linux_dsm_epyc7002/drivers/net/wireless/realtek/rtlwifi/rtl8821ae/rf.c
Larry Finger f1d2b4d338 rtlwifi: rtl818x: Move drivers into new realtek directory
Now that a new mac80211-based driver for Realtek devices has been submitted,
it is time to reorganize the directories. Rather than having directories
rtlwifi and rtl818x be in drivers/net/wireless/, they will now be in
drivers/net/wireless/realtek/. This change simplifies the directory
structure, but does not result in any configuration changes that are
visable to the user.

Signed-off-by: Larry Finger <Larry.Finger@lwfinger.net>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
2015-10-14 13:33:10 +03:00

466 lines
13 KiB
C

/******************************************************************************
*
* Copyright(c) 2009-2010 Realtek Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* wlanfae <wlanfae@realtek.com>
* Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
* Hsinchu 300, Taiwan.
*
* Larry Finger <Larry.Finger@lwfinger.net>
*
*****************************************************************************/
#include "../wifi.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
static bool _rtl8821ae_phy_rf6052_config_parafile(struct ieee80211_hw *hw);
void rtl8821ae_phy_rf6052_set_bandwidth(struct ieee80211_hw *hw, u8 bandwidth)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
switch (bandwidth) {
case HT_CHANNEL_WIDTH_20:
rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, BIT(11)|BIT(10), 3);
rtl_set_rfreg(hw, RF90_PATH_B, RF_CHNLBW, BIT(11)|BIT(10), 3);
break;
case HT_CHANNEL_WIDTH_20_40:
rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, BIT(11)|BIT(10), 1);
rtl_set_rfreg(hw, RF90_PATH_B, RF_CHNLBW, BIT(11)|BIT(10), 1);
break;
case HT_CHANNEL_WIDTH_80:
rtl_set_rfreg(hw, RF90_PATH_A, RF_CHNLBW, BIT(11)|BIT(10), 0);
rtl_set_rfreg(hw, RF90_PATH_B, RF_CHNLBW, BIT(11)|BIT(10), 0);
break;
default:
RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
"unknown bandwidth: %#X\n", bandwidth);
break;
}
}
void rtl8821ae_phy_rf6052_set_cck_txpower(struct ieee80211_hw *hw,
u8 *ppowerlevel)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u32 tx_agc[2] = {0, 0}, tmpval;
bool turbo_scanoff = false;
u8 idx1, idx2;
u8 *ptr;
u8 direction;
u32 pwrtrac_value;
if (rtlefuse->eeprom_regulatory != 0)
turbo_scanoff = true;
if (mac->act_scanning) {
tx_agc[RF90_PATH_A] = 0x3f3f3f3f;
tx_agc[RF90_PATH_B] = 0x3f3f3f3f;
if (turbo_scanoff) {
for (idx1 = RF90_PATH_A;
idx1 <= RF90_PATH_B;
idx1++) {
tx_agc[idx1] = ppowerlevel[idx1] |
(ppowerlevel[idx1] << 8) |
(ppowerlevel[idx1] << 16) |
(ppowerlevel[idx1] << 24);
}
}
} else {
for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
tx_agc[idx1] = ppowerlevel[idx1] |
(ppowerlevel[idx1] << 8) |
(ppowerlevel[idx1] << 16) |
(ppowerlevel[idx1] << 24);
}
if (rtlefuse->eeprom_regulatory == 0) {
tmpval =
(rtlphy->mcs_txpwrlevel_origoffset[0][6]) +
(rtlphy->mcs_txpwrlevel_origoffset[0][7] <<
8);
tx_agc[RF90_PATH_A] += tmpval;
tmpval = (rtlphy->mcs_txpwrlevel_origoffset[0][14]) +
(rtlphy->mcs_txpwrlevel_origoffset[0][15] <<
24);
tx_agc[RF90_PATH_B] += tmpval;
}
}
for (idx1 = RF90_PATH_A; idx1 <= RF90_PATH_B; idx1++) {
ptr = (u8 *)(&tx_agc[idx1]);
for (idx2 = 0; idx2 < 4; idx2++) {
if (*ptr > RF6052_MAX_TX_PWR)
*ptr = RF6052_MAX_TX_PWR;
ptr++;
}
}
rtl8821ae_dm_txpower_track_adjust(hw, 1, &direction, &pwrtrac_value);
if (direction == 1) {
tx_agc[0] += pwrtrac_value;
tx_agc[1] += pwrtrac_value;
} else if (direction == 2) {
tx_agc[0] -= pwrtrac_value;
tx_agc[1] -= pwrtrac_value;
}
tmpval = tx_agc[RF90_PATH_A];
rtl_set_bbreg(hw, RTXAGC_A_CCK11_CCK1, MASKDWORD, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"CCK PWR 1~11M (rf-A) = 0x%x (reg 0x%x)\n", tmpval,
RTXAGC_A_CCK11_CCK1);
tmpval = tx_agc[RF90_PATH_B];
rtl_set_bbreg(hw, RTXAGC_B_CCK11_CCK1, MASKDWORD, tmpval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"CCK PWR 11M (rf-B) = 0x%x (reg 0x%x)\n", tmpval,
