
if (er32(MDEF(i)) == 0) {
ew32(MDEF(i), (E1000_MDEF_PORT_623 |
E1000_MDEF_PORT_664));
manc2h |= (1 << 1);
j++;
break;
}
if (!j)
e_warn("Unable to create IPMI pass-through filter\n");
break;
}
ew32(MANC2H, manc2h);
ew32(MANC, manc);
}
/**
* e1000_configure_tx - Configure Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *tx_ring = adapter->tx_ring;
u64 tdba;
u32 tdlen, tctl, tarc;
/* Setup the HW Tx Head and Tail descriptor pointers */
tdba = tx_ring->dma;
tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
ew32(TDBAH(0), (tdba >> 32));
ew32(TDLEN(0), tdlen);
ew32(TDH(0), 0);
ew32(TDT(0), 0);
tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
/* Set the Tx Interrupt Delay register */
ew32(TIDV, adapter->tx_int_delay);
/* Tx irq moderation */
ew32(TADV, adapter->tx_abs_int_delay);
if (adapter->flags2 & FLAG2_DMA_BURST) {
u32 txdctl = er32(TXDCTL(0));
txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
E1000_TXDCTL_WTHRESH);
/* set up some performance related parameters to encourage the
* hardware to use the bus more efficiently in bursts, depends
* on the tx_int_delay to be enabled,
* wthresh = 1 ==> burst write is disabled to avoid Tx stalls
* hthresh = 1 ==> prefetch when one or more available
* pthresh = 0x1f ==> prefetch if internal cache 31 or less
* BEWARE: this seems to work but should be considered first if
* there are Tx hangs or other Tx related bugs
*/
txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
ew32(TXDCTL(0), txdctl);
}
/* erratum work around: set txdctl the same for both queues */
ew32(TXDCTL(1), er32(TXDCTL(0)));
/* Program the Transmit Control Register */
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
tarc = er32(TARC(0));
/* set the speed mode bit, we'll clear it if we're not at
* gigabit link later
*/
#define SPEED_MODE_BIT (1 << 21)
tarc |= SPEED_MODE_BIT;
ew32(TARC(0), tarc);
}
/* errata: program both queues to unweighted RR */
if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
tarc = er32(TARC(0));
tarc |= 1;
ew32(TARC(0), tarc);
tarc = er32(TARC(1));
tarc |= 1;
ew32(TARC(1), tarc);
}
/* Setup Transmit Descriptor Settings for eop descriptor */
adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
/* only set IDE if we are delaying interrupts using the timers */
if (adapter->tx_int_delay)
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
/* enable Report Status bit */
adapter->txd_cmd |= E1000_TXD_CMD_RS;
ew32(TCTL, tctl);
hw->mac.ops.config_collision_dist(hw);
}
/**
* e1000_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
(((S) & (PAGE_SIZE - 1)) ? 1 : 0))
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl, rfctl;
u32 pages = 0;
/* Workaround Si errata on PCHx - configure jumbo frame flow.
* If jumbo frames not set, program related MAC/PHY registers
* to h/w defaults
*/
if (hw->mac.type >= e1000_pch2lan) {
s32 ret_val;
if (adapter->netdev->mtu > ETH_DATA_LEN)
ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
else
ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
if (ret_val)
e_dbg("failed to enable|disable jumbo frame workaround mode\n");
}
/* Program MC offset vector base */
rctl = er32(RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
/* Do not Store bad packets */
rctl &= ~E1000_RCTL_SBP;
/* Enable Long Packet receive */
if (adapter->netdev->mtu <= ETH_DATA_LEN)
rctl &= ~E1000_RCTL_LPE;
else
rctl |= E1000_RCTL_LPE;
/* Some systems expect that the CRC is included in SMBUS traffic. The
* hardware strips the CRC before sending to both SMBUS (BMC) and to
* host memory when this is enabled
*/
if (adapter->flags2 & FLAG2_CRC_STRIPPING)
rctl |= E1000_RCTL_SECRC;
/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
u16 phy_data;
e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
phy_data &= 0xfff8;
phy_data |= (1 << 2);
e1e_wphy(hw, PHY_REG(770, 26), phy_data);
e1e_rphy(hw, 22, &phy_data);
phy_data &= 0x0fff;
phy_data |= (1 << 14);
e1e_wphy(hw, 0x10, 0x2823);
e1e_wphy(hw, 0x11, 0x0003);
e1e_wphy(hw, 22, phy_data);
}
/* Setup buffer sizes */
rctl &= ~E1000_RCTL_SZ_4096;
rctl |= E1000_RCTL_BSEX;
switch (adapter->rx_buffer_len) {
case 2048:
default:
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~E1000_RCTL_BSEX;
break;
case 4096:
rctl |= E1000_RCTL_SZ_4096;
break;
case 8192:
rctl |= E1000_RCTL_SZ_8192;
break;
case 16384:
rctl |= E1000_RCTL_SZ_16384;
break;
}
/* Enable Extended Status in all Receive Descriptors */
rfctl = er32(RFCTL);
rfctl |= E1000_RFCTL_EXTEN;
ew32(RFCTL, rfctl);
/* 82571 and greater support packet-split where the protocol
* header is placed in skb->data and the packet data is
* placed in pages hanging off of skb_shinfo(skb)->nr_frags.
* In the case of a non-split, skb->data is linearly filled,
* followed by the page buffers. Therefore, skb->data is
* sized to hold the largest protocol header.
*
* allocations using alloc_page take too long for regular MTU
* so only enable packet split for jumbo frames
*
* Using pages when the page size is greater than 16k wastes
* a lot of memory, since we allocate 3 pages at all times
* per packet.
*/
pages = PAGE_USE_COUNT(adapter->netdev->mtu);
if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
adapter->rx_ps_pages = pages;
else
adapter->rx_ps_pages = 0;
if (adapter->rx_ps_pages) {
u32 psrctl = 0;
/* Enable Packet split descriptors */
rctl |= E1000_RCTL_DTYP_PS;
psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
switch (adapter->rx_ps_pages) {
case 3:
psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
/* fall-through */
case 2:
psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
/* fall-through */
case 1:
psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
break;
}
ew32(PSRCTL, psrctl);
}
/* This is useful for sniffing bad packets. */
if (adapter->netdev->features & NETIF_F_RXALL) {
/* UPE and MPE will be handled by normal PROMISC logic
* in e1000e_set_rx_mode
*/
rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
E1000_RCTL_BAM | /* RX All Bcast Pkts */
E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
E1000_RCTL_DPF | /* Allow filtered pause */
E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
* and that breaks VLANs.
*/
}
ew32(RCTL, rctl);
/* just started the receive unit, no need to restart */
adapter->flags &= ~FLAG_RESTART_NOW;
}
/**
* e1000_configure_rx - Configure Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_ring *rx_ring = adapter->rx_ring;
u64 rdba;
u32 rdlen, rctl, rxcsum, ctrl_ext;
if (adapter->rx_ps_pages) {
/* this is a 32 byte descriptor */
rdlen = rx_ring->count *
sizeof(union e1000_rx_desc_packet_split);
adapter->clean_rx = e1000_clean_rx_irq_ps;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
adapter->clean_rx = e1000_clean_jumbo_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
} else {
rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
adapter->clean_rx = e1000_clean_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
}
/* disable receives while setting up the descriptors */
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
e1e_flush();
usleep_range(10000, 20000);
if (adapter->flags2 & FLAG2_DMA_BURST) {
/* set the writeback threshold (only takes effect if the RDTR
* is set). set GRAN=1 and write back up to 0x4 worth, and
* enable prefetching of 0x20 Rx descriptors
* granularity = 01
* wthresh = 04,
* hthresh = 04,
* pthresh = 0x20
*/
ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
/* override the delay timers for enabling bursting, only if
* the value was not set by the user via module options
*/
if (adapter->rx_int_delay == DEFAULT_RDTR)
adapter->rx_int_delay = BURST_RDTR;
if (adapter->rx_abs_int_delay == DEFAULT_RADV)
adapter->rx_abs_int_delay = BURST_RADV;
}
/* set the Receive Delay Timer Register */
ew32(RDTR, adapter->rx_int_delay);
/* irq moderation */
ew32(RADV, adapter->rx_abs_int_delay);
if ((adapter->itr_setting != 0) && (adapter->itr != 0))
e1000e_write_itr(adapter, adapter->itr);
ctrl_ext = er32(CTRL_EXT);
/* Auto-Mask interrupts upon ICR access */
ctrl_ext |= E1000_CTRL_EXT_IAME;
ew32(IAM, 0xffffffff);
ew32(CTRL_EXT, ctrl_ext);
e1e_flush();
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
rdba = rx_ring->dma;
ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
ew32(RDBAH(0), (rdba >> 32));
ew32(RDLEN(0), rdlen);
ew32(RDH(0), 0);
ew32(RDT(0), 0);
rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
/* Enable Receive Checksum Offload for TCP and UDP */
rxcsum = er32(RXCSUM);
if (adapter->netdev->features & NETIF_F_RXCSUM)
rxcsum |= E1000_RXCSUM_TUOFL;
else
rxcsum &= ~E1000_RXCSUM_TUOFL;
ew32(RXCSUM, rxcsum);
/* With jumbo frames, excessive C-state transition latencies result
* in dropped transactions.
*/
if (adapter->netdev->mtu > ETH_DATA_LEN) {
u32 lat =
((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
adapter->max_frame_size) * 8 / 1000;
if (adapter->flags & FLAG_IS_ICH) {
u32 rxdctl = er32(RXDCTL(0));
ew32(RXDCTL(0), rxdctl | 0x3);
}
pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
} else {
pm_qos_update_request(&adapter->netdev->pm_qos_req,
PM_QOS_DEFAULT_VALUE);
}
/* Enable Receives */
ew32(RCTL, rctl);
}
/**
* e1000e_write_mc_addr_list - write multicast addresses to MTA
* @netdev: network interface device structure
*
* Writes multicast address list to the MTA hash table.
* Returns: -ENOMEM on failure
* 0 on no addresses written
* X on writing X addresses to MTA
*/
static int e1000e_write_mc_addr_list(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
u8 *mta_list;
int i;
if (netdev_mc_empty(netdev)) {
/* nothing to program, so clear mc list */
hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
return 0;
}
mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
if (!mta_list)
return -ENOMEM;
/* update_mc_addr_list expects a packed array of only addresses. */
i = 0;
netdev_for_each_mc_addr(ha, netdev)
memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
kfree(mta_list);
return netdev_mc_count(netdev);
}
/**
* e1000e_write_uc_addr_list - write unicast addresses to RAR table
* @netdev: network interface device structure
*
* Writes unicast address list to the RAR table.
* Returns: -ENOMEM on failure/insufficient address space
* 0 on no addresses written
* X on writing X addresses to the RAR table
**/
static int e1000e_write_uc_addr_list(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
unsigned int rar_entries;
int count = 0;
rar_entries = hw->mac.ops.rar_get_count(hw);
/* save a rar entry for our hardware address */
rar_entries--;
/* save a rar entry for the LAA workaround */
if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
rar_entries--;
/* return ENOMEM indicating insufficient memory for addresses */
if (netdev_uc_count(netdev) > rar_entries)
return -ENOMEM;
if (!netdev_uc_empty(netdev) && rar_entries) {
struct netdev_hw_addr *ha;
/* write the addresses in reverse order to avoid write
* combining
*/
netdev_for_each_uc_addr(ha, netdev) {
int rval;
if (!rar_entries)
break;
rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
if (rval < 0)
return -ENOMEM;
count++;
}
}
/* zero out the remaining RAR entries not used above */
for (; rar_entries > 0; rar_entries--) {
ew32(RAH(rar_entries), 0);
ew32(RAL(rar_entries), 0);
}
e1e_flush();
return count;
}
/**
* e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The ndo_set_rx_mode entry point is called whenever the unicast or multicast
* address list or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper unicast, multicast,
* promiscuous mode, and all-multi behavior.
