mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 11:40:13 +07:00
663b55b9b3
None of these files are actually using any __init type directives and hence don't need to include <linux/init.h>. Most are just a left over from __devinit and __cpuinit removal, or simply due to code getting copied from one driver to the next. [ hpa: undid incorrect removal from arch/x86/kernel/head_32.S ] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Link: http://lkml.kernel.org/r/1389054026-12947-1-git-send-email-paul.gortmaker@windriver.com Signed-off-by: H. Peter Anvin <hpa@zytor.com>
590 lines
16 KiB
C
590 lines
16 KiB
C
/* Support for MMIO probes.
|
|
* Benfit many code from kprobes
|
|
* (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
|
|
* 2007 Alexander Eichner
|
|
* 2008 Pekka Paalanen <pq@iki.fi>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/list.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/kdebug.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/io.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <linux/errno.h>
|
|
#include <asm/debugreg.h>
|
|
#include <linux/mmiotrace.h>
|
|
|
|
#define KMMIO_PAGE_HASH_BITS 4
|
|
#define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
|
|
|
|
struct kmmio_fault_page {
|
|
struct list_head list;
|
|
struct kmmio_fault_page *release_next;
|
|
unsigned long page; /* location of the fault page */
|
|
pteval_t old_presence; /* page presence prior to arming */
|
|
bool armed;
|
|
|
|
/*
|
|
* Number of times this page has been registered as a part
|
|
* of a probe. If zero, page is disarmed and this may be freed.
|
|
* Used only by writers (RCU) and post_kmmio_handler().
|
|
* Protected by kmmio_lock, when linked into kmmio_page_table.
|
|
*/
|
|
int count;
|
|
|
|
bool scheduled_for_release;
|
|
};
|
|
|
|
struct kmmio_delayed_release {
|
|
struct rcu_head rcu;
|
|
struct kmmio_fault_page *release_list;
|
|
};
|
|
|
|
struct kmmio_context {
|
|
struct kmmio_fault_page *fpage;
|
|
struct kmmio_probe *probe;
|
|
unsigned long saved_flags;
|
|
unsigned long addr;
|
|
int active;
|
|
};
|
|
|
|
static DEFINE_SPINLOCK(kmmio_lock);
|
|
|
|
/* Protected by kmmio_lock */
|
|
unsigned int kmmio_count;
|
|
|
|
/* Read-protected by RCU, write-protected by kmmio_lock. */
|
|
static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
|
|
static LIST_HEAD(kmmio_probes);
|
|
|
|
static struct list_head *kmmio_page_list(unsigned long page)
|
|
{
|
|
return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
|
|
}
|
|
|
|
/* Accessed per-cpu */
|
|
static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
|
|
|
|
/*
|
|
* this is basically a dynamic stabbing problem:
|
|
* Could use the existing prio tree code or
|
|
* Possible better implementations:
|
|
* The Interval Skip List: A Data Structure for Finding All Intervals That
|
|
* Overlap a Point (might be simple)
|
|
* Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
|
|
*/
|
|
/* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
|
|
static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
|
|
{
|
|
struct kmmio_probe *p;
|
|
list_for_each_entry_rcu(p, &kmmio_probes, list) {
|
|
if (addr >= p->addr && addr < (p->addr + p->len))
|
|
return p;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* You must be holding RCU read lock. */
|
|
static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
|
|
{
|
|
struct list_head *head;
|
|
struct kmmio_fault_page *f;
|
|
|
|
page &= PAGE_MASK;
|
|
head = kmmio_page_list(page);
|
|
list_for_each_entry_rcu(f, head, list) {
|
|
if (f->page == page)
|
|
return f;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
|
|
{
|
|
pmdval_t v = pmd_val(*pmd);
|
|
if (clear) {
|
|
*old = v & _PAGE_PRESENT;
|
|
v &= ~_PAGE_PRESENT;
|
|
} else /* presume this has been called with clear==true previously */
|
|
v |= *old;
|
|
set_pmd(pmd, __pmd(v));
|
|
}
|
|
|
|
static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
|
|
{
|
|
pteval_t v = pte_val(*pte);
|
|
if (clear) {
|
|
*old = v & _PAGE_PRESENT;
|
|
v &= ~_PAGE_PRESENT;
|
|
} else /* presume this has been called with clear==true previously */
|
|
v |= *old;
|
|
set_pte_atomic(pte, __pte(v));
|
|
}
|
|
|
|
static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
|
|
{
|
|
unsigned int level;
|
|
pte_t *pte = lookup_address(f->page, &level);
|
|
|
|
if (!pte) {
|
|
pr_err("no pte for page 0x%08lx\n", f->page);
|
|
return -1;
|
|
}
|
|
|
|
switch (level) {
|
|
case PG_LEVEL_2M:
|
|
clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
|
|
break;
|
|
case PG_LEVEL_4K:
|
|
clear_pte_presence(pte, clear, &f->old_presence);
|
|
break;
|
|
default:
|
|
pr_err("unexpected page level 0x%x.\n", level);
|
|
return -1;
|
|
}
|
|
|
|
__flush_tlb_one(f->page);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Mark the given page as not present. Access to it will trigger a fault.
