linux_dsm_epyc7002/arch/x86/events/intel/pt.c
Luwei Kang e0018afec5 perf/x86/intel/pt: add new capability for Intel PT
This adds support for "output to Trace Transport subsystem"
capability of Intel PT. It means that PT can output its
trace to an MMIO address range rather than system memory buffer.

Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 11:28:33 +01:00

1550 lines
38 KiB
C

/*
* Intel(R) Processor Trace PMU driver for perf
* Copyright (c) 2013-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* Intel PT is specified in the Intel Architecture Instruction Set Extensions
* Programming Reference:
* http://software.intel.com/en-us/intel-isa-extensions
*/
#undef DEBUG
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <asm/perf_event.h>
#include <asm/insn.h>
#include <asm/io.h>
#include <asm/intel_pt.h>
#include <asm/intel-family.h>
#include "../perf_event.h"
#include "pt.h"
static DEFINE_PER_CPU(struct pt, pt_ctx);
static struct pt_pmu pt_pmu;
/*
* Capabilities of Intel PT hardware, such as number of address bits or
* supported output schemes, are cached and exported to userspace as "caps"
* attribute group of pt pmu device
* (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
* relevant bits together with intel_pt traces.
*
* These are necessary for both trace decoding (payloads_lip, contains address
* width encoded in IP-related packets), and event configuration (bitmasks with
* permitted values for certain bit fields).
*/
#define PT_CAP(_n, _l, _r, _m) \
[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l, \
.reg = _r, .mask = _m }
static struct pt_cap_desc {
const char *name;
u32 leaf;
u8 reg;
u32 mask;
} pt_caps[] = {
PT_CAP(max_subleaf, 0, CPUID_EAX, 0xffffffff),
PT_CAP(cr3_filtering, 0, CPUID_EBX, BIT(0)),
PT_CAP(psb_cyc, 0, CPUID_EBX, BIT(1)),
PT_CAP(ip_filtering, 0, CPUID_EBX, BIT(2)),
PT_CAP(mtc, 0, CPUID_EBX, BIT(3)),
PT_CAP(ptwrite, 0, CPUID_EBX, BIT(4)),
PT_CAP(power_event_trace, 0, CPUID_EBX, BIT(5)),
PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)),
PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)),
PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)),
PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)),
PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)),
PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x3),
PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000),
PT_CAP(cycle_thresholds, 1, CPUID_EBX, 0xffff),
PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000),
};
u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
{
struct pt_cap_desc *cd = &pt_caps[capability];
u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
unsigned int shift = __ffs(cd->mask);
return (c & cd->mask) >> shift;
}
EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
{
return intel_pt_validate_cap(pt_pmu.caps, cap);
}
EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
static ssize_t pt_cap_show(struct device *cdev,
struct device_attribute *attr,
char *buf)
{
struct dev_ext_attribute *ea =
container_of(attr, struct dev_ext_attribute, attr);
enum pt_capabilities cap = (long)ea->var;
return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
}
static struct attribute_group pt_cap_group __ro_after_init = {
.name = "caps",
};
PMU_FORMAT_ATTR(pt, "config:0" );
PMU_FORMAT_ATTR(cyc, "config:1" );
PMU_FORMAT_ATTR(pwr_evt, "config:4" );
PMU_FORMAT_ATTR(fup_on_ptw, "config:5" );
PMU_FORMAT_ATTR(mtc, "config:9" );
PMU_FORMAT_ATTR(tsc, "config:10" );
PMU_FORMAT_ATTR(noretcomp, "config:11" );
PMU_FORMAT_ATTR(ptw, "config:12" );
PMU_FORMAT_ATTR(branch, "config:13" );
PMU_FORMAT_ATTR(mtc_period, "config:14-17" );
PMU_FORMAT_ATTR(cyc_thresh, "config:19-22" );
PMU_FORMAT_ATTR(psb_period, "config:24-27" );
static struct attribute *pt_formats_attr[] = {
&format_attr_pt.attr,
&format_attr_cyc.attr,
&format_attr_pwr_evt.attr,
&format_attr_fup_on_ptw.attr,
&format_attr_mtc.attr,
&format_attr_tsc.attr,
&format_attr_noretcomp.attr,
&format_attr_ptw.attr,
&format_attr_branch.attr,
&format_attr_mtc_period.attr,
&format_attr_cyc_thresh.attr,
&format_attr_psb_period.attr,
NULL,
};
static struct attribute_group pt_format_group = {
.name = "format",
.attrs = pt_formats_attr,
};
static ssize_t
pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
char *page)
{
struct perf_pmu_events_attr *pmu_attr =
container_of(attr, struct perf_pmu_events_attr, attr);
switch (pmu_attr->id) {
case 0:
