linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_guc.c
Michal Wajdeczko 13295bd887 drm/i915/guc: Don't read SOFT_SCRATCH(15) on MMIO error
SOFT_SCRATCH(15) is used by GuC for sending MMIO GuC events to host and
those events are now handled by intel_guc_to_host_event_handler_mmio().

We should not try to read it on MMIO action error as 1) we may be using
different set of registers for GuC MMIO communication, and 2) GuC may
use CTB mechanism for sending events to host.

While here, upgrade error message to DRM_ERROR.

Signed-off-by: Michal Wajdeczko <michal.wajdeczko@intel.com>
Cc: Michel Thierry <michel.thierry@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20180528171618.10436-1-michal.wajdeczko@intel.com
2018-05-31 19:22:49 +01:00

590 lines
17 KiB
C

/*
* Copyright © 2014-2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include "intel_guc.h"
#include "intel_guc_ads.h"
#include "intel_guc_submission.h"
#include "i915_drv.h"
static void gen8_guc_raise_irq(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
I915_WRITE(GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
}
static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
{
GEM_BUG_ON(!guc->send_regs.base);
GEM_BUG_ON(!guc->send_regs.count);
GEM_BUG_ON(i >= guc->send_regs.count);
return _MMIO(guc->send_regs.base + 4 * i);
}
void intel_guc_init_send_regs(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
enum forcewake_domains fw_domains = 0;
unsigned int i;
guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
guc->send_regs.count = SOFT_SCRATCH_COUNT - 1;
for (i = 0; i < guc->send_regs.count; i++) {
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
guc_send_reg(guc, i),
FW_REG_READ | FW_REG_WRITE);
}
guc->send_regs.fw_domains = fw_domains;
}
void intel_guc_init_early(struct intel_guc *guc)
{
intel_guc_fw_init_early(guc);
intel_guc_ct_init_early(&guc->ct);
intel_guc_log_init_early(&guc->log);
mutex_init(&guc->send_mutex);
spin_lock_init(&guc->irq_lock);
guc->send = intel_guc_send_nop;
guc->handler = intel_guc_to_host_event_handler_nop;
guc->notify = gen8_guc_raise_irq;
}
int intel_guc_init_wq(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
/*
* GuC log buffer flush work item has to do register access to
* send the ack to GuC and this work item, if not synced before
* suspend, can potentially get executed after the GFX device is
* suspended.
* By marking the WQ as freezable, we don't have to bother about
* flushing of this work item from the suspend hooks, the pending
* work item if any will be either executed before the suspend
* or scheduled later on resume. This way the handling of work
* item can be kept same between system suspend & rpm suspend.
*/
guc->log.relay.flush_wq =
alloc_ordered_workqueue("i915-guc_log",
WQ_HIGHPRI | WQ_FREEZABLE);
if (!guc->log.relay.flush_wq) {
DRM_ERROR("Couldn't allocate workqueue for GuC log\n");
return -ENOMEM;
}
/*
* Even though both sending GuC action, and adding a new workitem to
* GuC workqueue are serialized (each with its own locking), since
* we're using mutliple engines, it's possible that we're going to
* issue a preempt request with two (or more - each for different
* engine) workitems in GuC queue. In this situation, GuC may submit
* all of them, which will make us very confused.
* Our preemption contexts may even already be complete - before we
* even had the chance to sent the preempt action to GuC!. Rather
* than introducing yet another lock, we can just use ordered workqueue
* to make sure we're always sending a single preemption request with a
* single workitem.
