linux_dsm_epyc7002/drivers/scsi/cxlflash/main.c
Uma Krishnan cd43c221bb scsi: cxlflash: Isolate external module dependencies
Depending on the underlying transport, cxlflash has a dependency on either
the CXL or OCXL drivers, which are enabled via their Kconfig option.
Instead of having a module wide dependency on these config options, it is
better to isolate the object modules that are dependent on the CXL and OCXL
drivers and adjust the module dependencies accordingly.

This commit isolates the object files that are dependent on CXL and/or
OCXL. The cxl/ocxl fops used in the core driver are tucked under an ifdef to
avoid compilation errors.

Signed-off-by: Uma Krishnan <ukrishn@linux.vnet.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2018-05-18 11:22:10 -04:00

3992 lines
107 KiB
C

/*
* CXL Flash Device Driver
*
* Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
* Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
*
* Copyright (C) 2015 IBM Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <asm/unaligned.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_host.h>
#include <uapi/scsi/cxlflash_ioctl.h>
#include "main.h"
#include "sislite.h"
#include "common.h"
MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
MODULE_LICENSE("GPL");
static struct class *cxlflash_class;
static u32 cxlflash_major;
static DECLARE_BITMAP(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
/**
* process_cmd_err() - command error handler
* @cmd: AFU command that experienced the error.
* @scp: SCSI command associated with the AFU command in error.
*
* Translates error bits from AFU command to SCSI command results.
*/
static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
{
struct afu *afu = cmd->parent;
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct sisl_ioarcb *ioarcb;
struct sisl_ioasa *ioasa;
u32 resid;
if (unlikely(!cmd))
return;
ioarcb = &(cmd->rcb);
ioasa = &(cmd->sa);
if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
resid = ioasa->resid;
scsi_set_resid(scp, resid);
dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
__func__, cmd, scp, resid);
}
if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
dev_dbg(dev, "%s: cmd underrun cmd = %p scp = %p\n",
__func__, cmd, scp);
scp->result = (DID_ERROR << 16);
}
dev_dbg(dev, "%s: cmd failed afu_rc=%02x scsi_rc=%02x fc_rc=%02x "
"afu_extra=%02x scsi_extra=%02x fc_extra=%02x\n", __func__,
ioasa->rc.afu_rc, ioasa->rc.scsi_rc, ioasa->rc.fc_rc,
ioasa->afu_extra, ioasa->scsi_extra, ioasa->fc_extra);
if (ioasa->rc.scsi_rc) {
/* We have a SCSI status */
if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
memcpy(scp->sense_buffer, ioasa->sense_data,
SISL_SENSE_DATA_LEN);
scp->result = ioasa->rc.scsi_rc;
} else
scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
}
/*
* We encountered an error. Set scp->result based on nature
* of error.
*/
if (ioasa->rc.fc_rc) {
/* We have an FC status */
switch (ioasa->rc.fc_rc) {
case SISL_FC_RC_LINKDOWN:
scp->result = (DID_REQUEUE << 16);
break;
case SISL_FC_RC_RESID:
/* This indicates an FCP resid underrun */
if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
/* If the SISL_RC_FLAGS_OVERRUN flag was set,
* then we will handle this error else where.
* If not then we must handle it here.
* This is probably an AFU bug.
*/
scp->result = (DID_ERROR << 16);
}
break;
case SISL_FC_RC_RESIDERR:
/* Resid mismatch between adapter and device */
case SISL_FC_RC_TGTABORT:
case SISL_FC_RC_ABORTOK:
case SISL_FC_RC_ABORTFAIL:
case SISL_FC_RC_NOLOGI:
case SISL_FC_RC_ABORTPEND:
case SISL_FC_RC_WRABORTPEND:
case SISL_FC_RC_NOEXP:
case SISL_FC_RC_INUSE:
scp->result = (DID_ERROR << 16);
break;
}
}
if (ioasa->rc.afu_rc) {
/* We have an AFU error */
switch (ioasa->rc.afu_rc) {
case SISL_AFU_RC_NO_CHANNELS:
scp->result = (DID_NO_CONNECT << 16);
break;
case SISL_AFU_RC_DATA_DMA_ERR:
switch (ioasa->afu_extra) {
case SISL_AFU_DMA_ERR_PAGE_IN:
/* Retry */
scp->result = (DID_IMM_RETRY << 16);
break;
case SISL_AFU_DMA_ERR_INVALID_EA:
default:
scp->result = (DID_ERROR << 16);
}
break;
case SISL_AFU_RC_OUT_OF_DATA_BUFS:
/* Retry */
scp->result = (DID_ALLOC_FAILURE << 16);
break;
default:
scp->result = (DID_ERROR << 16);
}
}
}
/**
* cmd_complete() - command completion handler
* @cmd: AFU command that has completed.