return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
case 1:
return sprintf(page, "%u:%u\n",
pt_pmu.tsc_art_num,
pt_pmu.tsc_art_den);
default:
break;
}
return -EINVAL;
}
PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
pt_timing_attr_show);
PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
pt_timing_attr_show);
static struct attribute *pt_timing_attr[] = {
&timing_attr_max_nonturbo_ratio.attr.attr,
&timing_attr_tsc_art_ratio.attr.attr,
NULL,
};
static struct attribute_group pt_timing_group = {
.attrs = pt_timing_attr,
};
static const struct attribute_group *pt_attr_groups[] = {
&pt_cap_group,
&pt_format_group,
&pt_timing_group,
NULL,
};
static int __init pt_pmu_hw_init(void)
{
struct dev_ext_attribute *de_attrs;
struct attribute **attrs;
size_t size;
u64 reg;
int ret;
long i;
rdmsrl(MSR_PLATFORM_INFO, reg);
pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
/*
* if available, read in TSC to core crystal clock ratio,
* otherwise, zero for numerator stands for "not enumerated"
* as per SDM
*/
if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
u32 eax, ebx, ecx, edx;
cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
pt_pmu.tsc_art_num = ebx;
pt_pmu.tsc_art_den = eax;
}
/* model-specific quirks */
switch (boot_cpu_data.x86_model) {
case INTEL_FAM6_BROADWELL_CORE:
case INTEL_FAM6_BROADWELL_XEON_D:
case INTEL_FAM6_BROADWELL_GT3E:
case INTEL_FAM6_BROADWELL_X:
/* not setting BRANCH_EN will #GP, erratum BDM106 */
pt_pmu.branch_en_always_on = true;
break;
default:
break;
}
if (boot_cpu_has(X86_FEATURE_VMX)) {
/*
* Intel SDM, 36.5 "Tracing post-VMXON" says that
* "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
* post-VMXON.
*/
rdmsrl(MSR_IA32_VMX_MISC, reg);
if (reg & BIT(14))
pt_pmu.vmx = true;
}
attrs = NULL;
for (i = 0; i < PT_CPUID_LEAVES; i++) {
cpuid_count(20, i,
&pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
&pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
&pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
&pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
}
ret = -ENOMEM;
size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
attrs = kzalloc(size, GFP_KERNEL);
if (!attrs)
goto fail;
size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
de_attrs = kzalloc(size, GFP_KERNEL);
if (!de_attrs)
goto fail;
for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
struct dev_ext_attribute *de_attr = de_attrs + i;
de_attr->attr.attr.name = pt_caps[i].name;
sysfs_attr_init(&de_attr->attr.attr);
de_attr->attr.attr.mode = S_IRUGO;
de_attr->attr.show = pt_cap_show;
de_attr->var = (void *)i;
attrs[i] = &de_attr->attr.attr;
}
pt_cap_group.attrs = attrs;
return 0;
fail:
kfree(attrs);
return ret;
}
#define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC | \
RTIT_CTL_CYC_THRESH | \
RTIT_CTL_PSB_FREQ)
#define RTIT_CTL_MTC (RTIT_CTL_MTC_EN | \
RTIT_CTL_MTC_RANGE)
#define RTIT_CTL_PTW (RTIT_CTL_PTW_EN | \
RTIT_CTL_FUP_ON_PTW)
/*
* Bit 0 (TraceEn) in the attr.config is meaningless as the
* corresponding bit in the RTIT_CTL can only be controlled
* by the driver; therefore, repurpose it to mean: pass
* through the bit that was previously assumed to be always
* on for PT, thereby allowing the user to *not* set it if
* they so wish. See also pt_event_valid() and pt_config().
*/
#define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
#define PT_CONFIG_MASK (RTIT_CTL_TRACEEN | \
RTIT_CTL_TSC_EN | \
RTIT_CTL_DISRETC | \
RTIT_CTL_BRANCH_EN | \
RTIT_CTL_CYC_PSB | \
RTIT_CTL_MTC | \
RTIT_CTL_PWR_EVT_EN | \
RTIT_CTL_FUP_ON_PTW | \
RTIT_CTL_PTW_EN)
static bool pt_event_valid(struct perf_event *event)
{
u64 config = event->attr.config;
u64 allowed, requested;
if ((config & PT_CONFIG_MASK) != config)
return false;
if (config & RTIT_CTL_CYC_PSB) {
if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
return false;
allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
requested = (config & RTIT_CTL_PSB_FREQ) >>
RTIT_CTL_PSB_FREQ_OFFSET;
if (requested && (!(allowed & BIT(requested))))
return false;
allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
requested = (config & RTIT_CTL_CYC_THRESH) >>
RTIT_CTL_CYC_THRESH_OFFSET;
if (requested && (!(allowed & BIT(requested))))
return false;
}
if (config & RTIT_CTL_MTC) {
/*
* In the unlikely case that CPUID lists valid mtc periods,
* but not the mtc capability, drop out here.
*
* Spec says that setting mtc period bits while mtc bit in
* CPUID is 0 will #GP, so better safe than sorry.