|
|
*
|
|
* Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
|
|
* protection is ignored here. RCU read lock is assumed held, so the struct
|
|
* will not disappear unexpectedly. Furthermore, the caller must guarantee,
|
|
* that double arming the same virtual address (page) cannot occur.
|
|
*
|
|
* Double disarming on the other hand is allowed, and may occur when a fault
|
|
* and mmiotrace shutdown happen simultaneously.
|
|
*/
|
|
static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
|
|
{
|
|
int ret;
|
|
WARN_ONCE(f->armed, KERN_ERR pr_fmt("kmmio page already armed.\n"));
|
|
if (f->armed) {
|
|
pr_warning("double-arm: page 0x%08lx, ref %d, old %d\n",
|
|
f->page, f->count, !!f->old_presence);
|
|
}
|
|
ret = clear_page_presence(f, true);
|
|
WARN_ONCE(ret < 0, KERN_ERR pr_fmt("arming 0x%08lx failed.\n"),
|
|
f->page);
|
|
f->armed = true;
|
|
return ret;
|
|
}
|
|
|
|
/** Restore the given page to saved presence state. */
|
|
static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
|
|
{
|
|
int ret = clear_page_presence(f, false);
|
|
WARN_ONCE(ret < 0,
|
|
KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
|
|
f->armed = false;
|
|
}
|
|
|
|
/*
|
|
* This is being called from do_page_fault().
|
|
*
|
|
* We may be in an interrupt or a critical section. Also prefecthing may
|
|
* trigger a page fault. We may be in the middle of process switch.
|
|
* We cannot take any locks, because we could be executing especially
|
|
* within a kmmio critical section.
|
|
*
|
|
* Local interrupts are disabled, so preemption cannot happen.
|
|
* Do not enable interrupts, do not sleep, and watch out for other CPUs.
|
|
*/
|
|
/*
|
|
* Interrupts are disabled on entry as trap3 is an interrupt gate
|
|
* and they remain disabled throughout this function.
|
|
*/
|
|
int kmmio_handler(struct pt_regs *regs, unsigned long addr)
|
|
{
|
|
struct kmmio_context *ctx;
|
|
struct kmmio_fault_page *faultpage;
|
|
int ret = 0; /* default to fault not handled */
|
|
|
|
/*
|
|
* Preemption is now disabled to prevent process switch during
|
|
* single stepping. We can only handle one active kmmio trace
|
|
* per cpu, so ensure that we finish it before something else
|
|
* gets to run. We also hold the RCU read lock over single
|
|
* stepping to avoid looking up the probe and kmmio_fault_page
|
|
* again.
|
|
*/
|
|
preempt_disable();
|
|
rcu_read_lock();
|
|
|
|
faultpage = get_kmmio_fault_page(addr);
|
|
if (!faultpage) {
|
|
/*
|
|
* Either this page fault is not caused by kmmio, or
|
|
* another CPU just pulled the kmmio probe from under
|
|
* our feet. The latter case should not be possible.