*
* For SCSI commands this routine prepares and submits commands that have
* either completed or timed out to the SCSI stack. For internal commands
* (TMF or AFU), this routine simply notifies the originator that the
* command has completed.
*/
static void cmd_complete(struct afu_cmd *cmd)
{
struct scsi_cmnd *scp;
ulong lock_flags;
struct afu *afu = cmd->parent;
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
list_del(&cmd->list);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
if (cmd->scp) {
scp = cmd->scp;
if (unlikely(cmd->sa.ioasc))
process_cmd_err(cmd, scp);
else
scp->result = (DID_OK << 16);
dev_dbg_ratelimited(dev, "%s:scp=%p result=%08x ioasc=%08x\n",
__func__, scp, scp->result, cmd->sa.ioasc);
scp->scsi_done(scp);
} else if (cmd->cmd_tmf) {
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
cfg->tmf_active = false;
wake_up_all_locked(&cfg->tmf_waitq);
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
} else
complete(&cmd->cevent);
}
/**
* flush_pending_cmds() - flush all pending commands on this hardware queue
* @hwq: Hardware queue to flush.
*
* The hardware send queue lock associated with this hardware queue must be
* held when calling this routine.
*/
static void flush_pending_cmds(struct hwq *hwq)
{
struct cxlflash_cfg *cfg = hwq->afu->parent;
struct afu_cmd *cmd, *tmp;
struct scsi_cmnd *scp;
ulong lock_flags;
list_for_each_entry_safe(cmd, tmp, &hwq->pending_cmds, list) {
/* Bypass command when on a doneq, cmd_complete() will handle */
if (!list_empty(&cmd->queue))
continue;
list_del(&cmd->list);
if (cmd->scp) {
scp = cmd->scp;
scp->result = (DID_IMM_RETRY << 16);
scp->scsi_done(scp);
} else {
cmd->cmd_aborted = true;
if (cmd->cmd_tmf) {
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
cfg->tmf_active = false;
wake_up_all_locked(&cfg->tmf_waitq);
spin_unlock_irqrestore(&cfg->tmf_slock,
lock_flags);
} else
complete(&cmd->cevent);
}
}
}
/**
* context_reset() - reset context via specified register
* @hwq: Hardware queue owning the context to be reset.
* @reset_reg: MMIO register to perform reset.
*
* When the reset is successful, the SISLite specification guarantees that
* the AFU has aborted all currently pending I/O. Accordingly, these commands
* must be flushed.
*
* Return: 0 on success, -errno on failure
*/
static int context_reset(struct hwq *hwq, __be64 __iomem *reset_reg)
{
struct cxlflash_cfg *cfg = hwq->afu->parent;
struct device *dev = &cfg->dev->dev;
int rc = -ETIMEDOUT;
int nretry = 0;
u64 val = 0x1;
ulong lock_flags;
dev_dbg(dev, "%s: hwq=%p\n", __func__, hwq);
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
writeq_be(val, reset_reg);
do {
val = readq_be(reset_reg);
if ((val & 0x1) == 0x0) {
rc = 0;
break;
}
/* Double delay each time */
udelay(1 << nretry);
} while (nretry++ < MC_ROOM_RETRY_CNT);
if (!rc)
flush_pending_cmds(hwq);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
dev_dbg(dev, "%s: returning rc=%d, val=%016llx nretry=%d\n",
__func__, rc, val, nretry);
return rc;
}
/**
* context_reset_ioarrin() - reset context via IOARRIN register
* @hwq: Hardware queue owning the context to be reset.