**/
static void e1000e_set_rx_mode(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (pm_runtime_suspended(netdev->dev.parent))
return;
/* Check for Promiscuous and All Multicast modes */
rctl = er32(RCTL);
/* clear the affected bits */
rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
if (netdev->flags & IFF_PROMISC) {
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
/* Do not hardware filter VLANs in promisc mode */
e1000e_vlan_filter_disable(adapter);
} else {
int count;
if (netdev->flags & IFF_ALLMULTI) {
rctl |= E1000_RCTL_MPE;
} else {
/* Write addresses to the MTA, if the attempt fails
* then we should just turn on promiscuous mode so
* that we can at least receive multicast traffic
*/
count = e1000e_write_mc_addr_list(netdev);
if (count < 0)
rctl |= E1000_RCTL_MPE;
}
e1000e_vlan_filter_enable(adapter);
/* Write addresses to available RAR registers, if there is not
* sufficient space to store all the addresses then enable
* unicast promiscuous mode
*/
count = e1000e_write_uc_addr_list(netdev);
if (count < 0)
rctl |= E1000_RCTL_UPE;
}
ew32(RCTL, rctl);
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
e1000e_vlan_strip_enable(adapter);
else
e1000e_vlan_strip_disable(adapter);
}
static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 mrqc, rxcsum;
int i;
static const u32 rsskey[10] = {
0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
};
/* Fill out hash function seed */
for (i = 0; i < 10; i++)
ew32(RSSRK(i), rsskey[i]);
/* Direct all traffic to queue 0 */
for (i = 0; i < 32; i++)
ew32(RETA(i), 0);
/* Disable raw packet checksumming so that RSS hash is placed in
* descriptor on writeback.
*/
rxcsum = er32(RXCSUM);
rxcsum |= E1000_RXCSUM_PCSD;
ew32(RXCSUM, rxcsum);
mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
E1000_MRQC_RSS_FIELD_IPV4_TCP |
E1000_MRQC_RSS_FIELD_IPV6 |
E1000_MRQC_RSS_FIELD_IPV6_TCP |
E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
ew32(MRQC, mrqc);
}
/**
* e1000e_get_base_timinca - get default SYSTIM time increment attributes
* @adapter: board private structure
* @timinca: pointer to returned time increment attributes
*
* Get attributes for incrementing the System Time Register SYSTIML/H at
* the default base frequency, and set the cyclecounter shift value.
**/
s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
{
struct e1000_hw *hw = &adapter->hw;
u32 incvalue, incperiod, shift;
/* Make sure clock is enabled on I217 before checking the frequency */
if ((hw->mac.type == e1000_pch_lpt) &&
!(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
!(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
u32 fextnvm7 = er32(FEXTNVM7);
if (!(fextnvm7 & (1 << 0))) {
ew32(FEXTNVM7, fextnvm7 | (1 << 0));
e1e_flush();
}
}
switch (hw->mac.type) {
case e1000_pch2lan:
case e1000_pch_lpt:
/* On I217, the clock frequency is 25MHz or 96MHz as
* indicated by the System Clock Frequency Indication
*/
if ((hw->mac.type != e1000_pch_lpt) ||
(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
/* Stable 96MHz frequency */
incperiod = INCPERIOD_96MHz;
incvalue = INCVALUE_96MHz;
shift = INCVALUE_SHIFT_96MHz;
adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
break;
}
/* fall-through */
case e1000_82574:
case e1000_82583:
/* Stable 25MHz frequency */
incperiod = INCPERIOD_25MHz;
incvalue = INCVALUE_25MHz;
shift = INCVALUE_SHIFT_25MHz;
adapter->cc.shift = shift;
break;
default:
return -EINVAL;
}
*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
return 0;
}
/**
* e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
* @adapter: board private structure
*
* Outgoing time stamping can be enabled and disabled. Play nice and
* disable it when requested, although it shouldn't cause any overhead
* when no packet needs it. At most one packet in the queue may be
* marked for time stamping, otherwise it would be impossible to tell
* for sure to which packet the hardware time stamp belongs.
*
* Incoming time stamping has to be configured via the hardware filters.
* Not all combinations are supported, in particular event type has to be
* specified. Matching the kind of event packet is not supported, with the
* exception of "all V2 events regardless of level 2 or 4".
**/
static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
struct hwtstamp_config *config)
{
struct e1000_hw *hw = &adapter->hw;
u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
u32 rxmtrl = 0;
u16 rxudp = 0;
bool is_l4 = false;
bool is_l2 = false;
u32 regval;
s32 ret_val;
if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
return -EINVAL;
/* flags reserved for future extensions - must be zero */
if (config->flags)
return -EINVAL;
switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
tsync_tx_ctl = 0;
break;
case HWTSTAMP_TX_ON:
break;
default:
return -ERANGE;
}
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
tsync_rx_ctl = 0;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
/* Also time stamps V2 L2 Path Delay Request/Response */
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
is_l2 = true;
break;
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
/* Also time stamps V2 L2 Path Delay Request/Response. */
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
is_l2 = true;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
/* Hardware cannot filter just V2 L4 Sync messages;
* fall-through to V2 (both L2 and L4) Sync.
*/
case HWTSTAMP_FILTER_PTP_V2_SYNC:
/* Also time stamps V2 Path Delay Request/Response. */
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
is_l2 = true;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
/* Hardware cannot filter just V2 L4 Delay Request messages;
* fall-through to V2 (both L2 and L4) Delay Request.
*/
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
/* Also time stamps V2 Path Delay Request/Response. */
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
is_l2 = true;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
/* Hardware cannot filter just V2 L4 or L2 Event messages;
* fall-through to all V2 (both L2 and L4) Events.
*/
case HWTSTAMP_FILTER_PTP_V2_EVENT:
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
is_l2 = true;
is_l4 = true;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
/* For V1, the hardware can only filter Sync messages or
* Delay Request messages but not both so fall-through to
* time stamp all packets.
*/
case HWTSTAMP_FILTER_ALL:
is_l2 = true;
is_l4 = true;
tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
config->rx_filter = HWTSTAMP_FILTER_ALL;
break;
default:
return -ERANGE;
}
adapter->hwtstamp_config = *config;
/* enable/disable Tx h/w time stamping */
regval = er32(TSYNCTXCTL);
regval &= ~E1000_TSYNCTXCTL_ENABLED;
regval |= tsync_tx_ctl;
ew32(TSYNCTXCTL, regval);
if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
(regval & E1000_TSYNCTXCTL_ENABLED)) {
e_err("Timesync Tx Control register not set as expected\n");
return -EAGAIN;
}
/* enable/disable Rx h/w time stamping */
regval = er32(TSYNCRXCTL);
regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
regval |= tsync_rx_ctl;
ew32(TSYNCRXCTL, regval);
if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
E1000_TSYNCRXCTL_TYPE_MASK)) !=
(regval & (E1000_TSYNCRXCTL_ENABLED |
E1000_TSYNCRXCTL_TYPE_MASK))) {
e_err("Timesync Rx Control register not set as expected\n");
return -EAGAIN;
}
/* L2: define ethertype filter for time stamped packets */
if (is_l2)
rxmtrl |= ETH_P_1588;
/* define which PTP packets get time stamped */
ew32(RXMTRL, rxmtrl);
/* Filter by destination port */
if (is_l4) {
rxudp = PTP_EV_PORT;
cpu_to_be16s(&rxudp);
}
ew32(RXUDP, rxudp);
e1e_flush();
/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
er32(RXSTMPH);
er32(TXSTMPH);
/* Get and set the System Time Register SYSTIM base frequency */
ret_val = e1000e_get_base_timinca(adapter, &regval);
if (ret_val)
return ret_val;
ew32(TIMINCA, regval);
/* reset the ns time counter */
timecounter_init(&adapter->tc, &adapter->cc,
ktime_to_ns(ktime_get_real()));
return 0;
}
/**
* e1000_configure - configure the hardware for Rx and Tx
* @adapter: private board structure
**/
static void e1000_configure(struct e1000_adapter *adapter)
{
struct e1000_ring *rx_ring = adapter->rx_ring;
e1000e_set_rx_mode(adapter->netdev);
e1000_restore_vlan(adapter);
e1000_init_manageability_pt(adapter);
e1000_configure_tx(adapter);
if (adapter->netdev->features & NETIF_F_RXHASH)
e1000e_setup_rss_hash(adapter);
e1000_setup_rctl(adapter);
e1000_configure_rx(adapter);
adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
}
/**
* e1000e_power_up_phy - restore link in case the phy was powered down
* @adapter: address of board private structure
*
* The phy may be powered down to save power and turn off link when the
* driver is unloaded and wake on lan is not enabled (among others)
* *** this routine MUST be followed by a call to e1000e_reset ***
**/
void e1000e_power_up_phy(struct e1000_adapter *adapter)
{
if (adapter->hw.phy.ops.power_up)
adapter->hw.phy.ops.power_up(&adapter->hw);
adapter->hw.mac.ops.setup_link(&adapter->hw);
}
/**
* e1000_power_down_phy - Power down the PHY
*
* Power down the PHY so no link is implied when interface is down.
* The PHY cannot be powered down if management or WoL is active.
*/
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
if (adapter->hw.phy.ops.power_down)
adapter->hw.phy.ops.power_down(&adapter->hw);
}
/**
* e1000e_reset - bring the hardware into a known good state
*
* This function boots the hardware and enables some settings that
* require a configuration cycle of the hardware - those cannot be
* set/changed during runtime. After reset the device needs to be
* properly configured for Rx, Tx etc.
*/
void e1000e_reset(struct e1000_adapter *adapter)
{
struct e1000_mac_info *mac = &adapter->hw.mac;
struct e1000_fc_info *fc = &adapter->hw.fc;
struct e1000_hw *hw = &adapter->hw;
u32 tx_space, min_tx_space, min_rx_space;
u32 pba = adapter->pba;
u16 hwm;
/* reset Packet Buffer Allocation to default */
ew32(PBA, pba);
if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
/* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB.
*/
pba = er32(PBA);
/* upper 16 bits has Tx packet buffer allocation size in KB */
tx_space = pba >> 16;
/* lower 16 bits has Rx packet buffer allocation size in KB */
pba &= 0xffff;
/* the Tx fifo also stores 16 bytes of information about the Tx
* but don't include ethernet FCS because hardware appends it
*/
min_tx_space = (adapter->max_frame_size +
sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
min_tx_space = ALIGN(min_tx_space, 1024);
min_tx_space >>= 10;
/* software strips receive CRC, so leave room for it */
min_rx_space = adapter->max_frame_size;
min_rx_space = ALIGN(min_rx_space, 1024);
min_rx_space >>= 10;
/* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation
*/
if ((tx_space < min_tx_space) &&
((min_tx_space - tx_space) < pba)) {
pba -= min_tx_space - tx_space;
/* if short on Rx space, Rx wins and must trump Tx
* adjustment
*/
if (pba < min_rx_space)
pba = min_rx_space;
}
ew32(PBA, pba);
}
/* flow control settings
*
* The high water mark must be low enough to fit one full frame
* (or the size used for early receive) above it in the Rx FIFO.
