linux_dsm_epyc7002/drivers/gpu/drm/amd/amdgpu/amdgpu_amdkfd.c
Hawking Zhang 6bdadb2072 drm/amdgpu: Add navi10 kfd support for amdgpu (v3)
KFD (Kernel Fusion Driver) is the compute backend driver
for AMD GPUs.

v2: squash in updates (Alex)
v3: fix warnings (Alex)

Signed-off-by: Oak Zeng <Oak.Zeng@amd.com>
Signed-off-by: Philip Cox <Philip.Cox@amd.com>
Signed-off-by: Hawking Zhang <Hawking.Zhang@amd.com>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2019-06-21 18:59:23 -05:00

763 lines
19 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "amdgpu_amdkfd.h"
#include "amd_shared.h"
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_dma_buf.h"
#include <linux/module.h>
#include <linux/dma-buf.h>
#include "amdgpu_xgmi.h"
static const unsigned int compute_vmid_bitmap = 0xFF00;
/* Total memory size in system memory and all GPU VRAM. Used to
* estimate worst case amount of memory to reserve for page tables
*/
uint64_t amdgpu_amdkfd_total_mem_size;
int amdgpu_amdkfd_init(void)
{
struct sysinfo si;
int ret;
si_meminfo(&si);
amdgpu_amdkfd_total_mem_size = si.totalram - si.totalhigh;
amdgpu_amdkfd_total_mem_size *= si.mem_unit;
#ifdef CONFIG_HSA_AMD
ret = kgd2kfd_init();
amdgpu_amdkfd_gpuvm_init_mem_limits();
#else
ret = -ENOENT;
#endif
return ret;
}
void amdgpu_amdkfd_fini(void)
{
kgd2kfd_exit();
}
void amdgpu_amdkfd_device_probe(struct amdgpu_device *adev)
{
const struct kfd2kgd_calls *kfd2kgd;
switch (adev->asic_type) {
#ifdef CONFIG_DRM_AMDGPU_CIK
case CHIP_KAVERI:
case CHIP_HAWAII:
kfd2kgd = amdgpu_amdkfd_gfx_7_get_functions();
break;
#endif
case CHIP_CARRIZO:
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
case CHIP_POLARIS12:
case CHIP_VEGAM:
kfd2kgd = amdgpu_amdkfd_gfx_8_0_get_functions();
break;
case CHIP_VEGA10:
case CHIP_VEGA12:
case CHIP_VEGA20:
case CHIP_RAVEN:
kfd2kgd = amdgpu_amdkfd_gfx_9_0_get_functions();
break;
case CHIP_NAVI10:
kfd2kgd = amdgpu_amdkfd_gfx_10_0_get_functions();
break;
default:
dev_info(adev->dev, "kfd not supported on this ASIC\n");
return;
}
adev->kfd.dev = kgd2kfd_probe((struct kgd_dev *)adev,
adev->pdev, kfd2kgd);
if (adev->kfd.dev)
amdgpu_amdkfd_total_mem_size += adev->gmc.real_vram_size;
}
/**
* amdgpu_doorbell_get_kfd_info - Report doorbell configuration required to
* setup amdkfd
*
* @adev: amdgpu_device pointer
* @aperture_base: output returning doorbell aperture base physical address
* @aperture_size: output returning doorbell aperture size in bytes
* @start_offset: output returning # of doorbell bytes reserved for amdgpu.
*
* amdgpu and amdkfd share the doorbell aperture. amdgpu sets it up,
* takes doorbells required for its own rings and reports the setup to amdkfd.
* amdgpu reserved doorbells are at the start of the doorbell aperture.
*/
static void amdgpu_doorbell_get_kfd_info(struct amdgpu_device *adev,
phys_addr_t *aperture_base,
size_t *aperture_size,
size_t *start_offset)
{
/*
* The first num_doorbells are used by amdgpu.
* amdkfd takes whatever's left in the aperture.