|
|
*/
|
|
goto no_kmmio;
|
|
}
|
|
|
|
ctx = &get_cpu_var(kmmio_ctx);
|
|
if (ctx->active) {
|
|
if (addr == ctx->addr) {
|
|
/*
|
|
* A second fault on the same page means some other
|
|
* condition needs handling by do_page_fault(), the
|
|
* page really not being present is the most common.
|
|
*/
|
|
pr_debug("secondary hit for 0x%08lx CPU %d.\n",
|
|
addr, smp_processor_id());
|
|
|
|
if (!faultpage->old_presence)
|
|
pr_info("unexpected secondary hit for address 0x%08lx on CPU %d.\n",
|
|
addr, smp_processor_id());
|
|
} else {
|
|
/*
|
|
* Prevent overwriting already in-flight context.
|
|
* This should not happen, let's hope disarming at
|
|
* least prevents a panic.
|
|
*/
|
|
pr_emerg("recursive probe hit on CPU %d, for address 0x%08lx. Ignoring.\n",
|
|
smp_processor_id(), addr);
|
|
pr_emerg("previous hit was at 0x%08lx.\n", ctx->addr);
|
|
disarm_kmmio_fault_page(faultpage);
|
|
}
|
|
goto no_kmmio_ctx;
|
|
}
|
|
ctx->active++;
|
|
|
|
ctx->fpage = faultpage;
|
|
ctx->probe = get_kmmio_probe(addr);
|
|
ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
|
|
ctx->addr = addr;
|
|
|
|
if (ctx->probe && ctx->probe->pre_handler)
|
|
ctx->probe->pre_handler(ctx->probe, regs, addr);
|
|
|
|
/*
|
|
* Enable single-stepping and disable interrupts for the faulting
|
|
* context. Local interrupts must not get enabled during stepping.
|
|
*/
|
|
regs->flags |= X86_EFLAGS_TF;
|
|
regs->flags &= ~X86_EFLAGS_IF;
|
|
|
|
/* Now we set present bit in PTE and single step. */
|
|
disarm_kmmio_fault_page(ctx->fpage);
|
|
|
|
/*
|
|
* If another cpu accesses the same page while we are stepping,
|
|
* the access will not be caught. It will simply succeed and the
|
|
* only downside is we lose the event. If this becomes a problem,
|
|
* the user should drop to single cpu before tracing.
|
|
*/
|
|
|
|
put_cpu_var(kmmio_ctx);
|
|
return 1; /* fault handled */
|
|
|
|
no_kmmio_ctx:
|
|
put_cpu_var(kmmio_ctx);
|
|
no_kmmio:
|
|
rcu_read_unlock();
|
|
preempt_enable_no_resched();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Interrupts are disabled on entry as trap1 is an interrupt gate
|
|
* and they remain disabled throughout this function.
|
|
* This must always get called as the pair to kmmio_handler().
|
|
*/
|
|
static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
|
|
{
|
|
int ret = 0;
|
|
struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
|
|
|
|
if (!ctx->active) {
|
|
/*
|
|
* debug traps without an active context are due to either
|
|
* something external causing them (f.e. using a debugger while
|
|
* mmio tracing enabled), or erroneous behaviour
|
|
*/
|
|
pr_warning("unexpected debug trap on CPU %d.\n",
|
|
smp_processor_id());
|
|
goto out;
|
|
}
|
|
|
|
if (ctx->probe && ctx->probe->post_handler)
|
|
ctx->probe->post_handler(ctx->probe, condition, regs);
|
|
|
|
/* Prevent racing against release_kmmio_fault_page(). */
|
|
spin_lock(&kmmio_lock);
|
|
if (ctx->fpage->count)
|
|
arm_kmmio_fault_page(ctx->fpage);
|
|
spin_unlock(&kmmio_lock);
|
|
|
|
regs->flags &= ~X86_EFLAGS_TF;
|
|
regs->flags |= ctx->saved_flags;
|
|
|
|
/* These were acquired in kmmio_handler(). */
|
|
ctx->active--;
|
|
BUG_ON(ctx->active);
|
|
rcu_read_unlock();
|
|
preempt_enable_no_resched();
|
|
|
|
/*
|
|
* if somebody else is singlestepping across a probe point, flags
|
|
* will have TF set, in which case, continue the remaining processing
|
|
* of do_debug, as if this is not a probe hit.