* Set it to the lower of:
* - 90% of the Rx FIFO size, and
* - the full Rx FIFO size minus one full frame
*/
if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
fc->pause_time = 0xFFFF;
else
fc->pause_time = E1000_FC_PAUSE_TIME;
fc->send_xon = true;
fc->current_mode = fc->requested_mode;
switch (hw->mac.type) {
case e1000_ich9lan:
case e1000_ich10lan:
if (adapter->netdev->mtu > ETH_DATA_LEN) {
pba = 14;
ew32(PBA, pba);
fc->high_water = 0x2800;
fc->low_water = fc->high_water - 8;
break;
}
/* fall-through */
default:
hwm = min(((pba << 10) * 9 / 10),
((pba << 10) - adapter->max_frame_size));
fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
fc->low_water = fc->high_water - 8;
break;
case e1000_pchlan:
/* Workaround PCH LOM adapter hangs with certain network
* loads. If hangs persist, try disabling Tx flow control.
*/
if (adapter->netdev->mtu > ETH_DATA_LEN) {
fc->high_water = 0x3500;
fc->low_water = 0x1500;
} else {
fc->high_water = 0x5000;
fc->low_water = 0x3000;
}
fc->refresh_time = 0x1000;
break;
case e1000_pch2lan:
case e1000_pch_lpt:
fc->refresh_time = 0x0400;
if (adapter->netdev->mtu <= ETH_DATA_LEN) {
fc->high_water = 0x05C20;
fc->low_water = 0x05048;
fc->pause_time = 0x0650;
break;
}
pba = 14;
ew32(PBA, pba);
fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
break;
}
/* Alignment of Tx data is on an arbitrary byte boundary with the
* maximum size per Tx descriptor limited only to the transmit
* allocation of the packet buffer minus 96 bytes with an upper
* limit of 24KB due to receive synchronization limitations.
*/
adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
24 << 10);
/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
* fit in receive buffer.
*/
if (adapter->itr_setting & 0x3) {
if ((adapter->max_frame_size * 2) > (pba << 10)) {
if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
dev_info(&adapter->pdev->dev,
"Interrupt Throttle Rate off\n");
adapter->flags2 |= FLAG2_DISABLE_AIM;
e1000e_write_itr(adapter, 0);
}
} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
dev_info(&adapter->pdev->dev,
"Interrupt Throttle Rate on\n");
adapter->flags2 &= ~FLAG2_DISABLE_AIM;
adapter->itr = 20000;
e1000e_write_itr(adapter, adapter->itr);
}
}
/* Allow time for pending master requests to run */
mac->ops.reset_hw(hw);
/* For parts with AMT enabled, let the firmware know
* that the network interface is in control
*/
if (adapter->flags & FLAG_HAS_AMT)
e1000e_get_hw_control(adapter);
ew32(WUC, 0);
if (mac->ops.init_hw(hw))
e_err("Hardware Error\n");
e1000_update_mng_vlan(adapter);
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
ew32(VET, ETH_P_8021Q);
e1000e_reset_adaptive(hw);
/* initialize systim and reset the ns time counter */
e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
/* Set EEE advertisement as appropriate */
if (adapter->flags2 & FLAG2_HAS_EEE) {
s32 ret_val;
u16 adv_addr;
switch (hw->phy.type) {
case e1000_phy_82579:
adv_addr = I82579_EEE_ADVERTISEMENT;
break;
case e1000_phy_i217:
adv_addr = I217_EEE_ADVERTISEMENT;
break;
default:
dev_err(&adapter->pdev->dev,
"Invalid PHY type setting EEE advertisement\n");
return;
}
ret_val = hw->phy.ops.acquire(hw);
if (ret_val) {
dev_err(&adapter->pdev->dev,
"EEE advertisement - unable to acquire PHY\n");
return;
}
e1000_write_emi_reg_locked(hw, adv_addr,
hw->dev_spec.ich8lan.eee_disable ?
0 : adapter->eee_advert);
hw->phy.ops.release(hw);
}
if (!netif_running(adapter->netdev) &&
!test_bit(__E1000_TESTING, &adapter->state))
e1000_power_down_phy(adapter);
e1000_get_phy_info(hw);
if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
u16 phy_data = 0;
/* speed up time to link by disabling smart power down, ignore
* the return value of this function because there is nothing
* different we would do if it failed
*/
e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
phy_data &= ~IGP02E1000_PM_SPD;
e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
}
}
int e1000e_up(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* hardware has been reset, we need to reload some things */
e1000_configure(adapter);
clear_bit(__E1000_DOWN, &adapter->state);
if (adapter->msix_entries)
e1000_configure_msix(adapter);
e1000_irq_enable(adapter);
netif_start_queue(adapter->netdev);
/* fire a link change interrupt to start the watchdog */
if (adapter->msix_entries)
ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
else
ew32(ICS, E1000_ICS_LSC);
return 0;
}
static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (!(adapter->flags2 & FLAG2_DMA_BURST))
return;
/* flush pending descriptor writebacks to memory */
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
/* execute the writes immediately */
e1e_flush();
/* due to rare timing issues, write to TIDV/RDTR again to ensure the
* write is successful
*/
ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
/* execute the writes immediately */
e1e_flush();
}
static void e1000e_update_stats(struct e1000_adapter *adapter);
/**
* e1000e_down - quiesce the device and optionally reset the hardware
* @adapter: board private structure
* @reset: boolean flag to reset the hardware or not
*/
void e1000e_down(struct e1000_adapter *adapter, bool reset)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
u32 tctl, rctl;
/* signal that we're down so the interrupt handler does not
* reschedule our watchdog timer
*/
set_bit(__E1000_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = er32(RCTL);
if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
ew32(RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
netif_stop_queue(netdev);
/* disable transmits in the hardware */
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_EN;
ew32(TCTL, tctl);
/* flush both disables and wait for them to finish */
e1e_flush();
usleep_range(10000, 20000);
e1000_irq_disable(adapter);
napi_synchronize(&adapter->napi);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
netif_carrier_off(netdev);
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
e1000e_flush_descriptors(adapter);
e1000_clean_tx_ring(adapter->tx_ring);
e1000_clean_rx_ring(adapter->rx_ring);
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* Disable Si errata workaround on PCHx for jumbo frame flow */
if ((hw->mac.type >= e1000_pch2lan) &&
(adapter->netdev->mtu > ETH_DATA_LEN) &&
e1000_lv_jumbo_workaround_ich8lan(hw, false))
e_dbg("failed to disable jumbo frame workaround mode\n");
if (reset && !pci_channel_offline(adapter->pdev))
e1000e_reset(adapter);
}
void e1000e_reinit_locked(struct e1000_adapter *adapter)
{
might_sleep();
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
e1000e_down(adapter, true);
e1000e_up(adapter);
clear_bit(__E1000_RESETTING, &adapter->state);
}
/**
* e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
* @cc: cyclecounter structure
**/
static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
{
struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
cc);
struct e1000_hw *hw = &adapter->hw;
cycle_t systim, systim_next;
/* latch SYSTIMH on read of SYSTIML */
systim = (cycle_t)er32(SYSTIML);
systim |= (cycle_t)er32(SYSTIMH) << 32;
if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
u64 incvalue, time_delta, rem, temp;
int i;
/* errata for 82574/82583 possible bad bits read from SYSTIMH/L
* check to see that the time is incrementing at a reasonable
* rate and is a multiple of incvalue
*/
incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
/* latch SYSTIMH on read of SYSTIML */
systim_next = (cycle_t)er32(SYSTIML);
systim_next |= (cycle_t)er32(SYSTIMH) << 32;
time_delta = systim_next - systim;
temp = time_delta;
rem = do_div(temp, incvalue);
systim = systim_next;
if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
(rem == 0))
break;
}
}
return systim;
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
* @adapter: board private structure to initialize
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int e1000_sw_init(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
adapter->rx_ps_bsize0 = 128;
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
adapter->tx_ring_count = E1000_DEFAULT_TXD;
adapter->rx_ring_count = E1000_DEFAULT_RXD;
spin_lock_init(&adapter->stats64_lock);
e1000e_set_interrupt_capability(adapter);
if (e1000_alloc_queues(adapter))
return -ENOMEM;
/* Setup hardware time stamping cyclecounter */
if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
adapter->cc.read = e1000e_cyclecounter_read;
adapter->cc.mask = CLOCKSOURCE_MASK(64);
adapter->cc.mult = 1;
/* cc.shift set in e1000e_get_base_tininca() */
spin_lock_init(&adapter->systim_lock);
INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
}
/* Explicitly disable IRQ since the NIC can be in any state. */
e1000_irq_disable(adapter);
set_bit(__E1000_DOWN, &adapter->state);
return 0;
}
/**
* e1000_intr_msi_test - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
e_dbg("icr is %08X\n", icr);
if (icr & E1000_ICR_RXSEQ) {
adapter->flags &= ~FLAG_MSI_TEST_FAILED;
/* Force memory writes to complete before acknowledging the
* interrupt is handled.
*/
wmb();
}
return IRQ_HANDLED;
}
/**
* e1000_test_msi_interrupt - Returns 0 for successful test
* @adapter: board private struct
*
* code flow taken from tg3.c
**/
static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
int err;
/* poll_enable hasn't been called yet, so don't need disable */
/* clear any pending events */
er32(ICR);
/* free the real vector and request a test handler */
e1000_free_irq(adapter);
e1000e_reset_interrupt_capability(adapter);
/* Assume that the test fails, if it succeeds then the test
* MSI irq handler will unset this flag
*/
adapter->flags |= FLAG_MSI_TEST_FAILED;
err = pci_enable_msi(adapter->pdev);
if (err)
goto msi_test_failed;
err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
netdev->name, netdev);
if (err) {
pci_disable_msi(adapter->pdev);
goto msi_test_failed;
}
/* Force memory writes to complete before enabling and firing an
* interrupt.
*/
wmb();
e1000_irq_enable(adapter);
/* fire an unusual interrupt on the test handler */
ew32(ICS, E1000_ICS_RXSEQ);
e1e_flush();
msleep(100);
e1000_irq_disable(adapter);
rmb(); /* read flags after interrupt has been fired */
if (adapter->flags & FLAG_MSI_TEST_FAILED) {
adapter->int_mode = E1000E_INT_MODE_LEGACY;
e_info("MSI interrupt test failed, using legacy interrupt.\n");
} else {
e_dbg("MSI interrupt test succeeded!\n");
}
free_irq(adapter->pdev->irq, netdev);
pci_disable_msi(adapter->pdev);
msi_test_failed:
e1000e_set_interrupt_capability(adapter);
return e1000_request_irq(adapter);
}
/**
* e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
* @adapter: board private struct
*
* code flow taken from tg3.c, called with e1000 interrupts disabled.
**/
static int e1000_test_msi(struct e1000_adapter *adapter)
{
int err;
u16 pci_cmd;
if (!(adapter->flags & FLAG_MSI_ENABLED))
return 0;
/* disable SERR in case the MSI write causes a master abort */
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
if (pci_cmd & PCI_COMMAND_SERR)
pci_write_config_word(adapter->pdev, PCI_COMMAND,
pci_cmd & ~PCI_COMMAND_SERR);
err = e1000_test_msi_interrupt(adapter);
/* re-enable SERR */
if (pci_cmd & PCI_COMMAND_SERR) {
pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
pci_cmd |= PCI_COMMAND_SERR;
pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
}
return err;
}
/**
* e1000_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int e1000_open(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
int err;
/* disallow open during test */
if (test_bit(__E1000_TESTING, &adapter->state))
return -EBUSY;
pm_runtime_get_sync(&pdev->dev);
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = e1000e_setup_tx_resources(adapter->tx_ring);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = e1000e_setup_rx_resources(adapter->rx_ring);
if (err)
goto err_setup_rx;
/* If AMT is enabled, let the firmware know that the network
* interface is now open and reset the part to a known state.