*/
if (adev->doorbell.size > adev->doorbell.num_doorbells * sizeof(u32)) {
*aperture_base = adev->doorbell.base;
*aperture_size = adev->doorbell.size;
*start_offset = adev->doorbell.num_doorbells * sizeof(u32);
} else {
*aperture_base = 0;
*aperture_size = 0;
*start_offset = 0;
}
}
void amdgpu_amdkfd_device_init(struct amdgpu_device *adev)
{
int i;
int last_valid_bit;
if (adev->kfd.dev) {
struct kgd2kfd_shared_resources gpu_resources = {
.compute_vmid_bitmap = compute_vmid_bitmap,
.num_pipe_per_mec = adev->gfx.mec.num_pipe_per_mec,
.num_queue_per_pipe = adev->gfx.mec.num_queue_per_pipe,
.gpuvm_size = min(adev->vm_manager.max_pfn
<< AMDGPU_GPU_PAGE_SHIFT,
AMDGPU_GMC_HOLE_START),
.drm_render_minor = adev->ddev->render->index,
.sdma_doorbell_idx = adev->doorbell_index.sdma_engine,
};
/* this is going to have a few of the MSBs set that we need to
* clear
*/
bitmap_complement(gpu_resources.queue_bitmap,
adev->gfx.mec.queue_bitmap,
KGD_MAX_QUEUES);
/* remove the KIQ bit as well */
if (adev->gfx.kiq.ring.sched.ready)
clear_bit(amdgpu_gfx_mec_queue_to_bit(adev,
adev->gfx.kiq.ring.me - 1,
adev->gfx.kiq.ring.pipe,
adev->gfx.kiq.ring.queue),
gpu_resources.queue_bitmap);
/* According to linux/bitmap.h we shouldn't use bitmap_clear if
* nbits is not compile time constant
*/
last_valid_bit = 1 /* only first MEC can have compute queues */
* adev->gfx.mec.num_pipe_per_mec
* adev->gfx.mec.num_queue_per_pipe;
for (i = last_valid_bit; i < KGD_MAX_QUEUES; ++i)
clear_bit(i, gpu_resources.queue_bitmap);
amdgpu_doorbell_get_kfd_info(adev,
&gpu_resources.doorbell_physical_address,
&gpu_resources.doorbell_aperture_size,
&gpu_resources.doorbell_start_offset);
/* Since SOC15, BIF starts to statically use the
* lower 12 bits of doorbell addresses for routing
* based on settings in registers like
* SDMA0_DOORBELL_RANGE etc..
* In order to route a doorbell to CP engine, the lower
* 12 bits of its address has to be outside the range
* set for SDMA, VCN, and IH blocks.
*/
if (adev->asic_type >= CHIP_VEGA10) {
gpu_resources.non_cp_doorbells_start =
adev->doorbell_index.first_non_cp;
gpu_resources.non_cp_doorbells_end =
adev->doorbell_index.last_non_cp;
}
kgd2kfd_device_init(adev->kfd.dev, &gpu_resources);
}
}
void amdgpu_amdkfd_device_fini(struct amdgpu_device *adev)
{
if (adev->kfd.dev) {
kgd2kfd_device_exit(adev->kfd.dev);
adev->kfd.dev = NULL;
}
}
void amdgpu_amdkfd_interrupt(struct amdgpu_device *adev,
const void *ih_ring_entry)
{
if (adev->kfd.dev)
kgd2kfd_interrupt(adev->kfd.dev, ih_ring_entry);
}
void amdgpu_amdkfd_suspend(struct amdgpu_device *adev)
{
if (adev->kfd.dev)
kgd2kfd_suspend(adev->kfd.dev);
}
int amdgpu_amdkfd_resume(struct amdgpu_device *adev)
{
int r = 0;
if (adev->kfd.dev)
r = kgd2kfd_resume(adev->kfd.dev);
return r;
}
int amdgpu_amdkfd_pre_reset(struct amdgpu_device *adev)
{
int r = 0;
if (adev->kfd.dev)
r = kgd2kfd_pre_reset(adev->kfd.dev);