*/
if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
return false;
allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
if (!allowed)
return false;
requested = (config & RTIT_CTL_MTC_RANGE) >>
RTIT_CTL_MTC_RANGE_OFFSET;
if (!(allowed & BIT(requested)))
return false;
}
if (config & RTIT_CTL_PWR_EVT_EN &&
!intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
return false;
if (config & RTIT_CTL_PTW) {
if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
return false;
/* FUPonPTW without PTW doesn't make sense */
if ((config & RTIT_CTL_FUP_ON_PTW) &&
!(config & RTIT_CTL_PTW_EN))
return false;
}
/*
* Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
* clears the assomption that BranchEn must always be enabled,
* as was the case with the first implementation of PT.
* If this bit is not set, the legacy behavior is preserved
* for compatibility with the older userspace.
*
* Re-using bit 0 for this purpose is fine because it is never
* directly set by the user; previous attempts at setting it in
* the attr.config resulted in -EINVAL.
*/
if (config & RTIT_CTL_PASSTHROUGH) {
/*
* Disallow not setting BRANCH_EN where BRANCH_EN is
* always required.
*/
if (pt_pmu.branch_en_always_on &&
!(config & RTIT_CTL_BRANCH_EN))
return false;
} else {
/*
* Disallow BRANCH_EN without the PASSTHROUGH.
*/
if (config & RTIT_CTL_BRANCH_EN)
return false;
}
return true;
}
/*
* PT configuration helpers
* These all are cpu affine and operate on a local PT
*/
/* Address ranges and their corresponding msr configuration registers */
static const struct pt_address_range {
unsigned long msr_a;
unsigned long msr_b;
unsigned int reg_off;
} pt_address_ranges[] = {
{
.msr_a = MSR_IA32_RTIT_ADDR0_A,
.msr_b = MSR_IA32_RTIT_ADDR0_B,
.reg_off = RTIT_CTL_ADDR0_OFFSET,
},
{
.msr_a = MSR_IA32_RTIT_ADDR1_A,
.msr_b = MSR_IA32_RTIT_ADDR1_B,
.reg_off = RTIT_CTL_ADDR1_OFFSET,
},
{
.msr_a = MSR_IA32_RTIT_ADDR2_A,
.msr_b = MSR_IA32_RTIT_ADDR2_B,
.reg_off = RTIT_CTL_ADDR2_OFFSET,
},
{
.msr_a = MSR_IA32_RTIT_ADDR3_A,
.msr_b = MSR_IA32_RTIT_ADDR3_B,
.reg_off = RTIT_CTL_ADDR3_OFFSET,
}
};
static u64 pt_config_filters(struct perf_event *event)
{
struct pt_filters *filters = event->hw.addr_filters;
struct pt *pt = this_cpu_ptr(&pt_ctx);
unsigned int range = 0;
u64 rtit_ctl = 0;
if (!filters)
return 0;
perf_event_addr_filters_sync(event);
for (range = 0; range < filters->nr_filters; range++) {
struct pt_filter *filter = &filters->filter[range];
/*
* Note, if the range has zero start/end addresses due
* to its dynamic object not being loaded yet, we just
* go ahead and program zeroed range, which will simply
* produce no data. Note^2: if executable code at 0x0
* is a concern, we can set up an "invalid" configuration
* such as msr_b < msr_a.
*/
/* avoid redundant msr writes */
if (pt->filters.filter[range].msr_a != filter->msr_a) {
wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
pt->filters.filter[range].msr_a = filter->msr_a;
}
if (pt->filters.filter[range].msr_b != filter->msr_b) {
wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
pt->filters.filter[range].msr_b = filter->msr_b;
}
rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
}
return rtit_ctl;
}
static void pt_config(struct perf_event *event)
{
struct pt *pt = this_cpu_ptr(&pt_ctx);
u64 reg;
/* First round: clear STATUS, in particular the PSB byte counter. */
if (!event->hw.config) {
perf_event_itrace_started(event);
wrmsrl(MSR_IA32_RTIT_STATUS, 0);
}
reg = pt_config_filters(event);
reg |= RTIT_CTL_TOPA | RTIT_CTL_TRACEEN;
/*
* Previously, we had BRANCH_EN on by default, but now that PT has
* grown features outside of branch tracing, it is useful to allow
* the user to disable it. Setting bit 0 in the event's attr.config
* allows BRANCH_EN to pass through instead of being always on. See
* also the comment in pt_event_valid().