|
|
*/
|
|
if (!(regs->flags & X86_EFLAGS_TF))
|
|
ret = 1;
|
|
out:
|
|
put_cpu_var(kmmio_ctx);
|
|
return ret;
|
|
}
|
|
|
|
/* You must be holding kmmio_lock. */
|
|
static int add_kmmio_fault_page(unsigned long page)
|
|
{
|
|
struct kmmio_fault_page *f;
|
|
|
|
page &= PAGE_MASK;
|
|
f = get_kmmio_fault_page(page);
|
|
if (f) {
|
|
if (!f->count)
|
|
arm_kmmio_fault_page(f);
|
|
f->count++;
|
|
return 0;
|
|
}
|
|
|
|
f = kzalloc(sizeof(*f), GFP_ATOMIC);
|
|
if (!f)
|
|
return -1;
|
|
|
|
f->count = 1;
|
|
f->page = page;
|
|
|
|
if (arm_kmmio_fault_page(f)) {
|
|
kfree(f);
|
|
return -1;
|
|
}
|
|
|
|
list_add_rcu(&f->list, kmmio_page_list(f->page));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* You must be holding kmmio_lock. */
|
|
static void release_kmmio_fault_page(unsigned long page,
|
|
struct kmmio_fault_page **release_list)
|
|
{
|
|
struct kmmio_fault_page *f;
|
|
|
|
page &= PAGE_MASK;
|
|
f = get_kmmio_fault_page(page);
|
|
if (!f)
|
|
return;
|
|
|
|
f->count--;
|
|
BUG_ON(f->count < 0);
|
|
if (!f->count) {
|
|
disarm_kmmio_fault_page(f);
|
|
if (!f->scheduled_for_release) {
|
|
f->release_next = *release_list;
|
|
*release_list = f;
|
|
f->scheduled_for_release = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* With page-unaligned ioremaps, one or two armed pages may contain
|
|
* addresses from outside the intended mapping. Events for these addresses
|
|
* are currently silently dropped. The events may result only from programming
|
|
* mistakes by accessing addresses before the beginning or past the end of a
|
|
* mapping.
|
|
*/
|
|
int register_kmmio_probe(struct kmmio_probe *p)
|
|
{
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
unsigned long size = 0;
|
|
const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
|
|
|
|
spin_lock_irqsave(&kmmio_lock, flags);
|
|
if (get_kmmio_probe(p->addr)) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
kmmio_count++;
|
|
list_add_rcu(&p->list, &kmmio_probes);
|
|
while (size < size_lim) {
|
|
if (add_kmmio_fault_page(p->addr + size))
|
|
pr_err("Unable to set page fault.\n");
|
|
size += PAGE_SIZE;
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&kmmio_lock, flags);
|
|
/*
|
|
* XXX: What should I do here?
|
|
* Here was a call to global_flush_tlb(), but it does not exist
|
|
* anymore. It seems it's not needed after all.
|
|
*/
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(register_kmmio_probe);
|
|
|
|
static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
|
|
{
|
|
struct kmmio_delayed_release *dr = container_of(
|
|
head,
|
|
struct kmmio_delayed_release,
|
|
rcu);
|
|
struct kmmio_fault_page *f = dr->release_list;
|
|
while (f) {
|
|
struct kmmio_fault_page *next = f->release_next;
|
|
BUG_ON(f->count);
|
|
kfree(f);
|
|
f = next;
|
|
}
|
|
kfree(dr);
|
|
}
|
|
|
|
static void remove_kmmio_fault_pages(struct rcu_head *head)
|
|
{
|
|
struct kmmio_delayed_release *dr =
|
|
container_of(head, struct kmmio_delayed_release, rcu);
|
|
struct kmmio_fault_page *f = dr->release_list;
|
|
struct kmmio_fault_page **prevp = &dr->release_list;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&kmmio_lock, flags);
|
|
while (f) {
|
|
if (!f->count) {
|
|
list_del_rcu(&f->list);
|
|
prevp = &f->release_next;
|
|
} else {
|
|
*prevp = f->release_next;
|
|
f->release_next = NULL;
|
|
f->scheduled_for_release = false;
|
|
}
|
|
f = *prevp;
|
|
}
|
|
spin_unlock_irqrestore(&kmmio_lock, flags);
|
|
|
|
/* This is the real RCU destroy call. */
|
|
call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
|
|
}
|
|
|
|
/*
|
|
* Remove a kmmio probe. You have to synchronize_rcu() before you can be
|
|
* sure that the callbacks will not be called anymore. Only after that
|
|
* you may actually release your struct kmmio_probe.