return r;
}
int amdgpu_amdkfd_post_reset(struct amdgpu_device *adev)
{
int r = 0;
if (adev->kfd.dev)
r = kgd2kfd_post_reset(adev->kfd.dev);
return r;
}
void amdgpu_amdkfd_gpu_reset(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
if (amdgpu_device_should_recover_gpu(adev))
amdgpu_device_gpu_recover(adev, NULL);
}
int amdgpu_amdkfd_alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
void **mem_obj, uint64_t *gpu_addr,
void **cpu_ptr, bool mqd_gfx9)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
struct amdgpu_bo *bo = NULL;
struct amdgpu_bo_param bp;
int r;
void *cpu_ptr_tmp = NULL;
memset(&bp, 0, sizeof(bp));
bp.size = size;
bp.byte_align = PAGE_SIZE;
bp.domain = AMDGPU_GEM_DOMAIN_GTT;
bp.flags = AMDGPU_GEM_CREATE_CPU_GTT_USWC;
bp.type = ttm_bo_type_kernel;
bp.resv = NULL;
if (mqd_gfx9)
bp.flags |= AMDGPU_GEM_CREATE_MQD_GFX9;
r = amdgpu_bo_create(adev, &bp, &bo);
if (r) {
dev_err(adev->dev,
"failed to allocate BO for amdkfd (%d)\n", r);
return r;
}
/* map the buffer */
r = amdgpu_bo_reserve(bo, true);
if (r) {
dev_err(adev->dev, "(%d) failed to reserve bo for amdkfd\n", r);
goto allocate_mem_reserve_bo_failed;
}
r = amdgpu_bo_pin(bo, AMDGPU_GEM_DOMAIN_GTT);
if (r) {
dev_err(adev->dev, "(%d) failed to pin bo for amdkfd\n", r);
goto allocate_mem_pin_bo_failed;
}
r = amdgpu_ttm_alloc_gart(&bo->tbo);
if (r) {
dev_err(adev->dev, "%p bind failed\n", bo);
goto allocate_mem_kmap_bo_failed;
}
r = amdgpu_bo_kmap(bo, &cpu_ptr_tmp);
if (r) {
dev_err(adev->dev,
"(%d) failed to map bo to kernel for amdkfd\n", r);
goto allocate_mem_kmap_bo_failed;
}
*mem_obj = bo;
*gpu_addr = amdgpu_bo_gpu_offset(bo);
*cpu_ptr = cpu_ptr_tmp;
amdgpu_bo_unreserve(bo);
return 0;
allocate_mem_kmap_bo_failed:
amdgpu_bo_unpin(bo);
allocate_mem_pin_bo_failed:
amdgpu_bo_unreserve(bo);
allocate_mem_reserve_bo_failed:
amdgpu_bo_unref(&bo);
return r;
}
void amdgpu_amdkfd_free_gtt_mem(struct kgd_dev *kgd, void *mem_obj)
{
struct amdgpu_bo *bo = (struct amdgpu_bo *) mem_obj;
amdgpu_bo_reserve(bo, true);
amdgpu_bo_kunmap(bo);
amdgpu_bo_unpin(bo);
amdgpu_bo_unreserve(bo);
amdgpu_bo_unref(&(bo));
}
int amdgpu_amdkfd_alloc_gws(struct kgd_dev *kgd, size_t size,
void **mem_obj)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
struct amdgpu_bo *bo = NULL;
struct amdgpu_bo_param bp;
int r;
memset(&bp, 0, sizeof(bp));
bp.size = size;
bp.byte_align = 1;
bp.domain = AMDGPU_GEM_DOMAIN_GWS;
bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
bp.type = ttm_bo_type_device;
bp.resv = NULL;
r = amdgpu_bo_create(adev, &bp, &bo);
if (r) {
dev_err(adev->dev,
"failed to allocate gws BO for amdkfd (%d)\n", r);
return r;
}
*mem_obj = bo;
return 0;
}
void amdgpu_amdkfd_free_gws(struct kgd_dev *kgd, void *mem_obj)
{
struct amdgpu_bo *bo = (struct amdgpu_bo *)mem_obj;
amdgpu_bo_unref(&bo);
}
uint32_t amdgpu_amdkfd_get_fw_version(struct kgd_dev *kgd,