*/
if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
USES_GUC_SUBMISSION(dev_priv)) {
guc->preempt_wq = alloc_ordered_workqueue("i915-guc_preempt",
WQ_HIGHPRI);
if (!guc->preempt_wq) {
destroy_workqueue(guc->log.relay.flush_wq);
DRM_ERROR("Couldn't allocate workqueue for GuC "
"preemption\n");
return -ENOMEM;
}
}
return 0;
}
void intel_guc_fini_wq(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
if (HAS_LOGICAL_RING_PREEMPTION(dev_priv) &&
USES_GUC_SUBMISSION(dev_priv))
destroy_workqueue(guc->preempt_wq);
destroy_workqueue(guc->log.relay.flush_wq);
}
static int guc_shared_data_create(struct intel_guc *guc)
{
struct i915_vma *vma;
void *vaddr;
vma = intel_guc_allocate_vma(guc, PAGE_SIZE);
if (IS_ERR(vma))
return PTR_ERR(vma);
vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
i915_vma_unpin_and_release(&vma);
return PTR_ERR(vaddr);
}
guc->shared_data = vma;
guc->shared_data_vaddr = vaddr;
return 0;
}
static void guc_shared_data_destroy(struct intel_guc *guc)
{
i915_gem_object_unpin_map(guc->shared_data->obj);
i915_vma_unpin_and_release(&guc->shared_data);
}
int intel_guc_init(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
int ret;
ret = guc_shared_data_create(guc);
if (ret)
return ret;
GEM_BUG_ON(!guc->shared_data);
ret = intel_guc_log_create(&guc->log);
if (ret)
goto err_shared;
ret = intel_guc_ads_create(guc);
if (ret)
goto err_log;
GEM_BUG_ON(!guc->ads_vma);
/* We need to notify the guc whenever we change the GGTT */
i915_ggtt_enable_guc(dev_priv);
return 0;
err_log:
intel_guc_log_destroy(&guc->log);
err_shared:
guc_shared_data_destroy(guc);
return ret;
}
void intel_guc_fini(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
i915_ggtt_disable_guc(dev_priv);
intel_guc_ads_destroy(guc);
intel_guc_log_destroy(&guc->log);
guc_shared_data_destroy(guc);
}
static u32 get_log_control_flags(void)
{
u32 level = i915_modparams.guc_log_level;
u32 flags = 0;
GEM_BUG_ON(level < 0);
if (!GUC_LOG_LEVEL_IS_ENABLED(level))
flags |= GUC_LOG_DEFAULT_DISABLED;
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
flags |= GUC_LOG_DISABLED;
else
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
GUC_LOG_VERBOSITY_SHIFT;
return flags;
}
/*
* Initialise the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
void intel_guc_init_params(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 params[GUC_CTL_MAX_DWORDS];
int i;
memset(params, 0, sizeof(params));
/*
* GuC ARAT increment is 10 ns. GuC default scheduler quantum is one
* second. This ARAR is calculated by:
* Scheduler-Quantum-in-ns / ARAT-increment-in-ns = 1000000000 / 10
*/
params[GUC_CTL_ARAT_HIGH] = 0;
params[GUC_CTL_ARAT_LOW] = 100000000;
params[GUC_CTL_WA] |= GUC_CTL_WA_UK_BY_DRIVER;
params[GUC_CTL_FEATURE] |= GUC_CTL_DISABLE_SCHEDULER |
GUC_CTL_VCS2_ENABLED;
params[GUC_CTL_LOG_PARAMS] = guc->log.flags;
params[GUC_CTL_DEBUG] = get_log_control_flags();
/* If GuC submission is enabled, set up additional parameters here */
if (USES_GUC_SUBMISSION(dev_priv)) {
u32 ads = intel_guc_ggtt_offset(guc,
guc->ads_vma) >> PAGE_SHIFT;
u32 pgs = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
u32 ctx_in_16 = GUC_MAX_STAGE_DESCRIPTORS / 16;
params[GUC_CTL_DEBUG] |= ads << GUC_ADS_ADDR_SHIFT;
params[GUC_CTL_DEBUG] |= GUC_ADS_ENABLED;
pgs >>= PAGE_SHIFT;
params[GUC_CTL_CTXINFO] = (pgs << GUC_CTL_BASE_ADDR_SHIFT) |
(ctx_in_16 << GUC_CTL_CTXNUM_IN16_SHIFT);
params[GUC_CTL_FEATURE] |= GUC_CTL_KERNEL_SUBMISSIONS;
/* Unmask this bit to enable the GuC's internal scheduler */
params[GUC_CTL_FEATURE] &= ~GUC_CTL_DISABLE_SCHEDULER;
}
/*
* All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
* they are power context saved so it's ok to release forcewake
* when we are done here and take it again at xfer time.