*/
if (event->attr.config & BIT(0)) {
reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
} else {
reg |= RTIT_CTL_BRANCH_EN;
}
if (!event->attr.exclude_kernel)
reg |= RTIT_CTL_OS;
if (!event->attr.exclude_user)
reg |= RTIT_CTL_USR;
reg |= (event->attr.config & PT_CONFIG_MASK);
event->hw.config = reg;
if (READ_ONCE(pt->vmx_on))
perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
else
wrmsrl(MSR_IA32_RTIT_CTL, reg);
}
static void pt_config_stop(struct perf_event *event)
{
struct pt *pt = this_cpu_ptr(&pt_ctx);
u64 ctl = READ_ONCE(event->hw.config);
/* may be already stopped by a PMI */
if (!(ctl & RTIT_CTL_TRACEEN))
return;
ctl &= ~RTIT_CTL_TRACEEN;
if (!READ_ONCE(pt->vmx_on))
wrmsrl(MSR_IA32_RTIT_CTL, ctl);
WRITE_ONCE(event->hw.config, ctl);
/*
* A wrmsr that disables trace generation serializes other PT
* registers and causes all data packets to be written to memory,
* but a fence is required for the data to become globally visible.
*
* The below WMB, separating data store and aux_head store matches
* the consumer's RMB that separates aux_head load and data load.
*/
wmb();
}
static void pt_config_buffer(void *buf, unsigned int topa_idx,
unsigned int output_off)
{
u64 reg;
wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
}
/*
* Keep ToPA table-related metadata on the same page as the actual table,
* taking up a few words from the top
*/
#define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
/**
* struct topa - page-sized ToPA table with metadata at the top
* @table: actual ToPA table entries, as understood by PT hardware
* @list: linkage to struct pt_buffer's list of tables
* @phys: physical address of this page
* @offset: offset of the first entry in this table in the buffer
* @size: total size of all entries in this table
* @last: index of the last initialized entry in this table
*/
struct topa {
struct topa_entry table[TENTS_PER_PAGE];
struct list_head list;
u64 phys;
u64 offset;
size_t size;
int last;
};
/* make -1 stand for the last table entry */
#define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
/**
* topa_alloc() - allocate page-sized ToPA table
* @cpu: CPU on which to allocate.
* @gfp: Allocation flags.
*
* Return: On success, return the pointer to ToPA table page.
*/
static struct topa *topa_alloc(int cpu, gfp_t gfp)
{
int node = cpu_to_node(cpu);
struct topa *topa;
struct page *p;
p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
if (!p)
return NULL;
topa = page_address(p);
topa->last = 0;
topa->phys = page_to_phys(p);
/*
* In case of singe-entry ToPA, always put the self-referencing END
* link as the 2nd entry in the table
*/
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
TOPA_ENTRY(topa, 1)->end = 1;
}
return topa;
}
/**
* topa_free() - free a page-sized ToPA table
* @topa: Table to deallocate.
*/
static void topa_free(struct topa *topa)
{
free_page((unsigned long)topa);
}
/**
* topa_insert_table() - insert a ToPA table into a buffer
* @buf: PT buffer that's being extended.
* @topa: New topa table to be inserted.
*
* If it's the first table in this buffer, set up buffer's pointers
* accordingly; otherwise, add a END=1 link entry to @topa to the current
* "last" table and adjust the last table pointer to @topa.
*/
static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
{
struct topa *last = buf->last;
list_add_tail(&topa->list, &buf->tables);
if (!buf->first) {
buf->first = buf->last = buf->cur = topa;
return;
}
topa->offset = last->offset + last->size;
buf->last = topa;
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
return;
BUG_ON(last->last != TENTS_PER_PAGE - 1);
TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
TOPA_ENTRY(last, -1)->end = 1;
}
/**
* topa_table_full() - check if a ToPA table is filled up
* @topa: ToPA table.
*/
static bool topa_table_full(struct topa *topa)
{
/* single-entry ToPA is a special case */
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
return !!topa->last;
return topa->last == TENTS_PER_PAGE - 1;
}
/**
* topa_insert_pages() - create a list of ToPA tables
* @buf: PT buffer being initialized.
* @gfp: Allocation flags.
*
* This initializes a list of ToPA tables with entries from
* the data_pages provided by rb_alloc_aux().
*
* Return: 0 on success or error code.
*/
static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
{
struct topa *topa = buf->last;
int order = 0;
struct page *p;
p = virt_to_page(buf->data_pages[buf->nr_pages]);
if (PagePrivate(p))
order = page_private(p);
if (topa_table_full(topa)) {
topa = topa_alloc(buf->cpu, gfp);
if (!topa)
return -ENOMEM;
topa_insert_table(buf, topa);
}
TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
TOPA_ENTRY(topa, -1)->size = order;
if (!buf->snapshot &&
!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
TOPA_ENTRY(topa, -1)->intr = 1;
TOPA_ENTRY(topa, -1)->stop = 1;
}
topa->last++;
topa->size += sizes(order);
buf->nr_pages += 1ul << order;
return 0;
}
/**
* pt_topa_dump() - print ToPA tables and their entries
* @buf: PT buffer.