|
|
*
|
|
* Unregistering a kmmio fault page has three steps:
|
|
* 1. release_kmmio_fault_page()
|
|
* Disarm the page, wait a grace period to let all faults finish.
|
|
* 2. remove_kmmio_fault_pages()
|
|
* Remove the pages from kmmio_page_table.
|
|
* 3. rcu_free_kmmio_fault_pages()
|
|
* Actually free the kmmio_fault_page structs as with RCU.
|
|
*/
|
|
void unregister_kmmio_probe(struct kmmio_probe *p)
|
|
{
|
|
unsigned long flags;
|
|
unsigned long size = 0;
|
|
const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
|
|
struct kmmio_fault_page *release_list = NULL;
|
|
struct kmmio_delayed_release *drelease;
|
|
|
|
spin_lock_irqsave(&kmmio_lock, flags);
|
|
while (size < size_lim) {
|
|
release_kmmio_fault_page(p->addr + size, &release_list);
|
|
size += PAGE_SIZE;
|
|
}
|
|
list_del_rcu(&p->list);
|
|
kmmio_count--;
|
|
spin_unlock_irqrestore(&kmmio_lock, flags);
|
|
|
|
if (!release_list)
|
|
return;
|
|
|
|
drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
|
|
if (!drelease) {
|
|
pr_crit("leaking kmmio_fault_page objects.\n");
|
|
return;
|
|
}
|
|
drelease->release_list = release_list;
|
|
|
|
/*
|
|
* This is not really RCU here. We have just disarmed a set of
|
|
* pages so that they cannot trigger page faults anymore. However,
|
|
* we cannot remove the pages from kmmio_page_table,
|
|
* because a probe hit might be in flight on another CPU. The
|
|
* pages are collected into a list, and they will be removed from
|
|
* kmmio_page_table when it is certain that no probe hit related to
|
|
* these pages can be in flight. RCU grace period sounds like a
|
|
* good choice.
|
|
*
|
|
* If we removed the pages too early, kmmio page fault handler might
|
|
* not find the respective kmmio_fault_page and determine it's not
|
|
* a kmmio fault, when it actually is. This would lead to madness.
|
|
*/
|
|
call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
|
|
}
|
|
EXPORT_SYMBOL(unregister_kmmio_probe);
|
|
|
|
static int
|
|
kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
|
|
{
|
|
struct die_args *arg = args;
|
|
unsigned long* dr6_p = (unsigned long *)ERR_PTR(arg->err);
|
|
|
|
if (val == DIE_DEBUG && (*dr6_p & DR_STEP))
|
|
if (post_kmmio_handler(*dr6_p, arg->regs) == 1) {
|
|
/*
|
|
* Reset the BS bit in dr6 (pointed by args->err) to
|
|
* denote completion of processing
|
|
*/
|
|
*dr6_p &= ~DR_STEP;
|
|
return NOTIFY_STOP;
|
|
}
|
|
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block nb_die = {
|
|
.notifier_call = kmmio_die_notifier
|
|
};
|
|
|
|
int kmmio_init(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
|
|
INIT_LIST_HEAD(&kmmio_page_table[i]);
|
|
|
|
return register_die_notifier(&nb_die);
|
|
}
|
|
|
|
void kmmio_cleanup(void)
|
|
{
|
|
int i;
|
|
|
|
unregister_die_notifier(&nb_die);
|
|
for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
|
|
WARN_ONCE(!list_empty(&kmmio_page_table[i]),
|
|
KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
|
|
}
|
|
}
|