*/
if (adapter->flags & FLAG_HAS_AMT) {
e1000e_get_hw_control(adapter);
e1000e_reset(adapter);
}
e1000e_power_up_phy(adapter);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
e1000_update_mng_vlan(adapter);
/* DMA latency requirement to workaround jumbo issue */
pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
PM_QOS_DEFAULT_VALUE);
/* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so.
*/
e1000_configure(adapter);
err = e1000_request_irq(adapter);
if (err)
goto err_req_irq;
/* Work around PCIe errata with MSI interrupts causing some chipsets to
* ignore e1000e MSI messages, which means we need to test our MSI
* interrupt now
*/
if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
err = e1000_test_msi(adapter);
if (err) {
e_err("Interrupt allocation failed\n");
goto err_req_irq;
}
}
/* From here on the code is the same as e1000e_up() */
clear_bit(__E1000_DOWN, &adapter->state);
napi_enable(&adapter->napi);
e1000_irq_enable(adapter);
adapter->tx_hang_recheck = false;
netif_start_queue(netdev);
hw->mac.get_link_status = true;
pm_runtime_put(&pdev->dev);
/* fire a link status change interrupt to start the watchdog */
if (adapter->msix_entries)
ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
else
ew32(ICS, E1000_ICS_LSC);
return 0;
err_req_irq:
e1000e_release_hw_control(adapter);
e1000_power_down_phy(adapter);
e1000e_free_rx_resources(adapter->rx_ring);
err_setup_rx:
e1000e_free_tx_resources(adapter->tx_ring);
err_setup_tx:
e1000e_reset(adapter);
pm_runtime_put_sync(&pdev->dev);
return err;
}
/**
* e1000_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int e1000_close(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct pci_dev *pdev = adapter->pdev;
int count = E1000_CHECK_RESET_COUNT;
while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
usleep_range(10000, 20000);
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
pm_runtime_get_sync(&pdev->dev);
if (!test_bit(__E1000_DOWN, &adapter->state)) {
e1000e_down(adapter, true);
e1000_free_irq(adapter);
/* Link status message must follow this format */
pr_info("%s NIC Link is Down\n", adapter->netdev->name);
}
napi_disable(&adapter->napi);
e1000e_free_tx_resources(adapter->tx_ring);
e1000e_free_rx_resources(adapter->rx_ring);
/* kill manageability vlan ID if supported, but not if a vlan with
* the same ID is registered on the host OS (let 8021q kill it)
*/
if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
adapter->mng_vlan_id);
/* If AMT is enabled, let the firmware know that the network
* interface is now closed
*/
if ((adapter->flags & FLAG_HAS_AMT) &&
!test_bit(__E1000_TESTING, &adapter->state))
e1000e_release_hw_control(adapter);
pm_qos_remove_request(&adapter->netdev->pm_qos_req);
pm_runtime_put_sync(&pdev->dev);
return 0;
}
/**
* e1000_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
/* activate the work around */
e1000e_set_laa_state_82571(&adapter->hw, 1);
/* Hold a copy of the LAA in RAR[14] This is done so that
* between the time RAR[0] gets clobbered and the time it
* gets fixed (in e1000_watchdog), the actual LAA is in one
* of the RARs and no incoming packets directed to this port
* are dropped. Eventually the LAA will be in RAR[0] and
* RAR[14]
*/
hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
adapter->hw.mac.rar_entry_count - 1);
}
return 0;
}
/**
* e1000e_update_phy_task - work thread to update phy
* @work: pointer to our work struct
*
* this worker thread exists because we must acquire a
* semaphore to read the phy, which we could msleep while
* waiting for it, and we can't msleep in a timer.
**/
static void e1000e_update_phy_task(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
update_phy_task);
struct e1000_hw *hw = &adapter->hw;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
e1000_get_phy_info(hw);
/* Enable EEE on 82579 after link up */
if (hw->phy.type >= e1000_phy_82579)
e1000_set_eee_pchlan(hw);
}
/**
* e1000_update_phy_info - timre call-back to update PHY info
* @data: pointer to adapter cast into an unsigned long
*
* Need to wait a few seconds after link up to get diagnostic information from
* the phy
**/
static void e1000_update_phy_info(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *)data;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
schedule_work(&adapter->update_phy_task);
}
/**
* e1000e_update_phy_stats - Update the PHY statistics counters
* @adapter: board private structure
*
* Read/clear the upper 16-bit PHY registers and read/accumulate lower
**/
static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
s32 ret_val;
u16 phy_data;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return;
/* A page set is expensive so check if already on desired page.
* If not, set to the page with the PHY status registers.
*/
hw->phy.addr = 1;
ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
&phy_data);
if (ret_val)
goto release;
if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
ret_val = hw->phy.ops.set_page(hw,
HV_STATS_PAGE << IGP_PAGE_SHIFT);
if (ret_val)
goto release;
}
/* Single Collision Count */
hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.scc += phy_data;
/* Excessive Collision Count */
hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
if (!ret_val)
adapter->stats.ecol += phy_data;
/* Multiple Collision Count */
hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.mcc += phy_data;
/* Late Collision Count */
hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
if (!ret_val)
adapter->stats.latecol += phy_data;
/* Collision Count - also used for adaptive IFS */
hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
if (!ret_val)
hw->mac.collision_delta = phy_data;
/* Defer Count */
hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
if (!ret_val)
adapter->stats.dc += phy_data;
/* Transmit with no CRS */
hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
if (!ret_val)
adapter->stats.tncrs += phy_data;
release:
hw->phy.ops.release(hw);
}
/**
* e1000e_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
static void e1000e_update_stats(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
/* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
return;
adapter->stats.crcerrs += er32(CRCERRS);
adapter->stats.gprc += er32(GPRC);
adapter->stats.gorc += er32(GORCL);
er32(GORCH); /* Clear gorc */
adapter->stats.bprc += er32(BPRC);
adapter->stats.mprc += er32(MPRC);
adapter->stats.roc += er32(ROC);
adapter->stats.mpc += er32(MPC);
/* Half-duplex statistics */
if (adapter->link_duplex == HALF_DUPLEX) {
if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
e1000e_update_phy_stats(adapter);
} else {
adapter->stats.scc += er32(SCC);
adapter->stats.ecol += er32(ECOL);
adapter->stats.mcc += er32(MCC);
adapter->stats.latecol += er32(LATECOL);
adapter->stats.dc += er32(DC);
hw->mac.collision_delta = er32(COLC);
if ((hw->mac.type != e1000_82574) &&
(hw->mac.type != e1000_82583))
adapter->stats.tncrs += er32(TNCRS);
}
adapter->stats.colc += hw->mac.collision_delta;
}
adapter->stats.xonrxc += er32(XONRXC);
adapter->stats.xontxc += er32(XONTXC);
adapter->stats.xoffrxc += er32(XOFFRXC);
adapter->stats.xofftxc += er32(XOFFTXC);
adapter->stats.gptc += er32(GPTC);
adapter->stats.gotc += er32(GOTCL);
er32(GOTCH); /* Clear gotc */
adapter->stats.rnbc += er32(RNBC);
adapter->stats.ruc += er32(RUC);
adapter->stats.mptc += er32(MPTC);
adapter->stats.bptc += er32(BPTC);
/* used for adaptive IFS */
hw->mac.tx_packet_delta = er32(TPT);
adapter->stats.tpt += hw->mac.tx_packet_delta;
adapter->stats.algnerrc += er32(ALGNERRC);
adapter->stats.rxerrc += er32(RXERRC);
adapter->stats.cexterr += er32(CEXTERR);
adapter->stats.tsctc += er32(TSCTC);
adapter->stats.tsctfc += er32(TSCTFC);
/* Fill out the OS statistics structure */
netdev->stats.multicast = adapter->stats.mprc;
netdev->stats.collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
netdev->stats.rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
netdev->stats.rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
netdev->stats.rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
netdev->stats.tx_aborted_errors = adapter->stats.ecol;
netdev->stats.tx_window_errors = adapter->stats.latecol;
netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Management Stats */
adapter->stats.mgptc += er32(MGTPTC);
adapter->stats.mgprc += er32(MGTPRC);
adapter->stats.mgpdc += er32(MGTPDC);
/* Correctable ECC Errors */
if (hw->mac.type == e1000_pch_lpt) {
u32 pbeccsts = er32(PBECCSTS);
adapter->corr_errors +=
pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
adapter->uncorr_errors +=
(pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
}
}
/**
* e1000_phy_read_status - Update the PHY register status snapshot
* @adapter: board private structure
**/
static void e1000_phy_read_status(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_phy_regs *phy = &adapter->phy_regs;
if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
(er32(STATUS) & E1000_STATUS_LU) &&
(adapter->hw.phy.media_type == e1000_media_type_copper)) {
int ret_val;
ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
if (ret_val)
e_warn("Error reading PHY register\n");
} else {
/* Do not read PHY registers if link is not up
* Set values to typical power-on defaults
*/
phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
BMSR_ERCAP);
phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
ADVERTISE_ALL | ADVERTISE_CSMA);
phy->lpa = 0;
phy->expansion = EXPANSION_ENABLENPAGE;
phy->ctrl1000 = ADVERTISE_1000FULL;
phy->stat1000 = 0;
phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
}
}
static void e1000_print_link_info(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl = er32(CTRL);
/* Link status message must follow this format for user tools */
pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
adapter->netdev->name, adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
(ctrl & E1000_CTRL_RFCE) ? "Rx" :
(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
}
static bool e1000e_has_link(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = false;
s32 ret_val = 0;
/* get_link_status is set on LSC (link status) interrupt or
* Rx sequence error interrupt. get_link_status will stay
* false until the check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case e1000_media_type_copper:
if (hw->mac.get_link_status) {
ret_val = hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
} else {
link_active = true;
}
break;
case e1000_media_type_fiber:
ret_val = hw->mac.ops.check_for_link(hw);
link_active = !!(er32(STATUS) & E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
ret_val = hw->mac.ops.check_for_link(hw);
link_active = adapter->hw.mac.serdes_has_link;
break;
default:
case e1000_media_type_unknown:
break;
}
if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
(er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
e_info("Gigabit has been disabled, downgrading speed\n");
}
return link_active;
}
static void e1000e_enable_receives(struct e1000_adapter *adapter)
{
/* make sure the receive unit is started */
if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
(adapter->flags & FLAG_RESTART_NOW)) {
struct e1000_hw *hw = &adapter->hw;
u32 rctl = er32(RCTL);
ew32(RCTL, rctl | E1000_RCTL_EN);
adapter->flags &= ~FLAG_RESTART_NOW;
}
}
static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* With 82574 controllers, PHY needs to be checked periodically
* for hung state and reset, if two calls return true
*/
if (e1000_check_phy_82574(hw))
adapter->phy_hang_count++;
else
adapter->phy_hang_count = 0;
if (adapter->phy_hang_count > 1) {
adapter->phy_hang_count = 0;
e_dbg("PHY appears hung - resetting\n");
schedule_work(&adapter->reset_task);
}
}
/**
* e1000_watchdog - Timer Call-back
* @data: pointer to adapter cast into an unsigned long
**/
static void e1000_watchdog(unsigned long data)
{
struct e1000_adapter *adapter = (struct e1000_adapter *)data;
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
/* TODO: make this use queue_delayed_work() */
}
static void e1000_watchdog_task(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
watchdog_task);
struct net_device *netdev = adapter->netdev;
struct e1000_mac_info *mac = &adapter->hw.mac;
struct e1000_phy_info *phy = &adapter->hw.phy;
struct e1000_ring *tx_ring = adapter->tx_ring;
struct e1000_hw *hw = &adapter->hw;
u32 link, tctl;
if (test_bit(__E1000_DOWN, &adapter->state))
return;
link = e1000e_has_link(adapter);
if ((netif_carrier_ok(netdev)) && link) {
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
e1000e_enable_receives(adapter);
goto link_up;
}
if ((e1000e_enable_tx_pkt_filtering(hw)) &&
(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
e1000_update_mng_vlan(adapter);
if (link) {
if (!netif_carrier_ok(netdev)) {
bool txb2b = true;
/* Cancel scheduled suspend requests. */
pm_runtime_resume(netdev->dev.parent);
/* update snapshot of PHY registers on LSC */
e1000_phy_read_status(adapter);
mac->ops.get_link_up_info(&adapter->hw,
&adapter->link_speed,
&adapter->link_duplex);
e1000_print_link_info(adapter);
/* check if SmartSpeed worked */
e1000e_check_downshift(hw);
if (phy->speed_downgraded)
netdev_warn(netdev,
"Link Speed was downgraded by SmartSpeed\n");
/* On supported PHYs, check for duplex mismatch only
* if link has autonegotiated at 10/100 half
*/
if ((hw->phy.type == e1000_phy_igp_3 ||
hw->phy.type == e1000_phy_bm) &&
hw->mac.autoneg &&
(adapter->link_speed == SPEED_10 ||
adapter->link_speed == SPEED_100) &&
(adapter->link_duplex == HALF_DUPLEX)) {
u16 autoneg_exp;
e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
if (!(autoneg_exp & EXPANSION_NWAY))
e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
}
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
txb2b = false;
adapter->tx_timeout_factor = 16;
break;
case SPEED_100:
txb2b = false;
adapter->tx_timeout_factor = 10;
break;
}
/* workaround: re-program speed mode bit after
* link-up event
*/
if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
!txb2b) {
u32 tarc0;
tarc0 = er32(TARC(0));
tarc0 &= ~SPEED_MODE_BIT;
ew32(TARC(0), tarc0);
}
/* disable TSO for pcie and 10/100 speeds, to avoid
* some hardware issues
*/
if (!(adapter->flags & FLAG_TSO_FORCE)) {
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
e_info("10/100 speed: disabling TSO\n");
netdev->features &= ~NETIF_F_TSO;
netdev->features &= ~NETIF_F_TSO6;
break;
case SPEED_1000:
netdev->features |= NETIF_F_TSO;
netdev->features |= NETIF_F_TSO6;
break;
default:
/* oops */
break;
}
}
/* enable transmits in the hardware, need to do this
* after setting TARC(0)
*/
tctl = er32(TCTL);
tctl |= E1000_TCTL_EN;
ew32(TCTL, tctl);
/* Perform any post-link-up configuration before
* reporting link up.