*/
static void pt_topa_dump(struct pt_buffer *buf)
{
struct topa *topa;
list_for_each_entry(topa, &buf->tables, list) {
int i;
pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
topa->phys, topa->offset, topa->size);
for (i = 0; i < TENTS_PER_PAGE; i++) {
pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
&topa->table[i],
(unsigned long)topa->table[i].base << TOPA_SHIFT,
sizes(topa->table[i].size),
topa->table[i].end ? 'E' : ' ',
topa->table[i].intr ? 'I' : ' ',
topa->table[i].stop ? 'S' : ' ',
*(u64 *)&topa->table[i]);
if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
topa->table[i].stop) ||
topa->table[i].end)
break;
}
}
}
/**
* pt_buffer_advance() - advance to the next output region
* @buf: PT buffer.
*
* Advance the current pointers in the buffer to the next ToPA entry.
*/
static void pt_buffer_advance(struct pt_buffer *buf)
{
buf->output_off = 0;
buf->cur_idx++;
if (buf->cur_idx == buf->cur->last) {
if (buf->cur == buf->last)
buf->cur = buf->first;
else
buf->cur = list_entry(buf->cur->list.next, struct topa,
list);
buf->cur_idx = 0;
}
}
/**
* pt_update_head() - calculate current offsets and sizes
* @pt: Per-cpu pt context.
*
* Update buffer's current write pointer position and data size.
*/
static void pt_update_head(struct pt *pt)
{
struct pt_buffer *buf = perf_get_aux(&pt->handle);
u64 topa_idx, base, old;
/* offset of the first region in this table from the beginning of buf */
base = buf->cur->offset + buf->output_off;
/* offset of the current output region within this table */
for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
base += sizes(buf->cur->table[topa_idx].size);
if (buf->snapshot) {
local_set(&buf->data_size, base);
} else {
old = (local64_xchg(&buf->head, base) &
((buf->nr_pages << PAGE_SHIFT) - 1));
if (base < old)
base += buf->nr_pages << PAGE_SHIFT;
local_add(base - old, &buf->data_size);
}
}
/**
* pt_buffer_region() - obtain current output region's address
* @buf: PT buffer.
*/
static void *pt_buffer_region(struct pt_buffer *buf)
{
return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
}
/**
* pt_buffer_region_size() - obtain current output region's size
* @buf: PT buffer.
*/
static size_t pt_buffer_region_size(struct pt_buffer *buf)
{
return sizes(buf->cur->table[buf->cur_idx].size);
}
/**
* pt_handle_status() - take care of possible status conditions
* @pt: Per-cpu pt context.
*/
static void pt_handle_status(struct pt *pt)
{
struct pt_buffer *buf = perf_get_aux(&pt->handle);
int advance = 0;
u64 status;
rdmsrl(MSR_IA32_RTIT_STATUS, status);
if (status & RTIT_STATUS_ERROR) {
pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
pt_topa_dump(buf);
status &= ~RTIT_STATUS_ERROR;
}
if (status & RTIT_STATUS_STOPPED) {
status &= ~RTIT_STATUS_STOPPED;
/*
* On systems that only do single-entry ToPA, hitting STOP
* means we are already losing data; need to let the decoder
* know.
*/
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
perf_aux_output_flag(&pt->handle,
PERF_AUX_FLAG_TRUNCATED);
advance++;
}
}
/*
* Also on single-entry ToPA implementations, interrupt will come
* before the output reaches its output region's boundary.
*/
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
!buf->snapshot &&
pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
void *head = pt_buffer_region(buf);
/* everything within this margin needs to be zeroed out */
memset(head + buf->output_off, 0,
pt_buffer_region_size(buf) -
buf->output_off);
advance++;
}
if (advance)
pt_buffer_advance(buf);
wrmsrl(MSR_IA32_RTIT_STATUS, status);
}
/**
* pt_read_offset() - translate registers into buffer pointers
* @buf: PT buffer.
*
* Set buffer's output pointers from MSR values.
*/
static void pt_read_offset(struct pt_buffer *buf)
{
u64 offset, base_topa;
rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
buf->cur = phys_to_virt(base_topa);
rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
/* offset within current output region */
buf->output_off = offset >> 32;
/* index of current output region within this table */
buf->cur_idx = (offset & 0xffffff80) >> 7;
}
/**
* pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
* @buf: PT buffer.
* @pg: Page offset in the buffer.
*
* When advancing to the next output region (ToPA entry), given a page offset
* into the buffer, we need to find the offset of the first page in the next
* region.
*/
static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
{
struct topa_entry *te = buf->topa_index[pg];
/* one region */
if (buf->first == buf->last && buf->first->last == 1)
return pg;
do {
pg++;
pg &= buf->nr_pages - 1;
} while (buf->topa_index[pg] == te);
return pg;
}
/**
* pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
* @buf: PT buffer.
* @handle: Current output handle.
*
* Place INT and STOP marks to prevent overwriting old data that the consumer
* hasn't yet collected and waking up the consumer after a certain fraction of
* the buffer has filled up. Only needed and sensible for non-snapshot counters.
*
* This obviously relies on buf::head to figure out buffer markers, so it has
* to be called after pt_buffer_reset_offsets() and before the hardware tracing
* is enabled.