*
* Return: 0 on success, -errno on failure
*/
static int context_reset_ioarrin(struct hwq *hwq)
{
return context_reset(hwq, &hwq->host_map->ioarrin);
}
/**
* context_reset_sq() - reset context via SQ_CONTEXT_RESET register
* @hwq: Hardware queue owning the context to be reset.
*
* Return: 0 on success, -errno on failure
*/
static int context_reset_sq(struct hwq *hwq)
{
return context_reset(hwq, &hwq->host_map->sq_ctx_reset);
}
/**
* send_cmd_ioarrin() - sends an AFU command via IOARRIN register
* @afu: AFU associated with the host.
* @cmd: AFU command to send.
*
* Return:
* 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int send_cmd_ioarrin(struct afu *afu, struct afu_cmd *cmd)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
int rc = 0;
s64 room;
ulong lock_flags;
/*
* To avoid the performance penalty of MMIO, spread the update of
* 'room' over multiple commands.
*/
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
if (--hwq->room < 0) {
room = readq_be(&hwq->host_map->cmd_room);
if (room <= 0) {
dev_dbg_ratelimited(dev, "%s: no cmd_room to send "
"0x%02X, room=0x%016llX\n",
__func__, cmd->rcb.cdb[0], room);
hwq->room = 0;
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
hwq->room = room - 1;
}
list_add(&cmd->list, &hwq->pending_cmds);
writeq_be((u64)&cmd->rcb, &hwq->host_map->ioarrin);
out:
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
dev_dbg_ratelimited(dev, "%s: cmd=%p len=%u ea=%016llx rc=%d\n",
__func__, cmd, cmd->rcb.data_len, cmd->rcb.data_ea, rc);
return rc;
}
/**
* send_cmd_sq() - sends an AFU command via SQ ring
* @afu: AFU associated with the host.
* @cmd: AFU command to send.
*
* Return:
* 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int send_cmd_sq(struct afu *afu, struct afu_cmd *cmd)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
int rc = 0;
int newval;
ulong lock_flags;
newval = atomic_dec_if_positive(&hwq->hsq_credits);
if (newval <= 0) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
cmd->rcb.ioasa = &cmd->sa;
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
*hwq->hsq_curr = cmd->rcb;
if (hwq->hsq_curr < hwq->hsq_end)
hwq->hsq_curr++;
else
hwq->hsq_curr = hwq->hsq_start;
list_add(&cmd->list, &hwq->pending_cmds);
writeq_be((u64)hwq->hsq_curr, &hwq->host_map->sq_tail);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
out:
dev_dbg(dev, "%s: cmd=%p len=%u ea=%016llx ioasa=%p rc=%d curr=%p "
"head=%016llx tail=%016llx\n", __func__, cmd, cmd->rcb.data_len,
cmd->rcb.data_ea, cmd->rcb.ioasa, rc, hwq->hsq_curr,
readq_be(&hwq->host_map->sq_head),
readq_be(&hwq->host_map->sq_tail));
return rc;
}
/**
* wait_resp() - polls for a response or timeout to a sent AFU command
* @afu: AFU associated with the host.
* @cmd: AFU command that was sent.
*
* Return: 0 on success, -errno on failure
*/
static int wait_resp(struct afu *afu, struct afu_cmd *cmd)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
int rc = 0;
ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
if (!timeout)
rc = -ETIMEDOUT;
if (cmd->cmd_aborted)
rc = -EAGAIN;
if (unlikely(cmd->sa.ioasc != 0)) {
dev_err(dev, "%s: cmd %02x failed, ioasc=%08x\n",
__func__, cmd->rcb.cdb[0], cmd->sa.ioasc);
rc = -EIO;
}
return rc;
}
/**
* cmd_to_target_hwq() - selects a target hardware queue for a SCSI command
* @host: SCSI host associated with device.
* @scp: SCSI command to send.
* @afu: SCSI command to send.
*
* Hashes a command based upon the hardware queue mode.