enum kgd_engine_type type)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
switch (type) {
case KGD_ENGINE_PFP:
return adev->gfx.pfp_fw_version;
case KGD_ENGINE_ME:
return adev->gfx.me_fw_version;
case KGD_ENGINE_CE:
return adev->gfx.ce_fw_version;
case KGD_ENGINE_MEC1:
return adev->gfx.mec_fw_version;
case KGD_ENGINE_MEC2:
return adev->gfx.mec2_fw_version;
case KGD_ENGINE_RLC:
return adev->gfx.rlc_fw_version;
case KGD_ENGINE_SDMA1:
return adev->sdma.instance[0].fw_version;
case KGD_ENGINE_SDMA2:
return adev->sdma.instance[1].fw_version;
default:
return 0;
}
return 0;
}
void amdgpu_amdkfd_get_local_mem_info(struct kgd_dev *kgd,
struct kfd_local_mem_info *mem_info)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
uint64_t address_mask = adev->dev->dma_mask ? ~*adev->dev->dma_mask :
~((1ULL << 32) - 1);
resource_size_t aper_limit = adev->gmc.aper_base + adev->gmc.aper_size;
memset(mem_info, 0, sizeof(*mem_info));
if (!(adev->gmc.aper_base & address_mask || aper_limit & address_mask)) {
mem_info->local_mem_size_public = adev->gmc.visible_vram_size;
mem_info->local_mem_size_private = adev->gmc.real_vram_size -
adev->gmc.visible_vram_size;
} else {
mem_info->local_mem_size_public = 0;
mem_info->local_mem_size_private = adev->gmc.real_vram_size;
}
mem_info->vram_width = adev->gmc.vram_width;
pr_debug("Address base: %pap limit %pap public 0x%llx private 0x%llx\n",
&adev->gmc.aper_base, &aper_limit,
mem_info->local_mem_size_public,
mem_info->local_mem_size_private);
if (amdgpu_sriov_vf(adev))
mem_info->mem_clk_max = adev->clock.default_mclk / 100;
else if (adev->powerplay.pp_funcs) {
if (amdgpu_emu_mode == 1)
mem_info->mem_clk_max = 0;
else
mem_info->mem_clk_max = amdgpu_dpm_get_mclk(adev, false) / 100;
} else
mem_info->mem_clk_max = 100;
}
uint64_t amdgpu_amdkfd_get_gpu_clock_counter(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
if (adev->gfx.funcs->get_gpu_clock_counter)
return adev->gfx.funcs->get_gpu_clock_counter(adev);
return 0;
}
uint32_t amdgpu_amdkfd_get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
/* the sclk is in quantas of 10kHz */
if (amdgpu_sriov_vf(adev))
return adev->clock.default_sclk / 100;
else if (adev->powerplay.pp_funcs)
return amdgpu_dpm_get_sclk(adev, false) / 100;
else
return 100;
}
void amdgpu_amdkfd_get_cu_info(struct kgd_dev *kgd, struct kfd_cu_info *cu_info)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
struct amdgpu_cu_info acu_info = adev->gfx.cu_info;
memset(cu_info, 0, sizeof(*cu_info));
if (sizeof(cu_info->cu_bitmap) != sizeof(acu_info.bitmap))
return;
cu_info->cu_active_number = acu_info.number;
cu_info->cu_ao_mask = acu_info.ao_cu_mask;
memcpy(&cu_info->cu_bitmap[0], &acu_info.bitmap[0],
sizeof(acu_info.bitmap));
cu_info->num_shader_engines = adev->gfx.config.max_shader_engines;
cu_info->num_shader_arrays_per_engine = adev->gfx.config.max_sh_per_se;