*/
static int pt_buffer_reset_markers(struct pt_buffer *buf,
struct perf_output_handle *handle)
{
unsigned long head = local64_read(&buf->head);
unsigned long idx, npages, wakeup;
/* can't stop in the middle of an output region */
if (buf->output_off + handle->size + 1 <
sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
return -EINVAL;
}
/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
return 0;
/* clear STOP and INT from current entry */
buf->topa_index[buf->stop_pos]->stop = 0;
buf->topa_index[buf->stop_pos]->intr = 0;
buf->topa_index[buf->intr_pos]->intr = 0;
/* how many pages till the STOP marker */
npages = handle->size >> PAGE_SHIFT;
/* if it's on a page boundary, fill up one more page */
if (!offset_in_page(head + handle->size + 1))
npages++;
idx = (head >> PAGE_SHIFT) + npages;
idx &= buf->nr_pages - 1;
buf->stop_pos = idx;
wakeup = handle->wakeup >> PAGE_SHIFT;
/* in the worst case, wake up the consumer one page before hard stop */
idx = (head >> PAGE_SHIFT) + npages - 1;
if (idx > wakeup)
idx = wakeup;
idx &= buf->nr_pages - 1;
buf->intr_pos = idx;
buf->topa_index[buf->stop_pos]->stop = 1;
buf->topa_index[buf->stop_pos]->intr = 1;
buf->topa_index[buf->intr_pos]->intr = 1;
return 0;
}
/**
* pt_buffer_setup_topa_index() - build topa_index[] table of regions
* @buf: PT buffer.
*
* topa_index[] references output regions indexed by offset into the
* buffer for purposes of quick reverse lookup.
*/
static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
{
struct topa *cur = buf->first, *prev = buf->last;
struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
*te_prev = TOPA_ENTRY(prev, prev->last - 1);
int pg = 0, idx = 0;
while (pg < buf->nr_pages) {
int tidx;
/* pages within one topa entry */
for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
buf->topa_index[pg] = te_prev;
te_prev = te_cur;
if (idx == cur->last - 1) {
/* advance to next topa table */
idx = 0;
cur = list_entry(cur->list.next, struct topa, list);
} else {
idx++;
}
te_cur = TOPA_ENTRY(cur, idx);
}
}
/**
* pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
* @buf: PT buffer.
* @head: Write pointer (aux_head) from AUX buffer.
*
* Find the ToPA table and entry corresponding to given @head and set buffer's
* "current" pointers accordingly. This is done after we have obtained the
* current aux_head position from a successful call to perf_aux_output_begin()
* to make sure the hardware is writing to the right place.
*
* This function modifies buf::{cur,cur_idx,output_off} that will be programmed
* into PT msrs when the tracing is enabled and buf::head and buf::data_size,
* which are used to determine INT and STOP markers' locations by a subsequent
* call to pt_buffer_reset_markers().
*/
static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
{
int pg;
if (buf->snapshot)
head &= (buf->nr_pages << PAGE_SHIFT) - 1;
pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
pg = pt_topa_next_entry(buf, pg);
buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
(unsigned long)buf->cur) / sizeof(struct topa_entry);
buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
local64_set(&buf->head, head);
local_set(&buf->data_size, 0);
}
/**
* pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
* @buf: PT buffer.
*/
static void pt_buffer_fini_topa(struct pt_buffer *buf)
{
struct topa *topa, *iter;
list_for_each_entry_safe(topa, iter, &buf->tables, list) {
/*
* right now, this is in free_aux() path only, so
* no need to unlink this table from the list
*/
topa_free(topa);
}
}
/**
* pt_buffer_init_topa() - initialize ToPA table for pt buffer
* @buf: PT buffer.
* @size: Total size of all regions within this ToPA.
* @gfp: Allocation flags.
*/
static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
gfp_t gfp)
{
struct topa *topa;
int err;
topa = topa_alloc(buf->cpu, gfp);
if (!topa)
return -ENOMEM;
topa_insert_table(buf, topa);
while (buf->nr_pages < nr_pages) {
err = topa_insert_pages(buf, gfp);
if (err) {
pt_buffer_fini_topa(buf);
return -ENOMEM;
}
}
pt_buffer_setup_topa_index(buf);
/* link last table to the first one, unless we're double buffering */
if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
TOPA_ENTRY(buf->last, -1)->end = 1;
}
pt_topa_dump(buf);
return 0;
}
/**
* pt_buffer_setup_aux() - set up topa tables for a PT buffer
* @cpu: Cpu on which to allocate, -1 means current.
* @pages: Array of pointers to buffer pages passed from perf core.
* @nr_pages: Number of pages in the buffer.
* @snapshot: If this is a snapshot/overwrite counter.
*
* This is a pmu::setup_aux callback that sets up ToPA tables and all the
* bookkeeping for an AUX buffer.
*
* Return: Our private PT buffer structure.