*
* Return: Trusted index of target hardware queue
*/
static u32 cmd_to_target_hwq(struct Scsi_Host *host, struct scsi_cmnd *scp,
struct afu *afu)
{
u32 tag;
u32 hwq = 0;
if (afu->num_hwqs == 1)
return 0;
switch (afu->hwq_mode) {
case HWQ_MODE_RR:
hwq = afu->hwq_rr_count++ % afu->num_hwqs;
break;
case HWQ_MODE_TAG:
tag = blk_mq_unique_tag(scp->request);
hwq = blk_mq_unique_tag_to_hwq(tag);
break;
case HWQ_MODE_CPU:
hwq = smp_processor_id() % afu->num_hwqs;
break;
default:
WARN_ON_ONCE(1);
}
return hwq;
}
/**
* send_tmf() - sends a Task Management Function (TMF)
* @cfg: Internal structure associated with the host.
* @sdev: SCSI device destined for TMF.
* @tmfcmd: TMF command to send.
*
* Return:
* 0 on success, SCSI_MLQUEUE_HOST_BUSY or -errno on failure
*/
static int send_tmf(struct cxlflash_cfg *cfg, struct scsi_device *sdev,
u64 tmfcmd)
{
struct afu *afu = cfg->afu;
struct afu_cmd *cmd = NULL;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
bool needs_deletion = false;
char *buf = NULL;
ulong lock_flags;
int rc = 0;
ulong to;
buf = kzalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
if (unlikely(!buf)) {
dev_err(dev, "%s: no memory for command\n", __func__);
rc = -ENOMEM;
goto out;
}
cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
INIT_LIST_HEAD(&cmd->queue);
/* When Task Management Function is active do not send another */
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active)
wait_event_interruptible_lock_irq(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock);
cfg->tmf_active = true;
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
cmd->parent = afu;
cmd->cmd_tmf = true;
cmd->hwq_index = hwq->index;
cmd->rcb.ctx_id = hwq->ctx_hndl;
cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
cmd->rcb.port_sel = CHAN2PORTMASK(sdev->channel);
cmd->rcb.lun_id = lun_to_lunid(sdev->lun);
cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
SISL_REQ_FLAGS_SUP_UNDERRUN |
SISL_REQ_FLAGS_TMF_CMD);
memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
rc = afu->send_cmd(afu, cmd);
if (unlikely(rc)) {
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
cfg->tmf_active = false;
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
goto out;
}
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
to = msecs_to_jiffies(5000);
to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock,
to);
if (!to) {
dev_err(dev, "%s: TMF timed out\n", __func__);
rc = -ETIMEDOUT;
needs_deletion = true;
} else if (cmd->cmd_aborted) {
dev_err(dev, "%s: TMF aborted\n", __func__);
rc = -EAGAIN;
} else if (cmd->sa.ioasc) {
dev_err(dev, "%s: TMF failed ioasc=%08x\n",
__func__, cmd->sa.ioasc);
rc = -EIO;
}
cfg->tmf_active = false;
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
if (needs_deletion) {
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
list_del(&cmd->list);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
}
out:
kfree(buf);
return rc;
}
/**
* cxlflash_driver_info() - information handler for this host driver
* @host: SCSI host associated with device.
*
* Return: A string describing the device.
*/
static const char *cxlflash_driver_info(struct Scsi_Host *host)
{
return CXLFLASH_ADAPTER_NAME;
}
/**
* cxlflash_queuecommand() - sends a mid-layer request
* @host: SCSI host associated with device.
* @scp: SCSI command to send.
*
* Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
*/
static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
{
struct cxlflash_cfg *cfg = shost_priv(host);
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct afu_cmd *cmd = sc_to_afuci(scp);
struct scatterlist *sg = scsi_sglist(scp);
int hwq_index = cmd_to_target_hwq(host, scp, afu);
struct hwq *hwq = get_hwq(afu, hwq_index);
u16 req_flags = SISL_REQ_FLAGS_SUP_UNDERRUN;
ulong lock_flags;
int rc = 0;
dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
"cdb=(%08x-%08x-%08x-%08x)\n",
__func__, scp, host->host_no, scp->device->channel,
scp->device->id, scp->device->lun,
get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
/*
* If a Task Management Function is active, wait for it to complete
* before continuing with regular commands.