cu_info->num_cu_per_sh = adev->gfx.config.max_cu_per_sh;
cu_info->simd_per_cu = acu_info.simd_per_cu;
cu_info->max_waves_per_simd = acu_info.max_waves_per_simd;
cu_info->wave_front_size = acu_info.wave_front_size;
cu_info->max_scratch_slots_per_cu = acu_info.max_scratch_slots_per_cu;
cu_info->lds_size = acu_info.lds_size;
}
int amdgpu_amdkfd_get_dmabuf_info(struct kgd_dev *kgd, int dma_buf_fd,
struct kgd_dev **dma_buf_kgd,
uint64_t *bo_size, void *metadata_buffer,
size_t buffer_size, uint32_t *metadata_size,
uint32_t *flags)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
struct dma_buf *dma_buf;
struct drm_gem_object *obj;
struct amdgpu_bo *bo;
uint64_t metadata_flags;
int r = -EINVAL;
dma_buf = dma_buf_get(dma_buf_fd);
if (IS_ERR(dma_buf))
return PTR_ERR(dma_buf);
if (dma_buf->ops != &amdgpu_dmabuf_ops)
/* Can't handle non-graphics buffers */
goto out_put;
obj = dma_buf->priv;
if (obj->dev->driver != adev->ddev->driver)
/* Can't handle buffers from different drivers */
goto out_put;
adev = obj->dev->dev_private;
bo = gem_to_amdgpu_bo(obj);
if (!(bo->preferred_domains & (AMDGPU_GEM_DOMAIN_VRAM |
AMDGPU_GEM_DOMAIN_GTT)))
/* Only VRAM and GTT BOs are supported */
goto out_put;
r = 0;
if (dma_buf_kgd)
*dma_buf_kgd = (struct kgd_dev *)adev;
if (bo_size)
*bo_size = amdgpu_bo_size(bo);
if (metadata_size)
*metadata_size = bo->metadata_size;
if (metadata_buffer)
r = amdgpu_bo_get_metadata(bo, metadata_buffer, buffer_size,
metadata_size, &metadata_flags);
if (flags) {
*flags = (bo->preferred_domains & AMDGPU_GEM_DOMAIN_VRAM) ?
ALLOC_MEM_FLAGS_VRAM : ALLOC_MEM_FLAGS_GTT;
if (bo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED)
*flags |= ALLOC_MEM_FLAGS_PUBLIC;
}
out_put:
dma_buf_put(dma_buf);
return r;
}
uint64_t amdgpu_amdkfd_get_vram_usage(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
return amdgpu_vram_mgr_usage(&adev->mman.bdev.man[TTM_PL_VRAM]);
}
uint64_t amdgpu_amdkfd_get_hive_id(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
return adev->gmc.xgmi.hive_id;
}
uint8_t amdgpu_amdkfd_get_xgmi_hops_count(struct kgd_dev *dst, struct kgd_dev *src)
{
struct amdgpu_device *peer_adev = (struct amdgpu_device *)src;
struct amdgpu_device *adev = (struct amdgpu_device *)dst;
int ret = amdgpu_xgmi_get_hops_count(adev, peer_adev);
if (ret < 0) {
DRM_ERROR("amdgpu: failed to get xgmi hops count between node %d and %d. ret = %d\n",
adev->gmc.xgmi.physical_node_id,
peer_adev->gmc.xgmi.physical_node_id, ret);
ret = 0;
}
return (uint8_t)ret;
}
uint64_t amdgpu_amdkfd_get_mmio_remap_phys_addr(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
return adev->rmmio_remap.bus_addr;
}
uint32_t amdgpu_amdkfd_get_num_gws(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
return adev->gds.gws_size;
}
int amdgpu_amdkfd_submit_ib(struct kgd_dev *kgd, enum kgd_engine_type engine,
uint32_t vmid, uint64_t gpu_addr,