*/
static void *
pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
{
struct pt_buffer *buf;
int node, ret;
if (!nr_pages)
return NULL;
if (cpu == -1)
cpu = raw_smp_processor_id();
node = cpu_to_node(cpu);
buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
GFP_KERNEL, node);
if (!buf)
return NULL;
buf->cpu = cpu;
buf->snapshot = snapshot;
buf->data_pages = pages;
INIT_LIST_HEAD(&buf->tables);
ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
if (ret) {
kfree(buf);
return NULL;
}
return buf;
}
/**
* pt_buffer_free_aux() - perf AUX deallocation path callback
* @data: PT buffer.
*/
static void pt_buffer_free_aux(void *data)
{
struct pt_buffer *buf = data;
pt_buffer_fini_topa(buf);
kfree(buf);
}
static int pt_addr_filters_init(struct perf_event *event)
{
struct pt_filters *filters;
int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
return 0;
filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
if (!filters)
return -ENOMEM;
if (event->parent)
memcpy(filters, event->parent->hw.addr_filters,
sizeof(*filters));
event->hw.addr_filters = filters;
return 0;
}
static void pt_addr_filters_fini(struct perf_event *event)
{
kfree(event->hw.addr_filters);
event->hw.addr_filters = NULL;
}
static inline bool valid_kernel_ip(unsigned long ip)
{
return virt_addr_valid(ip) && kernel_ip(ip);
}
static int pt_event_addr_filters_validate(struct list_head *filters)
{
struct perf_addr_filter *filter;
int range = 0;
list_for_each_entry(filter, filters, entry) {
/*
* PT doesn't support single address triggers and
* 'start' filters.
*/
if (!filter->size ||
filter->action == PERF_ADDR_FILTER_ACTION_START)
return -EOPNOTSUPP;
if (!filter->path.dentry) {
if (!valid_kernel_ip(filter->offset))
return -EINVAL;
if (!valid_kernel_ip(filter->offset + filter->size))
return -EINVAL;
}
if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
return -EOPNOTSUPP;
}
return 0;
}
static void pt_event_addr_filters_sync(struct perf_event *event)
{
struct perf_addr_filters_head *head = perf_event_addr_filters(event);
unsigned long msr_a, msr_b, *offs = event->addr_filters_offs;
struct pt_filters *filters = event->hw.addr_filters;
struct perf_addr_filter *filter;
int range = 0;
if (!filters)
return;
list_for_each_entry(filter, &head->list, entry) {
if (filter->path.dentry && !offs[range]) {
msr_a = msr_b = 0;
} else {
/* apply the offset */
msr_a = filter->offset + offs[range];
msr_b = filter->size + msr_a - 1;
}
filters->filter[range].msr_a = msr_a;
filters->filter[range].msr_b = msr_b;
if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
filters->filter[range].config = 1;
else
filters->filter[range].config = 2;
range++;
}
filters->nr_filters = range;
}
/**
* intel_pt_interrupt() - PT PMI handler
*/
void intel_pt_interrupt(void)
{
struct pt *pt = this_cpu_ptr(&pt_ctx);
struct pt_buffer *buf;
struct perf_event *event = pt->handle.event;
/*
* There may be a dangling PT bit in the interrupt status register
* after PT has been disabled by pt_event_stop(). Make sure we don't
* do anything (particularly, re-enable) for this event here.
*/
if (!READ_ONCE(pt->handle_nmi))
return;
if (!event)
return;
pt_config_stop(event);
buf = perf_get_aux(&pt->handle);
if (!buf)
return;
pt_read_offset(buf);
pt_handle_status(pt);
pt_update_head(pt);
perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
if (!event->hw.state) {
int ret;
buf = perf_aux_output_begin(&pt->handle, event);
if (!buf) {
event->hw.state = PERF_HES_STOPPED;
return;
}
pt_buffer_reset_offsets(buf, pt->handle.head);
/* snapshot counters don't use PMI, so it's safe */
ret = pt_buffer_reset_markers(buf, &pt->handle);
if (ret) {
perf_aux_output_end(&pt->handle, 0);
return;
}
pt_config_buffer(buf->cur->table, buf->cur_idx,
buf->output_off);
pt_config(event);
}
}
void intel_pt_handle_vmx(int on)
{
struct pt *pt = this_cpu_ptr(&pt_ctx);
struct perf_event *event;
unsigned long flags;
/* PT plays nice with VMX, do nothing */
if (pt_pmu.vmx)
return;
/*
* VMXON will clear RTIT_CTL.TraceEn; we need to make
* sure to not try to set it while VMX is on. Disable
* interrupts to avoid racing with pmu callbacks;
* concurrent PMI should be handled fine.
*/
local_irq_save(flags);
WRITE_ONCE(pt->vmx_on, on);
/*
* If an AUX transaction is in progress, it will contain
* gap(s), so flag it PARTIAL to inform the user.