*/
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active) {
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
}
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
switch (cfg->state) {
case STATE_PROBING:
case STATE_PROBED:
case STATE_RESET:
dev_dbg_ratelimited(dev, "%s: device is in reset\n", __func__);
rc = SCSI_MLQUEUE_HOST_BUSY;
goto out;
case STATE_FAILTERM:
dev_dbg_ratelimited(dev, "%s: device has failed\n", __func__);
scp->result = (DID_NO_CONNECT << 16);
scp->scsi_done(scp);
rc = 0;
goto out;
default:
atomic_inc(&afu->cmds_active);
break;
}
if (likely(sg)) {
cmd->rcb.data_len = sg->length;
cmd->rcb.data_ea = (uintptr_t)sg_virt(sg);
}
cmd->scp = scp;
cmd->parent = afu;
cmd->hwq_index = hwq_index;
cmd->sa.ioasc = 0;
cmd->rcb.ctx_id = hwq->ctx_hndl;
cmd->rcb.msi = SISL_MSI_RRQ_UPDATED;
cmd->rcb.port_sel = CHAN2PORTMASK(scp->device->channel);
cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
if (scp->sc_data_direction == DMA_TO_DEVICE)
req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
cmd->rcb.req_flags = req_flags;
memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
rc = afu->send_cmd(afu, cmd);
atomic_dec(&afu->cmds_active);
out:
return rc;
}
/**
* cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
if (pci_channel_offline(pdev))
wait_event_timeout(cfg->reset_waitq,
!pci_channel_offline(pdev),
CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
}
/**
* free_mem() - free memory associated with the AFU
* @cfg: Internal structure associated with the host.
*/
static void free_mem(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
if (cfg->afu) {
free_pages((ulong)afu, get_order(sizeof(struct afu)));
cfg->afu = NULL;
}
}
/**
* cxlflash_reset_sync() - synchronizing point for asynchronous resets
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_reset_sync(struct cxlflash_cfg *cfg)
{
if (cfg->async_reset_cookie == 0)
return;
/* Wait until all async calls prior to this cookie have completed */
async_synchronize_cookie(cfg->async_reset_cookie + 1);
cfg->async_reset_cookie = 0;
}
/**
* stop_afu() - stops the AFU command timers and unmaps the MMIO space
* @cfg: Internal structure associated with the host.
*
* Safe to call with AFU in a partially allocated/initialized state.
*
* Cancels scheduled worker threads, waits for any active internal AFU
* commands to timeout, disables IRQ polling and then unmaps the MMIO space.
*/
static void stop_afu(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct hwq *hwq;
int i;
cancel_work_sync(&cfg->work_q);
if (!current_is_async())
cxlflash_reset_sync(cfg);
if (likely(afu)) {
while (atomic_read(&afu->cmds_active))
ssleep(1);
if (afu_is_irqpoll_enabled(afu)) {
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
irq_poll_disable(&hwq->irqpoll);
}
}
if (likely(afu->afu_map)) {
cfg->ops->psa_unmap(afu->afu_map);
afu->afu_map = NULL;
}
}
}
/**
* term_intr() - disables all AFU interrupts
* @cfg: Internal structure associated with the host.
* @level: Depth of allocation, where to begin waterfall tear down.
* @index: Index of the hardware queue.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_intr(struct cxlflash_cfg *cfg, enum undo_level level,
u32 index)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
if (!afu) {
dev_err(dev, "%s: returning with NULL afu\n", __func__);
return;
}
hwq = get_hwq(afu, index);
if (!hwq->ctx_cookie) {
dev_err(dev, "%s: returning with NULL MC\n", __func__);
return;
}
switch (level) {
case UNMAP_THREE:
/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
if (index == PRIMARY_HWQ)
cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 3, hwq);
case UNMAP_TWO:
cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 2, hwq);
case UNMAP_ONE:
cfg->ops->unmap_afu_irq(hwq->ctx_cookie, 1, hwq);
case FREE_IRQ:
cfg->ops->free_afu_irqs(hwq->ctx_cookie);
/* fall through */
case UNDO_NOOP:
/* No action required */
break;
}
}
/**
* term_mc() - terminates the master context
* @cfg: Internal structure associated with the host.