uint32_t *ib_cmd, uint32_t ib_len)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
struct amdgpu_job *job;
struct amdgpu_ib *ib;
struct amdgpu_ring *ring;
struct dma_fence *f = NULL;
int ret;
switch (engine) {
case KGD_ENGINE_MEC1:
ring = &adev->gfx.compute_ring[0];
break;
case KGD_ENGINE_SDMA1:
ring = &adev->sdma.instance[0].ring;
break;
case KGD_ENGINE_SDMA2:
ring = &adev->sdma.instance[1].ring;
break;
default:
pr_err("Invalid engine in IB submission: %d\n", engine);
ret = -EINVAL;
goto err;
}
ret = amdgpu_job_alloc(adev, 1, &job, NULL);
if (ret)
goto err;
ib = &job->ibs[0];
memset(ib, 0, sizeof(struct amdgpu_ib));
ib->gpu_addr = gpu_addr;
ib->ptr = ib_cmd;
ib->length_dw = ib_len;
/* This works for NO_HWS. TODO: need to handle without knowing VMID */
job->vmid = vmid;
ret = amdgpu_ib_schedule(ring, 1, ib, job, &f);
if (ret) {
DRM_ERROR("amdgpu: failed to schedule IB.\n");
goto err_ib_sched;
}
ret = dma_fence_wait(f, false);
err_ib_sched:
dma_fence_put(f);
amdgpu_job_free(job);
err:
return ret;
}
void amdgpu_amdkfd_set_compute_idle(struct kgd_dev *kgd, bool idle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
if (adev->powerplay.pp_funcs &&
adev->powerplay.pp_funcs->switch_power_profile)
amdgpu_dpm_switch_power_profile(adev,
PP_SMC_POWER_PROFILE_COMPUTE,
!idle);
}
bool amdgpu_amdkfd_is_kfd_vmid(struct amdgpu_device *adev, u32 vmid)
{
if (adev->kfd.dev) {
if ((1 << vmid) & compute_vmid_bitmap)
return true;
}
return false;
}
#ifndef CONFIG_HSA_AMD
bool amdkfd_fence_check_mm(struct dma_fence *f, struct mm_struct *mm)
{
return false;
}
void amdgpu_amdkfd_unreserve_memory_limit(struct amdgpu_bo *bo)
{
}
void amdgpu_amdkfd_gpuvm_destroy_cb(struct amdgpu_device *adev,
struct amdgpu_vm *vm)
{
}
struct amdgpu_amdkfd_fence *to_amdgpu_amdkfd_fence(struct dma_fence *f)
{
return NULL;
}
int amdgpu_amdkfd_evict_userptr(struct kgd_mem *mem, struct mm_struct *mm)
{
return 0;
}
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
{
return NULL;
}
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
{
return NULL;
}
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_9_0_get_functions(void)
{
return NULL;
}
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_10_0_get_functions(void)
{
return NULL;
}
struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev,
const struct kfd2kgd_calls *f2g)
{
return NULL;
}
bool kgd2kfd_device_init(struct kfd_dev *kfd,
const struct kgd2kfd_shared_resources *gpu_resources)
{
return false;
}
void kgd2kfd_device_exit(struct kfd_dev *kfd)
{
}
void kgd2kfd_exit(void)
{
}
void kgd2kfd_suspend(struct kfd_dev *kfd)
{
}
int kgd2kfd_resume(struct kfd_dev *kfd)
{
return 0;
}
int kgd2kfd_pre_reset(struct kfd_dev *kfd)
{
return 0;
}
int kgd2kfd_post_reset(struct kfd_dev *kfd)
{
return 0;
}
void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
{
}
void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
{
}
#endif