*/
event = pt->handle.event;
if (event)
perf_aux_output_flag(&pt->handle,
PERF_AUX_FLAG_PARTIAL);
/* Turn PTs back on */
if (!on && event)
wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
/*
* PMU callbacks
*/
static void pt_event_start(struct perf_event *event, int mode)
{
struct hw_perf_event *hwc = &event->hw;
struct pt *pt = this_cpu_ptr(&pt_ctx);
struct pt_buffer *buf;
buf = perf_aux_output_begin(&pt->handle, event);
if (!buf)
goto fail_stop;
pt_buffer_reset_offsets(buf, pt->handle.head);
if (!buf->snapshot) {
if (pt_buffer_reset_markers(buf, &pt->handle))
goto fail_end_stop;
}
WRITE_ONCE(pt->handle_nmi, 1);
hwc->state = 0;
pt_config_buffer(buf->cur->table, buf->cur_idx,
buf->output_off);
pt_config(event);
return;
fail_end_stop:
perf_aux_output_end(&pt->handle, 0);
fail_stop:
hwc->state = PERF_HES_STOPPED;
}
static void pt_event_stop(struct perf_event *event, int mode)
{
struct pt *pt = this_cpu_ptr(&pt_ctx);
/*
* Protect against the PMI racing with disabling wrmsr,
* see comment in intel_pt_interrupt().
*/
WRITE_ONCE(pt->handle_nmi, 0);
pt_config_stop(event);
if (event->hw.state == PERF_HES_STOPPED)
return;
event->hw.state = PERF_HES_STOPPED;
if (mode & PERF_EF_UPDATE) {
struct pt_buffer *buf = perf_get_aux(&pt->handle);
if (!buf)
return;
if (WARN_ON_ONCE(pt->handle.event != event))
return;
pt_read_offset(buf);
pt_handle_status(pt);
pt_update_head(pt);
if (buf->snapshot)
pt->handle.head =
local_xchg(&buf->data_size,
buf->nr_pages << PAGE_SHIFT);
perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
}
}
static void pt_event_del(struct perf_event *event, int mode)
{
pt_event_stop(event, PERF_EF_UPDATE);
}
static int pt_event_add(struct perf_event *event, int mode)
{
struct pt *pt = this_cpu_ptr(&pt_ctx);
struct hw_perf_event *hwc = &event->hw;
int ret = -EBUSY;
if (pt->handle.event)
goto fail;
if (mode & PERF_EF_START) {
pt_event_start(event, 0);
ret = -EINVAL;
if (hwc->state == PERF_HES_STOPPED)
goto fail;
} else {
hwc->state = PERF_HES_STOPPED;
}
ret = 0;
fail:
return ret;
}
static void pt_event_read(struct perf_event *event)
{
}
static void pt_event_destroy(struct perf_event *event)
{
pt_addr_filters_fini(event);
x86_del_exclusive(x86_lbr_exclusive_pt);
}
static int pt_event_init(struct perf_event *event)
{
if (event->attr.type != pt_pmu.pmu.type)
return -ENOENT;
if (!pt_event_valid(event))
return -EINVAL;
if (x86_add_exclusive(x86_lbr_exclusive_pt))
return -EBUSY;
if (pt_addr_filters_init(event)) {
x86_del_exclusive(x86_lbr_exclusive_pt);
return -ENOMEM;
}
event->destroy = pt_event_destroy;
return 0;
}
void cpu_emergency_stop_pt(void)
{
struct pt *pt = this_cpu_ptr(&pt_ctx);
if (pt->handle.event)
pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
}
static __init int pt_init(void)
{
int ret, cpu, prior_warn = 0;
BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
return -ENODEV;
get_online_cpus();
for_each_online_cpu(cpu) {
u64 ctl;
ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
if (!ret && (ctl & RTIT_CTL_TRACEEN))
prior_warn++;
}
put_online_cpus();
if (prior_warn) {
x86_add_exclusive(x86_lbr_exclusive_pt);
pr_warn("PT is enabled at boot time, doing nothing\n");
return -EBUSY;
}
ret = pt_pmu_hw_init();
if (ret)
return ret;
if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
pr_warn("ToPA output is not supported on this CPU\n");
return -ENODEV;
}
if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
pt_pmu.pmu.capabilities =
PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
pt_pmu.pmu.attr_groups = pt_attr_groups;
pt_pmu.pmu.task_ctx_nr = perf_sw_context;
pt_pmu.pmu.event_init = pt_event_init;
pt_pmu.pmu.add = pt_event_add;
pt_pmu.pmu.del = pt_event_del;
pt_pmu.pmu.start = pt_event_start;
pt_pmu.pmu.stop = pt_event_stop;
pt_pmu.pmu.read = pt_event_read;
pt_pmu.pmu.setup_aux = pt_buffer_setup_aux;
pt_pmu.pmu.free_aux = pt_buffer_free_aux;
pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync;
pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
pt_pmu.pmu.nr_addr_filters =
intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
return ret;
}
arch_initcall(pt_init);