*/
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_BLITTER);
I915_WRITE(SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
I915_WRITE(SOFT_SCRATCH(1 + i), params[i]);
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_BLITTER);
}
int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
u32 *response_buf, u32 response_buf_size)
{
WARN(1, "Unexpected send: action=%#x\n", *action);
return -ENODEV;
}
void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
{
WARN(1, "Unexpected event: no suitable handler\n");
}
/*
* This function implements the MMIO based host to GuC interface.
*/
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
u32 *response_buf, u32 response_buf_size)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 status;
int i;
int ret;
GEM_BUG_ON(!len);
GEM_BUG_ON(len > guc->send_regs.count);
/* We expect only action code */
GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
/* If CT is available, we expect to use MMIO only during init/fini */
GEM_BUG_ON(HAS_GUC_CT(dev_priv) &&
*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
*action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
mutex_lock(&guc->send_mutex);
intel_uncore_forcewake_get(dev_priv, guc->send_regs.fw_domains);
for (i = 0; i < len; i++)
I915_WRITE(guc_send_reg(guc, i), action[i]);
POSTING_READ(guc_send_reg(guc, i - 1));
intel_guc_notify(guc);
/*
* No GuC command should ever take longer than 10ms.
* Fast commands should still complete in 10us.
*/
ret = __intel_wait_for_register_fw(dev_priv,
guc_send_reg(guc, 0),
INTEL_GUC_MSG_TYPE_MASK,
INTEL_GUC_MSG_TYPE_RESPONSE <<
INTEL_GUC_MSG_TYPE_SHIFT,
10, 10, &status);
/* If GuC explicitly returned an error, convert it to -EIO */
if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
ret = -EIO;
if (ret) {
DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
action[0], ret, status);
goto out;
}
if (response_buf) {
int count = min(response_buf_size, guc->send_regs.count - 1);
for (i = 0; i < count; i++)
response_buf[i] = I915_READ(guc_send_reg(guc, i + 1));
}
/* Use data from the GuC response as our return value */
ret = INTEL_GUC_MSG_TO_DATA(status);
out:
intel_uncore_forcewake_put(dev_priv, guc->send_regs.fw_domains);
mutex_unlock(&guc->send_mutex);
return ret;
}
void intel_guc_to_host_event_handler_mmio(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 msg, val;
/*
* Sample the log buffer flush related bits & clear them out now
* itself from the message identity register to minimize the
* probability of losing a flush interrupt, when there are back
* to back flush interrupts.
* There can be a new flush interrupt, for different log buffer
* type (like for ISR), whilst Host is handling one (for DPC).
* Since same bit is used in message register for ISR & DPC, it
* could happen that GuC sets the bit for 2nd interrupt but Host
* clears out the bit on handling the 1st interrupt.
*/
spin_lock(&guc->irq_lock);
val = I915_READ(SOFT_SCRATCH(15));
msg = val & guc->msg_enabled_mask;
I915_WRITE(SOFT_SCRATCH(15), val & ~msg);
spin_unlock(&guc->irq_lock);
intel_guc_to_host_process_recv_msg(guc, msg);
}
void intel_guc_to_host_process_recv_msg(struct intel_guc *guc, u32 msg)
{
/* Make sure to handle only enabled messages */
msg &= guc->msg_enabled_mask;
if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
intel_guc_log_handle_flush_event(&guc->log);
}
int intel_guc_sample_forcewake(struct intel_guc *guc)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
u32 action[2];
action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
/* WaRsDisableCoarsePowerGating:skl,cnl */
if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
action[1] = 0;
else
/* bit 0 and 1 are for Render and Media domain separately */
action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
* @guc: intel_guc structure
* @rsa_offset: rsa offset w.r.t ggtt base of huc vma
*
* Triggers a HuC firmware authentication request to the GuC via intel_guc_send
* INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
* intel_huc_auth().