RTXAGC_B_CCK11_CCK1);
}
static void rtl8821ae_phy_get_power_base(struct ieee80211_hw *hw,
u8 *ppowerlevel_ofdm,
u8 *ppowerlevel_bw20,
u8 *ppowerlevel_bw40, u8 channel,
u32 *ofdmbase, u32 *mcsbase)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
u32 powerbase0, powerbase1;
u8 i, powerlevel[2];
for (i = 0; i < 2; i++) {
powerbase0 = ppowerlevel_ofdm[i];
powerbase0 = (powerbase0 << 24) | (powerbase0 << 16) |
(powerbase0 << 8) | powerbase0;
*(ofdmbase + i) = powerbase0;
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
" [OFDM power base index rf(%c) = 0x%x]\n",
((i == 0) ? 'A' : 'B'), *(ofdmbase + i));
}
for (i = 0; i < 2; i++) {
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20)
powerlevel[i] = ppowerlevel_bw20[i];
else
powerlevel[i] = ppowerlevel_bw40[i];
powerbase1 = powerlevel[i];
powerbase1 = (powerbase1 << 24) |
(powerbase1 << 16) | (powerbase1 << 8) | powerbase1;
*(mcsbase + i) = powerbase1;
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
" [MCS power base index rf(%c) = 0x%x]\n",
((i == 0) ? 'A' : 'B'), *(mcsbase + i));
}
}
static void get_txpower_writeval_by_regulatory(struct ieee80211_hw *hw,
u8 channel, u8 index,
u32 *powerbase0,
u32 *powerbase1,
u32 *p_outwriteval)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 i, chnlgroup = 0, pwr_diff_limit[4], pwr_diff = 0, customer_pwr_diff;
u32 writeval, customer_limit, rf;
for (rf = 0; rf < 2; rf++) {
switch (rtlefuse->eeprom_regulatory) {
case 0:
chnlgroup = 0;
writeval =
rtlphy->mcs_txpwrlevel_origoffset[chnlgroup][index +
(rf ? 8 : 0)]
+ ((index < 2) ? powerbase0[rf] : powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"RTK better performance, writeval(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeval);
break;
case 1:
if (rtlphy->pwrgroup_cnt == 1) {
chnlgroup = 0;
} else {
if (channel < 3)
chnlgroup = 0;
else if (channel < 6)
chnlgroup = 1;
else if (channel < 9)
chnlgroup = 2;
else if (channel < 12)
chnlgroup = 3;
else if (channel < 14)
chnlgroup = 4;
else if (channel == 14)
chnlgroup = 5;
}
writeval =
rtlphy->mcs_txpwrlevel_origoffset[chnlgroup]
[index + (rf ? 8 : 0)] + ((index < 2) ?
powerbase0[rf] :
powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Realtek regulatory, 20MHz, writeval(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeval);
break;
case 2:
writeval =
((index < 2) ? powerbase0[rf] : powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Better regulatory, writeval(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeval);
break;
case 3:
chnlgroup = 0;
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40) {
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"customer's limit, 40MHz rf(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'),
rtlefuse->pwrgroup_ht40[rf][channel -
1]);
} else {
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"customer's limit, 20MHz rf(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'),
rtlefuse->pwrgroup_ht20[rf][channel -
1]);
}
if (index < 2)
pwr_diff = rtlefuse->txpwr_legacyhtdiff[rf][channel-1];
else if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20)
pwr_diff =
rtlefuse->txpwr_ht20diff[rf][channel-1];
if (rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20_40)
customer_pwr_diff =
rtlefuse->pwrgroup_ht40[rf][channel-1];
else
customer_pwr_diff =
rtlefuse->pwrgroup_ht20[rf][channel-1];
if (pwr_diff > customer_pwr_diff)
pwr_diff = 0;
else
pwr_diff = customer_pwr_diff - pwr_diff;
for (i = 0; i < 4; i++) {
pwr_diff_limit[i] =
(u8)((rtlphy->mcs_txpwrlevel_origoffset
[chnlgroup][index + (rf ? 8 : 0)] &
(0x7f << (i * 8))) >> (i * 8));
if (pwr_diff_limit[i] > pwr_diff)
pwr_diff_limit[i] = pwr_diff;
}
customer_limit = (pwr_diff_limit[3] << 24) |
(pwr_diff_limit[2] << 16) |
(pwr_diff_limit[1] << 8) | (pwr_diff_limit[0]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Customer's limit rf(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), customer_limit);