*/
if (phy->ops.cfg_on_link_up)
phy->ops.cfg_on_link_up(hw);
netif_carrier_on(netdev);
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* Link status message must follow this format */
pr_info("%s NIC Link is Down\n", adapter->netdev->name);
netif_carrier_off(netdev);
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
/* 8000ES2LAN requires a Rx packet buffer work-around
* on link down event; reset the controller to flush
* the Rx packet buffer.
*/
if (adapter->flags & FLAG_RX_NEEDS_RESTART)
adapter->flags |= FLAG_RESTART_NOW;
else
pm_schedule_suspend(netdev->dev.parent,
LINK_TIMEOUT);
}
}
link_up:
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
adapter->tpt_old = adapter->stats.tpt;
mac->collision_delta = adapter->stats.colc - adapter->colc_old;
adapter->colc_old = adapter->stats.colc;
adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
adapter->gorc_old = adapter->stats.gorc;
adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
adapter->gotc_old = adapter->stats.gotc;
spin_unlock(&adapter->stats64_lock);
/* If the link is lost the controller stops DMA, but
* if there is queued Tx work it cannot be done. So
* reset the controller to flush the Tx packet buffers.
*/
if (!netif_carrier_ok(netdev) &&
(e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
adapter->flags |= FLAG_RESTART_NOW;
/* If reset is necessary, do it outside of interrupt context. */
if (adapter->flags & FLAG_RESTART_NOW) {
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
e1000e_update_adaptive(&adapter->hw);
/* Simple mode for Interrupt Throttle Rate (ITR) */
if (adapter->itr_setting == 4) {
/* Symmetric Tx/Rx gets a reduced ITR=2000;
* Total asymmetrical Tx or Rx gets ITR=8000;
* everyone else is between 2000-8000.
*/
u32 goc = (adapter->gotc + adapter->gorc) / 10000;
u32 dif = (adapter->gotc > adapter->gorc ?
adapter->gotc - adapter->gorc :
adapter->gorc - adapter->gotc) / 10000;
u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
e1000e_write_itr(adapter, itr);
}
/* Cause software interrupt to ensure Rx ring is cleaned */
if (adapter->msix_entries)
ew32(ICS, adapter->rx_ring->ims_val);
else
ew32(ICS, E1000_ICS_RXDMT0);
/* flush pending descriptors to memory before detecting Tx hang */
e1000e_flush_descriptors(adapter);
/* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = true;
/* With 82571 controllers, LAA may be overwritten due to controller
* reset from the other port. Set the appropriate LAA in RAR[0]
*/
if (e1000e_get_laa_state_82571(hw))
hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
e1000e_check_82574_phy_workaround(adapter);
/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
er32(RXSTMPH);
adapter->rx_hwtstamp_cleared++;
} else {
adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
}
}
/* Reset the timer */
if (!test_bit(__E1000_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
#define E1000_TX_FLAGS_CSUM 0x00000001
#define E1000_TX_FLAGS_VLAN 0x00000002
#define E1000_TX_FLAGS_TSO 0x00000004
#define E1000_TX_FLAGS_IPV4 0x00000008
#define E1000_TX_FLAGS_NO_FCS 0x00000010
#define E1000_TX_FLAGS_HWTSTAMP 0x00000020
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT 16
static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
{
struct e1000_context_desc *context_desc;
struct e1000_buffer *buffer_info;
unsigned int i;
u32 cmd_length = 0;
u16 ipcse = 0, mss;
u8 ipcss, ipcso, tucss, tucso, hdr_len;
int err;
if (!skb_is_gso(skb))
return 0;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
mss = skb_shinfo(skb)->gso_size;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = 0;
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
0, IPPROTO_TCP, 0);
cmd_length = E1000_TXD_CMD_IP;
ipcse = skb_transport_offset(skb) - 1;
} else if (skb_is_gso_v6(skb)) {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
ipcse = 0;
}
ipcss = skb_network_offset(skb);
ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
tucss = skb_transport_offset(skb);
tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
i = tx_ring->next_to_use;
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
context_desc->lower_setup.ip_fields.ipcss = ipcss;
context_desc->lower_setup.ip_fields.ipcso = ipcso;
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
context_desc->upper_setup.tcp_fields.tucss = tucss;
context_desc->upper_setup.tcp_fields.tucso = tucso;
context_desc->upper_setup.tcp_fields.tucse = 0;
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
return 1;
}
static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
{
struct e1000_adapter *adapter = tx_ring->adapter;
struct e1000_context_desc *context_desc;
struct e1000_buffer *buffer_info;
unsigned int i;
u8 css;
u32 cmd_len = E1000_TXD_CMD_DEXT;
__be16 protocol;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return false;
if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
else
protocol = skb->protocol;
switch (protocol) {
case cpu_to_be16(ETH_P_IP):
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
cmd_len |= E1000_TXD_CMD_TCP;
break;
case cpu_to_be16(ETH_P_IPV6):
/* XXX not handling all IPV6 headers */
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
cmd_len |= E1000_TXD_CMD_TCP;
break;
default:
if (unlikely(net_ratelimit()))
e_warn("checksum_partial proto=%x!\n",
be16_to_cpu(protocol));
break;
}
css = skb_checksum_start_offset(skb);
i = tx_ring->next_to_use;
buffer_info = &tx_ring->buffer_info[i];
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
context_desc->lower_setup.ip_config = 0;
context_desc->upper_setup.tcp_fields.tucss = css;
context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
context_desc->upper_setup.tcp_fields.tucse = 0;
context_desc->tcp_seg_setup.data = 0;
context_desc->cmd_and_length = cpu_to_le32(cmd_len);
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
i++;
if (i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
return true;
}
static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
unsigned int first, unsigned int max_per_txd,
unsigned int nr_frags)
{
struct e1000_adapter *adapter = tx_ring->adapter;
struct pci_dev *pdev = adapter->pdev;
struct e1000_buffer *buffer_info;
unsigned int len = skb_headlen(skb);
unsigned int offset = 0, size, count = 0, i;
unsigned int f, bytecount, segs;
i = tx_ring->next_to_use;
while (len) {
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
buffer_info->length = size;
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
buffer_info->dma = dma_map_single(&pdev->dev,
skb->data + offset,
size, DMA_TO_DEVICE);
buffer_info->mapped_as_page = false;
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
len -= size;
offset += size;
count++;
if (len) {
i++;
if (i == tx_ring->count)
i = 0;
}
}
for (f = 0; f < nr_frags; f++) {
const struct skb_frag_struct *frag;
frag = &skb_shinfo(skb)->frags[f];
len = skb_frag_size(frag);
offset = 0;
while (len) {
i++;
if (i == tx_ring->count)
i = 0;
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
buffer_info->length = size;
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
offset, size,
DMA_TO_DEVICE);
buffer_info->mapped_as_page = true;
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
len -= size;
offset += size;
count++;
}
}
segs = skb_shinfo(skb)->gso_segs ? : 1;
/* multiply data chunks by size of headers */
bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[i].segs = segs;
tx_ring->buffer_info[i].bytecount = bytecount;
tx_ring->buffer_info[first].next_to_watch = i;
return count;
dma_error:
dev_err(&pdev->dev, "Tx DMA map failed\n");
buffer_info->dma = 0;
if (count)
count--;
while (count--) {
if (i == 0)
i += tx_ring->count;
i--;
buffer_info = &tx_ring->buffer_info[i];
e1000_put_txbuf(tx_ring, buffer_info);
}
return 0;
}
static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
{
struct e1000_adapter *adapter = tx_ring->adapter;
struct e1000_tx_desc *tx_desc = NULL;
struct e1000_buffer *buffer_info;
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
unsigned int i;
if (tx_flags & E1000_TX_FLAGS_TSO) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
E1000_TXD_CMD_TSE;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
if (tx_flags & E1000_TX_FLAGS_IPV4)
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
}
if (tx_flags & E1000_TX_FLAGS_CSUM) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
}
if (tx_flags & E1000_TX_FLAGS_VLAN) {
txd_lower |= E1000_TXD_CMD_VLE;
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
}
if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
txd_lower &= ~(E1000_TXD_CMD_IFCS);
if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
}
i = tx_ring->next_to_use;
do {
buffer_info = &tx_ring->buffer_info[i];
tx_desc = E1000_TX_DESC(*tx_ring, i);
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
tx_desc->lower.data = cpu_to_le32(txd_lower |
buffer_info->length);
tx_desc->upper.data = cpu_to_le32(txd_upper);
i++;
if (i == tx_ring->count)
i = 0;
} while (--count > 0);
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
tx_ring->next_to_use = i;
if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
e1000e_update_tdt_wa(tx_ring, i);
else
writel(i, tx_ring->tail);
/* we need this if more than one processor can write to our tail
* at a time, it synchronizes IO on IA64/Altix systems
*/
mmiowb();
}
#define MINIMUM_DHCP_PACKET_SIZE 282
static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
struct sk_buff *skb)
{
struct e1000_hw *hw = &adapter->hw;
u16 length, offset;
if (vlan_tx_tag_present(skb) &&
!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
(adapter->hw.mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
return 0;
if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
return 0;
if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
return 0;
{
const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
struct udphdr *udp;
if (ip->protocol != IPPROTO_UDP)
return 0;
udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
if (ntohs(udp->dest) != 67)
return 0;
offset = (u8 *)udp + 8 - skb->data;
length = skb->len - offset;
return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
}
return 0;
}
static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
{
struct e1000_adapter *adapter = tx_ring->adapter;
netif_stop_queue(adapter->netdev);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
/* We need to check again in a case another CPU has just
* made room available.