*
* Return: non-zero code on error
*/
int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
{
u32 action[] = {
INTEL_GUC_ACTION_AUTHENTICATE_HUC,
rsa_offset
};
return intel_guc_send(guc, action, ARRAY_SIZE(action));
}
/**
* intel_guc_suspend() - notify GuC entering suspend state
* @guc: the guc
*/
int intel_guc_suspend(struct intel_guc *guc)
{
u32 data[] = {
INTEL_GUC_ACTION_ENTER_S_STATE,
GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
intel_guc_ggtt_offset(guc, guc->shared_data)
};
return intel_guc_send(guc, data, ARRAY_SIZE(data));
}
/**
* intel_guc_reset_engine() - ask GuC to reset an engine
* @guc: intel_guc structure
* @engine: engine to be reset
*/
int intel_guc_reset_engine(struct intel_guc *guc,
struct intel_engine_cs *engine)
{
u32 data[7];
GEM_BUG_ON(!guc->execbuf_client);
data[0] = INTEL_GUC_ACTION_REQUEST_ENGINE_RESET;
data[1] = engine->guc_id;
data[2] = 0;
data[3] = 0;
data[4] = 0;
data[5] = guc->execbuf_client->stage_id;
data[6] = intel_guc_ggtt_offset(guc, guc->shared_data);
return intel_guc_send(guc, data, ARRAY_SIZE(data));
}
/**
* intel_guc_resume() - notify GuC resuming from suspend state
* @guc: the guc
*/
int intel_guc_resume(struct intel_guc *guc)
{
u32 data[] = {
INTEL_GUC_ACTION_EXIT_S_STATE,
GUC_POWER_D0,
intel_guc_ggtt_offset(guc, guc->shared_data)
};
return intel_guc_send(guc, data, ARRAY_SIZE(data));
}
/**
* DOC: GuC Address Space
*
* The layout of GuC address space is shown below:
*
* ::
*
* +==============> +====================+ <== GUC_GGTT_TOP
* ^ | |
* | | |
* | | DRAM |
* | | Memory |
* | | |
* GuC | |
* Address +========> +====================+ <== WOPCM Top
* Space ^ | HW contexts RSVD |
* | | | WOPCM |
* | | +==> +--------------------+ <== GuC WOPCM Top
* | GuC ^ | |
* | GGTT | | |
* | Pin GuC | GuC |
* | Bias WOPCM | WOPCM |
* | | Size | |
* | | | | |
* v v v | |
* +=====+=====+==> +====================+ <== GuC WOPCM Base
* | Non-GuC WOPCM |
* | (HuC/Reserved) |
* +====================+ <== WOPCM Base
*
* The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to WOPCM
* while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
* to DRAM. The value of the GuC ggtt_pin_bias is determined by WOPCM size and
* actual GuC WOPCM size.
*/
/**
* intel_guc_init_ggtt_pin_bias() - Initialize the GuC ggtt_pin_bias value.
* @guc: intel_guc structure.
*
* This function will calculate and initialize the ggtt_pin_bias value based on
* overall WOPCM size and GuC WOPCM size.
*/
void intel_guc_init_ggtt_pin_bias(struct intel_guc *guc)
{
struct drm_i915_private *i915 = guc_to_i915(guc);
GEM_BUG_ON(!i915->wopcm.size);
GEM_BUG_ON(i915->wopcm.size < i915->wopcm.guc.base);
guc->ggtt_pin_bias = i915->wopcm.size - i915->wopcm.guc.base;
}
/**
* intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
* @guc: the guc
* @size: size of area to allocate (both virtual space and memory)
*
* This is a wrapper to create an object for use with the GuC. In order to
* use it inside the GuC, an object needs to be pinned lifetime, so we allocate
* both some backing storage and a range inside the Global GTT. We must pin
* it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
* range is reserved inside GuC.
*
* Return: A i915_vma if successful, otherwise an ERR_PTR.
*/
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
{
struct drm_i915_private *dev_priv = guc_to_i915(guc);
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
int ret;
obj = i915_gem_object_create(dev_priv, size);
if (IS_ERR(obj))
return ERR_CAST(obj);
vma = i915_vma_instance(obj, &dev_priv->ggtt.base, NULL);
if (IS_ERR(vma))
goto err;
ret = i915_vma_pin(vma, 0, PAGE_SIZE,
PIN_GLOBAL | PIN_OFFSET_BIAS | guc->ggtt_pin_bias);
if (ret) {
vma = ERR_PTR(ret);
goto err;
}
return vma;
err:
i915_gem_object_put(obj);
return vma;
}