writeval = customer_limit +
((index < 2) ? powerbase0[rf] : powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Customer, writeval rf(%c)= 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeval);
break;
default:
chnlgroup = 0;
writeval =
rtlphy->mcs_txpwrlevel_origoffset[chnlgroup]
[index + (rf ? 8 : 0)]
+ ((index < 2) ? powerbase0[rf] : powerbase1[rf]);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"RTK better performance, writeval rf(%c) = 0x%x\n",
((rf == 0) ? 'A' : 'B'), writeval);
break;
}
if (rtlpriv->dm.dynamic_txhighpower_lvl == TXHIGHPWRLEVEL_BT1)
writeval = writeval - 0x06060606;
else if (rtlpriv->dm.dynamic_txhighpower_lvl ==
TXHIGHPWRLEVEL_BT2)
writeval = writeval - 0x0c0c0c0c;
*(p_outwriteval + rf) = writeval;
}
}
static void _rtl8821ae_write_ofdm_power_reg(struct ieee80211_hw *hw,
u8 index, u32 *pvalue)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u16 regoffset_a[6] = {
RTXAGC_A_OFDM18_OFDM6, RTXAGC_A_OFDM54_OFDM24,
RTXAGC_A_MCS03_MCS00, RTXAGC_A_MCS07_MCS04,
RTXAGC_A_MCS11_MCS08, RTXAGC_A_MCS15_MCS12
};
u16 regoffset_b[6] = {
RTXAGC_B_OFDM18_OFDM6, RTXAGC_B_OFDM54_OFDM24,
RTXAGC_B_MCS03_MCS00, RTXAGC_B_MCS07_MCS04,
RTXAGC_B_MCS11_MCS08, RTXAGC_B_MCS15_MCS12
};
u8 i, rf, pwr_val[4];
u32 writeval;
u16 regoffset;
for (rf = 0; rf < 2; rf++) {
writeval = pvalue[rf];
for (i = 0; i < 4; i++) {
pwr_val[i] = (u8)((writeval & (0x7f <<
(i * 8))) >> (i * 8));
if (pwr_val[i] > RF6052_MAX_TX_PWR)
pwr_val[i] = RF6052_MAX_TX_PWR;
}
writeval = (pwr_val[3] << 24) | (pwr_val[2] << 16) |
(pwr_val[1] << 8) | pwr_val[0];
if (rf == 0)
regoffset = regoffset_a[index];
else
regoffset = regoffset_b[index];
rtl_set_bbreg(hw, regoffset, MASKDWORD, writeval);
RTPRINT(rtlpriv, FPHY, PHY_TXPWR,
"Set 0x%x = %08x\n", regoffset, writeval);
}
}
void rtl8821ae_phy_rf6052_set_ofdm_txpower(struct ieee80211_hw *hw,
u8 *ppowerlevel_ofdm,
u8 *ppowerlevel_bw20,
u8 *ppowerlevel_bw40,
u8 channel)
{
u32 writeval[2], powerbase0[2], powerbase1[2];
u8 index;
u8 direction;
u32 pwrtrac_value;
rtl8821ae_phy_get_power_base(hw, ppowerlevel_ofdm,
ppowerlevel_bw20,
ppowerlevel_bw40,
channel,
&powerbase0[0],
&powerbase1[0]);
rtl8821ae_dm_txpower_track_adjust(hw, 1, &direction, &pwrtrac_value);
for (index = 0; index < 6; index++) {
get_txpower_writeval_by_regulatory(hw, channel, index,
&powerbase0[0],
&powerbase1[0],
&writeval[0]);
if (direction == 1) {
writeval[0] += pwrtrac_value;
writeval[1] += pwrtrac_value;
} else if (direction == 2) {
writeval[0] -= pwrtrac_value;
writeval[1] -= pwrtrac_value;
}
_rtl8821ae_write_ofdm_power_reg(hw, index, &writeval[0]);
}
}
bool rtl8821ae_phy_rf6052_config(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
if (rtlphy->rf_type == RF_1T1R)
rtlphy->num_total_rfpath = 1;
else
rtlphy->num_total_rfpath = 2;
return _rtl8821ae_phy_rf6052_config_parafile(hw);
}
static bool _rtl8821ae_phy_rf6052_config_parafile(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &rtlpriv->phy;
struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
u8 rfpath;
bool rtstatus = true;
for (rfpath = 0; rfpath < rtlphy->num_total_rfpath; rfpath++) {
switch (rfpath) {
case RF90_PATH_A: {
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE)
rtstatus =
rtl8812ae_phy_config_rf_with_headerfile(hw,
(enum radio_path)rfpath);
else
rtstatus =
rtl8821ae_phy_config_rf_with_headerfile(hw,
(enum radio_path)rfpath);
break;
}
case RF90_PATH_B:
if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE)
rtstatus =
rtl8812ae_phy_config_rf_with_headerfile(hw,
(enum radio_path)rfpath);
else
rtstatus =
rtl8821ae_phy_config_rf_with_headerfile(hw,
(enum radio_path)rfpath);
break;
case RF90_PATH_C:
break;
case RF90_PATH_D:
break;
}
if (!rtstatus) {
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
"Radio[%d] Fail!!", rfpath);
return false;
}
}
/*put arrays in dm.c*/
RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "\n");
return rtstatus;
}