*/
if (e1000_desc_unused(tx_ring) < size)
return -EBUSY;
/* A reprieve! */
netif_start_queue(adapter->netdev);
++adapter->restart_queue;
return 0;
}
static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
{
BUG_ON(size > tx_ring->count);
if (e1000_desc_unused(tx_ring) >= size)
return 0;
return __e1000_maybe_stop_tx(tx_ring, size);
}
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_ring *tx_ring = adapter->tx_ring;
unsigned int first;
unsigned int tx_flags = 0;
unsigned int len = skb_headlen(skb);
unsigned int nr_frags;
unsigned int mss;
int count = 0;
int tso;
unsigned int f;
if (test_bit(__E1000_DOWN, &adapter->state)) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (skb->len <= 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
/* The minimum packet size with TCTL.PSP set is 17 bytes so
* pad skb in order to meet this minimum size requirement
*/
if (unlikely(skb->len < 17)) {
if (skb_pad(skb, 17 - skb->len))
return NETDEV_TX_OK;
skb->len = 17;
skb_set_tail_pointer(skb, 17);
}
mss = skb_shinfo(skb)->gso_size;
if (mss) {
u8 hdr_len;
/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
* points to just header, pull a few bytes of payload from
* frags into skb->data
*/
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
/* we do this workaround for ES2LAN, but it is un-necessary,
* avoiding it could save a lot of cycles
*/
if (skb->data_len && (hdr_len == len)) {
unsigned int pull_size;
pull_size = min_t(unsigned int, 4, skb->data_len);
if (!__pskb_pull_tail(skb, pull_size)) {
e_err("__pskb_pull_tail failed.\n");
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
len = skb_headlen(skb);
}
}
/* reserve a descriptor for the offload context */
if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
count++;
count++;
count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
nr_frags = skb_shinfo(skb)->nr_frags;
for (f = 0; f < nr_frags; f++)
count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
adapter->tx_fifo_limit);
if (adapter->hw.mac.tx_pkt_filtering)
e1000_transfer_dhcp_info(adapter, skb);
/* need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time
*/
if (e1000_maybe_stop_tx(tx_ring, count + 2))
return NETDEV_TX_BUSY;
if (vlan_tx_tag_present(skb)) {
tx_flags |= E1000_TX_FLAGS_VLAN;
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
}
first = tx_ring->next_to_use;
tso = e1000_tso(tx_ring, skb);
if (tso < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (tso)
tx_flags |= E1000_TX_FLAGS_TSO;
else if (e1000_tx_csum(tx_ring, skb))
tx_flags |= E1000_TX_FLAGS_CSUM;
/* Old method was to assume IPv4 packet by default if TSO was enabled.
* 82571 hardware supports TSO capabilities for IPv6 as well...
* no longer assume, we must.
*/
if (skb->protocol == htons(ETH_P_IP))
tx_flags |= E1000_TX_FLAGS_IPV4;
if (unlikely(skb->no_fcs))
tx_flags |= E1000_TX_FLAGS_NO_FCS;
/* if count is 0 then mapping error has occurred */
count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
nr_frags);
if (count) {
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
!adapter->tx_hwtstamp_skb)) {
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
adapter->tx_hwtstamp_skb = skb_get(skb);
adapter->tx_hwtstamp_start = jiffies;
schedule_work(&adapter->tx_hwtstamp_work);
} else {
skb_tx_timestamp(skb);
}
netdev_sent_queue(netdev, skb->len);
e1000_tx_queue(tx_ring, tx_flags, count);
/* Make sure there is space in the ring for the next send. */
e1000_maybe_stop_tx(tx_ring,
(MAX_SKB_FRAGS *
DIV_ROUND_UP(PAGE_SIZE,
adapter->tx_fifo_limit) + 2));
} else {
dev_kfree_skb_any(skb);
tx_ring->buffer_info[first].time_stamp = 0;
tx_ring->next_to_use = first;
}
return NETDEV_TX_OK;
}
/**
* e1000_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void e1000_tx_timeout(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
}
static void e1000_reset_task(struct work_struct *work)
{
struct e1000_adapter *adapter;
adapter = container_of(work, struct e1000_adapter, reset_task);
/* don't run the task if already down */
if (test_bit(__E1000_DOWN, &adapter->state))
return;
if (!(adapter->flags & FLAG_RESTART_NOW)) {
e1000e_dump(adapter);
e_err("Reset adapter unexpectedly\n");
}
e1000e_reinit_locked(adapter);
}
/**
* e1000_get_stats64 - Get System Network Statistics
* @netdev: network interface device structure
* @stats: rtnl_link_stats64 pointer
*
* Returns the address of the device statistics structure.
**/
struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
memset(stats, 0, sizeof(struct rtnl_link_stats64));
spin_lock(&adapter->stats64_lock);
e1000e_update_stats(adapter);
/* Fill out the OS statistics structure */
stats->rx_bytes = adapter->stats.gorc;
stats->rx_packets = adapter->stats.gprc;
stats->tx_bytes = adapter->stats.gotc;
stats->tx_packets = adapter->stats.gptc;
stats->multicast = adapter->stats.mprc;
stats->collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
stats->rx_crc_errors = adapter->stats.crcerrs;
stats->rx_frame_errors = adapter->stats.algnerrc;
stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
stats->tx_aborted_errors = adapter->stats.ecol;
stats->tx_window_errors = adapter->stats.latecol;
stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
spin_unlock(&adapter->stats64_lock);
return stats;
}
/**
* e1000_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
/* Jumbo frame support */
if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
e_err("Jumbo Frames not supported.\n");
return -EINVAL;
}
/* Supported frame sizes */
if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
(max_frame > adapter->max_hw_frame_size)) {
e_err("Unsupported MTU setting\n");
return -EINVAL;
}
/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
if ((adapter->hw.mac.type >= e1000_pch2lan) &&
!(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
(new_mtu > ETH_DATA_LEN)) {
e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
return -EINVAL;
}
while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
usleep_range(1000, 2000);
/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
adapter->max_frame_size = max_frame;
e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
pm_runtime_get_sync(netdev->dev.parent);
if (netif_running(netdev))
e1000e_down(adapter, true);
/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
* means we reserve 2 more, this pushes us to allocate from the next
* larger slab size.
* i.e. RXBUFFER_2048 --> size-4096 slab
* However with the new *_jumbo_rx* routines, jumbo receives will use
* fragmented skbs
*/
if (max_frame <= 2048)
adapter->rx_buffer_len = 2048;
else
adapter->rx_buffer_len = 4096;
/* adjust allocation if LPE protects us, and we aren't using SBP */
if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
(max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
+ ETH_FCS_LEN;
if (netif_running(netdev))
e1000e_up(adapter);
else
e1000e_reset(adapter);
pm_runtime_put_sync(netdev->dev.parent);
clear_bit(__E1000_RESETTING, &adapter->state);
return 0;
}
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct mii_ioctl_data *data = if_mii(ifr);
if (adapter->hw.phy.media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = adapter->hw.phy.addr;
break;
case SIOCGMIIREG:
e1000_phy_read_status(adapter);
switch (data->reg_num & 0x1F) {
case MII_BMCR:
data->val_out = adapter->phy_regs.bmcr;
break;
case MII_BMSR:
data->val_out = adapter->phy_regs.bmsr;
break;
case MII_PHYSID1:
data->val_out = (adapter->hw.phy.id >> 16);
break;
case MII_PHYSID2:
data->val_out = (adapter->hw.phy.id & 0xFFFF);
break;
case MII_ADVERTISE:
data->val_out = adapter->phy_regs.advertise;
break;
case MII_LPA:
data->val_out = adapter->phy_regs.lpa;
break;
case MII_EXPANSION:
data->val_out = adapter->phy_regs.expansion;
break;
case MII_CTRL1000:
data->val_out = adapter->phy_regs.ctrl1000;
break;
case MII_STAT1000:
data->val_out = adapter->phy_regs.stat1000;
break;
case MII_ESTATUS:
data->val_out = adapter->phy_regs.estatus;
break;
default:
return -EIO;
}
break;
case SIOCSMIIREG:
default:
return -EOPNOTSUPP;
}
return 0;
}
/**
* e1000e_hwtstamp_ioctl - control hardware time stamping
* @netdev: network interface device structure
* @ifreq: interface request
*
* Outgoing time stamping can be enabled and disabled. Play nice and
* disable it when requested, although it shouldn't cause any overhead
* when no packet needs it. At most one packet in the queue may be
* marked for time stamping, otherwise it would be impossible to tell
* for sure to which packet the hardware time stamp belongs.
*
* Incoming time stamping has to be configured via the hardware filters.
* Not all combinations are supported, in particular event type has to be
* specified. Matching the kind of event packet is not supported, with the
* exception of "all V2 events regardless of level 2 or 4".
**/
static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct hwtstamp_config config;
int ret_val;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
ret_val = e1000e_config_hwtstamp(adapter, &config);
if (ret_val)
return ret_val;
switch (config.rx_filter) {
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
/* With V2 type filters which specify a Sync or Delay Request,
* Path Delay Request/Response messages are also time stamped
* by hardware so notify the caller the requested packets plus
* some others are time stamped.
*/
config.rx_filter = HWTSTAMP_FILTER_SOME;
break;
default:
break;
}
return copy_to_user(ifr->ifr_data, &config,
sizeof(config)) ? -EFAULT : 0;
}
static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
}
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return e1000_mii_ioctl(netdev, ifr, cmd);
case SIOCSHWTSTAMP:
return e1000e_hwtstamp_set(netdev, ifr);
case SIOCGHWTSTAMP:
return e1000e_hwtstamp_get(netdev, ifr);
default:
return -EOPNOTSUPP;
}
}
static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
{
struct e1000_hw *hw = &adapter->hw;
u32 i, mac_reg, wuc;
u16 phy_reg, wuc_enable;
int retval;
/* copy MAC RARs to PHY RARs */
e1000_copy_rx_addrs_to_phy_ich8lan(hw);
retval = hw->phy.ops.acquire(hw);
if (retval) {
e_err("Could not acquire PHY\n");
return retval;
}
/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
if (retval)
goto release;
/* copy MAC MTA to PHY MTA - only needed for pchlan */
for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
hw->phy.ops.write_reg_page(hw, BM_MTA(i),
(u16)(mac_reg & 0xFFFF));
hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
(u16)((mac_reg >> 16) & 0xFFFF));
}
/* configure PHY Rx Control register */
hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
mac_reg = er32(RCTL);
if (mac_reg & E1000_RCTL_UPE)
phy_reg |= BM_RCTL_UPE;
if (mac_reg & E1000_RCTL_MPE)
phy_reg |= BM_RCTL_MPE;
phy_reg &= ~(BM_RCTL_MO_MASK);
if (mac_reg & E1000_RCTL_MO_3)
phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
<< BM_RCTL_MO_SHIFT);
if (mac_reg & E1000_RCTL_BAM)
phy_reg |= BM_RCTL_BAM;
if (mac_reg & E1000_RCTL_PMCF)
phy_reg |= BM_RCTL_PMCF;
mac_reg = er32(CTRL);
if (mac_reg & E1000_CTRL_RFCE)
phy_reg |= BM_RCTL_RFCE;
hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
wuc = E1000_WUC_PME_EN;
if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
wuc |= E1000_WUC_APME;
/* enable PHY wakeup in MAC register */
ew32(WUFC, wufc);
ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
E1000_WUC_PME_STATUS | wuc));
/* configure and enable PHY wakeup in PHY registers */
hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
/* activate PHY wakeup */
wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
if (retval)
e_err("Could not set PHY Host Wakeup bit\n");
release:
hw->phy.ops.release(hw);
return retval;
}
static int e1000e_pm_freeze(struct device *dev)
{
struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
struct e1000_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (netif_running(netdev)) {
int count = E1000_CHECK_RESET_COUNT;
while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
usleep_range(10000, 20000);
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
/* Quiesce the device without resetting the hardware */
e1000e_down(adapter, false);
e1000_free_irq(adapter);
}
e1000e_reset_interrupt_capability(adapter);
/* Allow time for pending master requests to run */
e1000e_disable_pcie_master(&adapter->hw);
return 0;
}
static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, ctrl_ext, rctl, status;
/* Runtime suspend should only enable wakeup for link changes */
u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
int retval = 0;
status = er32(STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (wufc) {
e1000_setup_rctl(adapter);
e1000e_set_rx_mode(netdev);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC) {
rctl = er32(RCTL);
rctl |= E1000_RCTL_MPE;
ew32(RCTL, rctl);
}
ctrl = er32(CTRL);
ctrl |= E1000_CTRL_ADVD3WUC;
if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
ew32(CTRL, ctrl);
if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
adapter->hw.phy.media_type ==
e1000_media_type_internal_serdes) {
/* keep the laser running in D3 */
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
ew32(CTRL_EXT, ctrl_ext);
}
if (!runtime)
e1000e_power_up_phy(adapter);
if (adapter->flags & FLAG_IS_ICH)
e1000_suspend_workarounds_ich8lan(&adapter->hw);
if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
/* enable wakeup by the PHY */
retval = e1000_init_phy_wakeup(adapter, wufc);
if (retval)
return retval;
} else {
/* enable wakeup by the MAC */
ew32(WUFC, wufc);
ew32(WUC, E1000_WUC_PME_EN);
}
} else {
ew32(WUC, 0);
ew32(WUFC, 0);
e1000_power_down_phy(adapter);
}
if (adapter->hw.phy.type == e1000_phy_igp_3) {
e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
} else if (hw->mac.type == e1000_pch_lpt) {
if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
/* ULP does not support wake from unicast, multicast
* or broadcast.
*/
retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
if (retval)
return retval;
}
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
e1000e_release_hw_control(adapter);
pci_clear_master(pdev);
/* The pci-e switch on some quad port adapters will report a
* correctable error when the MAC transitions from D0 to D3. To
* prevent this we need to mask off the correctable errors on the
* downstream port of the pci-e switch.
*
* We don't have the associated upstream bridge while assigning
* the PCI device into guest. For example, the KVM on power is
* one of the cases.
*/
if (adapter->flags & FLAG_IS_QUAD_PORT) {
struct pci_dev *us_dev = pdev->bus->self;
u16 devctl;
if (!us_dev)
return 0;
pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
(devctl & ~PCI_EXP_DEVCTL_CERE));
pci_save_state(pdev);
pci_prepare_to_sleep(pdev);
pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
}
return 0;
}
/**
* e1000e_disable_aspm - Disable ASPM states
* @pdev: pointer to PCI device struct
* @state: bit-mask of ASPM states to disable
*
* Some devices *must* have certain ASPM states disabled per hardware errata.
**/
static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
{
struct pci_dev *parent = pdev->bus->self;
u16 aspm_dis_mask = 0;
u16 pdev_aspmc, parent_aspmc;
switch (state) {
case PCIE_LINK_STATE_L0S:
case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
/* fall-through - can't have L1 without L0s */
case PCIE_LINK_STATE_L1:
aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
break;
default:
return;
}
pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
if (parent) {
pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
&parent_aspmc);
parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
}
/* Nothing to do if the ASPM states to be disabled already are */
if (!(pdev_aspmc & aspm_dis_mask) &&
(!parent || !(parent_aspmc & aspm_dis_mask)))
return;
dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
(aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
"L0s" : "",
(aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
"L1" : "");
#ifdef CONFIG_PCIEASPM
pci_disable_link_state_locked(pdev, state);
/* Double-check ASPM control. If not disabled by the above, the
* BIOS is preventing that from happening (or CONFIG_PCIEASPM is
* not enabled); override by writing PCI config space directly.
*/
pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
if (!(aspm_dis_mask & pdev_aspmc))
return;
#endif
/* Both device and parent should have the same ASPM setting.
* Disable ASPM in downstream component first and then upstream.
*/
pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
if (parent)
pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
aspm_dis_mask);
}
#ifdef CONFIG_PM
static int __e1000_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 aspm_disable_flag = 0;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
pci_set_master(pdev);
if (hw->mac.type >= e1000_pch2lan)
e1000_resume_workarounds_pchlan(&adapter->hw);
e1000e_power_up_phy(adapter);
/* report the system wakeup cause from S3/S4 */
if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
u16 phy_data;
e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
if (phy_data) {
e_info("PHY Wakeup cause - %s\n",
phy_data & E1000_WUS_EX ? "Unicast Packet" :
phy_data & E1000_WUS_MC ? "Multicast Packet" :
phy_data & E1000_WUS_BC ? "Broadcast Packet" :
phy_data & E1000_WUS_MAG ? "Magic Packet" :
phy_data & E1000_WUS_LNKC ?
"Link Status Change" : "other");
}
e1e_wphy(&adapter->hw, BM_WUS, ~0);
} else {
u32 wus = er32(WUS);
if (wus) {
e_info("MAC Wakeup cause - %s\n",
wus & E1000_WUS_EX ? "Unicast Packet" :
wus & E1000_WUS_MC ? "Multicast Packet" :
wus & E1000_WUS_BC ? "Broadcast Packet" :
wus & E1000_WUS_MAG ? "Magic Packet" :
wus & E1000_WUS_LNKC ? "Link Status Change" :
"other");
}
ew32(WUS, ~0);
}
e1000e_reset(adapter);
e1000_init_manageability_pt(adapter);
/* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int e1000e_pm_thaw(struct device *dev)
{
struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000e_set_interrupt_capability(adapter);
if (netif_running(netdev)) {
u32 err = e1000_request_irq(adapter);
if (err)
return err;
e1000e_up(adapter);
}
netif_device_attach(netdev);
return 0;
}
static int e1000e_pm_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
e1000e_pm_freeze(dev);
return __e1000_shutdown(pdev, false);
}
static int e1000e_pm_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
int rc;
rc = __e1000_resume(pdev);
if (rc)
return rc;
return e1000e_pm_thaw(dev);
}
#endif /* CONFIG_PM_SLEEP */
#ifdef CONFIG_PM_RUNTIME
static int e1000e_pm_runtime_idle(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!e1000e_has_link(adapter))
pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
return -EBUSY;
}
static int e1000e_pm_runtime_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
int rc;
rc = __e1000_resume(pdev);
if (rc)
return rc;
if (netdev->flags & IFF_UP)
rc = e1000e_up(adapter);
return rc;
}
static int e1000e_pm_runtime_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
if (netdev->flags & IFF_UP) {
int count = E1000_CHECK_RESET_COUNT;
while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
usleep_range(10000, 20000);
WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
/* Down the device without resetting the hardware */
e1000e_down(adapter, false);
}
if (__e1000_shutdown(pdev, true)) {
e1000e_pm_runtime_resume(dev);
return -EBUSY;
}
return 0;
}
#endif /* CONFIG_PM_RUNTIME */
#endif /* CONFIG_PM */
static void e1000_shutdown(struct pci_dev *pdev)
{
e1000e_pm_freeze(&pdev->dev);
__e1000_shutdown(pdev, false);
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
if (adapter->msix_entries) {
int vector, msix_irq;
vector = 0;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_intr_msix_rx(msix_irq, netdev);
enable_irq(msix_irq);
vector++;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_intr_msix_tx(msix_irq, netdev);
enable_irq(msix_irq);
vector++;
msix_irq = adapter->msix_entries[vector].vector;
disable_irq(msix_irq);
e1000_msix_other(msix_irq, netdev);
enable_irq(msix_irq);
}
return IRQ_HANDLED;
}
/**
* e1000_netpoll
* @netdev: network interface device structure
*
* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void e1000_netpoll(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
switch (adapter->int_mode) {
case E1000E_INT_MODE_MSIX:
e1000_intr_msix(adapter->pdev->irq, netdev);
break;
case E1000E_INT_MODE_MSI:
disable_irq(adapter->pdev->irq);
e1000_intr_msi(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
break;
default: /* E1000E_INT_MODE_LEGACY */
disable_irq(adapter->pdev->irq);
e1000_intr(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
break;
}
}
#endif
/**
* e1000_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
e1000e_down(adapter, true);
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* e1000_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the e1000e_pm_resume routine.
*/
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u16 aspm_disable_flag = 0;
int err;
pci_ers_result_t result;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
err = pci_enable_device_mem(pdev);
if (err) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
result = PCI_ERS_RESULT_DISCONNECT;
} else {
pdev->state_saved = true;
pci_restore_state(pdev);
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
e1000e_reset(adapter);
ew32(WUS, ~0);
result = PCI_ERS_RESULT_RECOVERED;
}
pci_cleanup_aer_uncorrect_error_status(pdev);
return result;
}
/**
* e1000_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the e1000e_pm_resume routine.
*/
static void e1000_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_init_manageability_pt(adapter);
if (netif_running(netdev)) {
if (e1000e_up(adapter)) {
dev_err(&pdev->dev,
"can't bring device back up after reset\n");
return;
}
}
netif_device_attach(netdev);
/* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
}
static void e1000_print_device_info(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 ret_val;
u8 pba_str[E1000_PBANUM_LENGTH];
/* print bus type/speed/width info */
e_info("(PCI Express:2.5GT/s:%s) %pM\n",
/* bus width */
((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
"Width x1"),
/* MAC address */
netdev->dev_addr);
e_info("Intel(R) PRO/%s Network Connection\n",
(hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
ret_val = e1000_read_pba_string_generic(hw, pba_str,
E1000_PBANUM_LENGTH);
if (ret_val)
strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
e_info("MAC: %d, PHY: %d, PBA No: %s\n",
hw->mac.type, hw->phy.type, pba_str);
}
static void e1000_eeprom_checks(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
int ret_val;
u16 buf = 0;
if (hw->mac.type != e1000_82573)
return;
ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
le16_to_cpus(&buf);
if (!ret_val && (!(buf & (1 << 0)))) {
/* Deep Smart Power Down (DSPD) */
dev_warn(&adapter->pdev->dev,
"Warning: detected DSPD enabled in EEPROM\n");
}
}
static int e1000_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
adapter->flags |= FLAG_TSO_FORCE;
if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
NETIF_F_RXALL)))
return 0;
if (changed & NETIF_F_RXFCS) {
if (features & NETIF_F_RXFCS) {
adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
} else {
/* We need to take it back to defaults, which might mean
* stripping is still disabled at the adapter level.
*/
if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
adapter->flags2 |= FLAG2_CRC_STRIPPING;
else
adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
}
}
netdev->features = features;
if (netif_running(netdev))
e1000e_reinit_locked(adapter);
else
e1000e_reset(adapter);
return 0;
}
static const struct net_device_ops e1000e_netdev_ops = {
.ndo_open = e1000_open,
.ndo_stop = e1000_close,
.ndo_start_xmit = e1000_xmit_frame,
.ndo_get_stats64 = e1000e_get_stats64,
.ndo_set_rx_mode = e1000e_set_rx_mode,
.ndo_set_mac_address = e1000_set_mac,
.ndo_change_mtu = e1000_change_mtu,
.ndo_do_ioctl = e1000_ioctl,
.ndo_tx_timeout = e1000_tx_timeout,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = e1000_netpoll,
#endif
.ndo_set_features = e1000_set_features,
};
/**
* e1000_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in e1000_pci_tbl
*
* Returns 0 on success, negative on failure
*
* e1000_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct e1000_adapter *adapter;
struct e1000_hw *hw;
const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
resource_size_t mmio_start, mmio_len;
resource_size_t flash_start, flash_len;
static int cards_found;
u16 aspm_disable_flag = 0;
int bars, i, err, pci_using_dac;
u16 eeprom_data = 0;
u16 eeprom_apme_mask = E1000_EEPROM_APME;
if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
aspm_disable_flag = PCIE_LINK_STATE_L0S;
if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
aspm_disable_flag |= PCIE_LINK_STATE_L1;
if (aspm_disable_flag)
e1000e_disable_aspm(pdev, aspm_disable_flag);
err = pci_enable_device_mem(pdev);
if (err)
return err;
pci_using_dac = 0;
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (!err) {
pci_using_dac = 1;
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev,
"No usable DMA configuration, aborting\n");
goto err_dma;
}
}
bars = pci_select_bars(pdev, IORESOURCE_MEM);
err = pci_request_selected_regions_exclusive(pdev, bars,
e1000e_driver_name);
if (err)
goto err_pci_reg;
/* AER (Advanced Error Reporting) hooks */
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
/* PCI config space info */
err = pci_save_state(pdev);
if (err)
goto err_alloc_etherdev;
err = -ENOMEM;
netdev = alloc_etherdev(sizeof(struct e1000_adapter));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
netdev->irq = pdev->irq;
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
hw = &adapter->hw;
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->ei = ei;
adapter->pba = ei->pba;
adapter->flags = ei->flags;
adapter->flags2 = ei->flags2;
adapter->hw.adapter = adapter;
adapter->hw.mac.type = ei->mac;
adapter->max_hw_frame_size = ei->max_hw_frame_size;
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
mmio_start = pci_resource_start(pdev, 0);
mmio_len = pci_resource_len(pdev, 0);
err = -EIO;
adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
if (!adapter->hw.hw_addr)
goto err_ioremap;
if ((adapter->flags & FLAG_HAS_FLASH) &&
(pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
flash_start = pci_resource_start(pdev, 1);
flash_len = pci_resource_len(pdev, 1);
adapter->hw.flash_address = ioremap(flash_start, flash_len);
if (!adapter->hw.flash_address)
goto err_flashmap;
}
/* Set default EEE advertisement */
if (adapter->flags2 & FLAG2_HAS_EEE)
adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
/* construct the net_device struct */
netdev->netdev_ops = &e1000e_netdev_ops;
e1000e_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
netdev->mem_start = mmio_start;
netdev->mem_end = mmio_start + mmio_len;
adapter->bd_number = cards_found++;
e1000e_check_options(adapter);
/* setup adapter struct */
err = e1000_sw_init(adapter);
if (err)
goto err_sw_init;
memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
err = ei->get_variants(adapter);
if (err)
goto err_hw_init;
if ((adapter->flags & FLAG_IS_ICH) &&
(adapter->flags & FLAG_READ_ONLY_NVM))
e1000e_write_protect_nvm_ich8lan(&adapter->hw);
hw->mac.ops.get_bus_info(&adapter->hw);
adapter->hw.phy.autoneg_wait_to_complete = 0;
/* Copper options */
if (adapter->hw.phy.media_type == e1000_media_type_copper) {
adapter->hw.phy.mdix = AUTO_ALL_MODES;
adapter->hw.phy.disable_polarity_correction = 0;
adapter->hw.phy.ms_type = e1000_ms_hw_default;
}
if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
dev_info(&pdev->dev,
"PHY reset is blocked due to SOL/IDER session.\n");
/* Set initial default active device features */
netdev->features = (NETIF_F_SG |
NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_RXHASH |
NETIF_F_RXCSUM |
NETIF_F_HW_CSUM);
/* Set user-changeable features (subset of all device features) */
netdev->hw_features = netdev->features;
netdev->hw_features |= NETIF_F_RXFCS;
netdev->priv_flags |= IFF_SUPP_NOFCS;
netdev->hw_features |= NETIF_F_RXALL;
if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
netdev->vlan_features |= (NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_HW_CSUM);
netdev->priv_flags |= IFF_UNICAST_FLT;
if (pci_using_dac) {
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= NETIF_F_HIGHDMA;
}
if (e1000e_enable_mng_pass_thru(&adapter->hw))
adapter->flags |= FLAG_MNG_PT_ENABLED;
/* before reading the NVM, reset the controller to
* put the device in a known good starting state
*/
adapter->hw.mac.ops.reset_hw(&adapter->hw);
/* systems with ASPM and others may see the checksum fail on the first
* attempt. Let's give it a few tries
*/
for (i = 0;; i++) {
if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
break;
if (i == 2) {
dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
err = -EIO;
goto err_eeprom;
}
}
e1000_eeprom_checks(adapter);
/* copy the MAC address */
if (e1000e_read_mac_addr(&adapter->hw))
dev_err(&pdev->dev,
"NVM Read Error while reading MAC address\n");
memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->dev_addr)) {
dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
netdev->dev_addr);
err = -EIO;
goto err_eeprom;
}
init_timer(&adapter->watchdog_timer);
adapter->watchdog_timer.function = e1000_watchdog;
adapter->watchdog_timer.data = (unsigned long)adapter;
init_timer(&adapter->phy_info_timer);
adapter->phy_info_timer.function = e1000_update_phy_info;
adapter->phy_info_timer.data = (unsigned long)adapter;
INIT_WORK(&adapter->reset_task, e1000_reset_task);
INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
/* Initialize link parameters. User can change them with ethtool */
adapter->hw.mac.autoneg = 1;
adapter->fc_autoneg = true;
adapter->hw.fc.requested_mode = e1000_fc_default;
adapter->hw.fc.current_mode = e1000_fc_default;
adapter->hw.phy.autoneg_advertised = 0x2f;
/* Initial Wake on LAN setting - If APM wake is enabled in
* the EEPROM, enable the ACPI Magic Packet filter
*/
if (adapter->flags & FLAG_APME_IN_WUC) {
/* APME bit in EEPROM is mapped to WUC.APME */
eeprom_data = er32(WUC);
eeprom_apme_mask = E1000_WUC_APME;
if ((hw->mac.type > e1000_ich10lan) &&
(eeprom_data & E1000_WUC_PHY_WAKE))
adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
(adapter->hw.bus.func == 1))
e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
1, &eeprom_data);
else
e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
1, &eeprom_data);
}
/* fetch WoL from EEPROM */
if (eeprom_data & eeprom_apme_mask)
adapter->eeprom_wol |= E1000_WUFC_MAG;
/* now that we have the eeprom settings, apply the special cases
* where the eeprom may be wrong or the board simply won't support
* wake on lan on a particular port
*/
if (!(adapter->flags & FLAG_HAS_WOL))
adapter->eeprom_wol = 0;
/* initialize the wol settings based on the eeprom settings */
adapter->wol = adapter->eeprom_wol;
/* make sure adapter isn't asleep if manageability is enabled */
if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
(hw->mac.ops.check_mng_mode(hw)))
device_wakeup_enable(&pdev->dev);
/* save off EEPROM version number */
e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
/* reset the hardware with the new settings */
e1000e_reset(adapter);
/* If the controller has AMT, do not set DRV_LOAD until the interface
* is up. For all other cases, let the f/w know that the h/w is now
* under the control of the driver.
*/
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_get_hw_control(adapter);
strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
err = register_netdev(netdev);
if (err)
goto err_register;
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
/* init PTP hardware clock */
e1000e_ptp_init(adapter);
e1000_print_device_info(adapter);
if (pci_dev_run_wake(pdev))
pm_runtime_put_noidle(&pdev->dev);
return 0;
err_register:
if (!(adapter->flags & FLAG_HAS_AMT))
e1000e_release_hw_control(adapter);
err_eeprom:
if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
e1000_phy_hw_reset(&adapter->hw);
err_hw_init:
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
err_sw_init:
if (adapter->hw.flash_address)
iounmap(adapter->hw.flash_address);
e1000e_reset_interrupt_capability(adapter);
err_flashmap:
iounmap(adapter->hw.hw_addr);
err_ioremap:
free_netdev(netdev);
err_alloc_etherdev:
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
err_pci_reg:
err_dma:
pci_disable_device(pdev);
return err;
}
/**
* e1000_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* e1000_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void e1000_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
bool down = test_bit(__E1000_DOWN, &adapter->state);
e1000e_ptp_remove(adapter);
/* The timers may be rescheduled, so explicitly disable them
* from being rescheduled.
*/
if (!down)
set_bit(__E1000_DOWN, &adapter->state);
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
cancel_work_sync(&adapter->reset_task);
cancel_work_sync(&adapter->watchdog_task);
cancel_work_sync(&adapter->downshift_task);
cancel_work_sync(&adapter->update_phy_task);
cancel_work_sync(&adapter->print_hang_task);
if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
cancel_work_sync(&adapter->tx_hwtstamp_work);
if (adapter->tx_hwtstamp_skb) {
dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
adapter->tx_hwtstamp_skb = NULL;
}
}
/* Don't lie to e1000_close() down the road. */
if (!down)
clear_bit(__E1000_DOWN, &adapter->state);
unregister_netdev(netdev);
if (pci_dev_run_wake(pdev))
pm_runtime_get_noresume(&pdev->dev);
/* Release control of h/w to f/w. If f/w is AMT enabled, this
* would have already happened in close and is redundant.
*/
e1000e_release_hw_control(adapter);
e1000e_reset_interrupt_capability(adapter);
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
iounmap(adapter->hw.hw_addr);
if (adapter->hw.flash_address)
iounmap(adapter->hw.flash_address);
pci_release_selected_regions(pdev,
pci_select_bars(pdev, IORESOURCE_MEM));
free_netdev(netdev);
/* AER disable */
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
/* PCI Error Recovery (ERS) */
static const struct pci_error_handlers e1000_err_handler = {
.error_detected = e1000_io_error_detected,
.slot_reset = e1000_io_slot_reset,
.resume = e1000_io_resume,
};
static const struct pci_device_id e1000_pci_tbl[] = {
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
board_80003es2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
{ 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
static const struct dev_pm_ops e1000_pm_ops = {
#ifdef CONFIG_PM_SLEEP
.suspend = e1000e_pm_suspend,
.resume = e1000e_pm_resume,
.freeze = e1000e_pm_freeze,
.thaw = e1000e_pm_thaw,
.poweroff = e1000e_pm_suspend,
.restore = e1000e_pm_resume,
#endif
SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
e1000e_pm_runtime_idle)
};
/* PCI Device API Driver */
static struct pci_driver e1000_driver = {
.name = e1000e_driver_name,
.id_table = e1000_pci_tbl,
.probe = e1000_probe,
.remove = e1000_remove,
.driver = {
.pm = &e1000_pm_ops,
},
.shutdown = e1000_shutdown,
.err_handler = &e1000_err_handler
};
/**
* e1000_init_module - Driver Registration Routine
*
* e1000_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init e1000_init_module(void)
{
int ret;
pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
e1000e_driver_version);
pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
ret = pci_register_driver(&e1000_driver);
return ret;
}
module_init(e1000_init_module);
/**
* e1000_exit_module - Driver Exit Cleanup Routine
*
* e1000_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit e1000_exit_module(void)
{
pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
/* netdev.c */