* @index: Index of the hardware queue.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_mc(struct cxlflash_cfg *cfg, u32 index)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
ulong lock_flags;
if (!afu) {
dev_err(dev, "%s: returning with NULL afu\n", __func__);
return;
}
hwq = get_hwq(afu, index);
if (!hwq->ctx_cookie) {
dev_err(dev, "%s: returning with NULL MC\n", __func__);
return;
}
WARN_ON(cfg->ops->stop_context(hwq->ctx_cookie));
if (index != PRIMARY_HWQ)
WARN_ON(cfg->ops->release_context(hwq->ctx_cookie));
hwq->ctx_cookie = NULL;
spin_lock_irqsave(&hwq->hrrq_slock, lock_flags);
hwq->hrrq_online = false;
spin_unlock_irqrestore(&hwq->hrrq_slock, lock_flags);
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
flush_pending_cmds(hwq);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
}
/**
* term_afu() - terminates the AFU
* @cfg: Internal structure associated with the host.
*
* Safe to call with AFU/MC in partially allocated/initialized state.
*/
static void term_afu(struct cxlflash_cfg *cfg)
{
struct device *dev = &cfg->dev->dev;
int k;
/*
* Tear down is carefully orchestrated to ensure
* no interrupts can come in when the problem state
* area is unmapped.
*
* 1) Disable all AFU interrupts for each master
* 2) Unmap the problem state area
* 3) Stop each master context
*/
for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
term_intr(cfg, UNMAP_THREE, k);
stop_afu(cfg);
for (k = cfg->afu->num_hwqs - 1; k >= 0; k--)
term_mc(cfg, k);
dev_dbg(dev, "%s: returning\n", __func__);
}
/**
* notify_shutdown() - notifies device of pending shutdown
* @cfg: Internal structure associated with the host.
* @wait: Whether to wait for shutdown processing to complete.
*
* This function will notify the AFU that the adapter is being shutdown
* and will wait for shutdown processing to complete if wait is true.
* This notification should flush pending I/Os to the device and halt
* further I/Os until the next AFU reset is issued and device restarted.
*/
static void notify_shutdown(struct cxlflash_cfg *cfg, bool wait)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct dev_dependent_vals *ddv;
__be64 __iomem *fc_port_regs;
u64 reg, status;
int i, retry_cnt = 0;
ddv = (struct dev_dependent_vals *)cfg->dev_id->driver_data;
if (!(ddv->flags & CXLFLASH_NOTIFY_SHUTDOWN))
return;
if (!afu || !afu->afu_map) {
dev_dbg(dev, "%s: Problem state area not mapped\n", __func__);
return;
}
/* Notify AFU */
for (i = 0; i < cfg->num_fc_ports; i++) {
fc_port_regs = get_fc_port_regs(cfg, i);
reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
reg |= SISL_FC_SHUTDOWN_NORMAL;
writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
}
if (!wait)
return;
/* Wait up to 1.5 seconds for shutdown processing to complete */
for (i = 0; i < cfg->num_fc_ports; i++) {
fc_port_regs = get_fc_port_regs(cfg, i);
retry_cnt = 0;
while (true) {
status = readq_be(&fc_port_regs[FC_STATUS / 8]);
if (status & SISL_STATUS_SHUTDOWN_COMPLETE)
break;
if (++retry_cnt >= MC_RETRY_CNT) {
dev_dbg(dev, "%s: port %d shutdown processing "
"not yet completed\n", __func__, i);
break;
}
msleep(100 * retry_cnt);
}
}
}
/**
* cxlflash_get_minor() - gets the first available minor number
*
* Return: Unique minor number that can be used to create the character device.
*/
static int cxlflash_get_minor(void)
{
int minor;
long bit;
bit = find_first_zero_bit(cxlflash_minor, CXLFLASH_MAX_ADAPTERS);
if (bit >= CXLFLASH_MAX_ADAPTERS)
return -1;
minor = bit & MINORMASK;
set_bit(minor, cxlflash_minor);
return minor;
}
/**
* cxlflash_put_minor() - releases the minor number
* @minor: Minor number that is no longer needed.
*/
static void cxlflash_put_minor(int minor)
{
clear_bit(minor, cxlflash_minor);
}
/**
* cxlflash_release_chrdev() - release the character device for the host
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_release_chrdev(struct cxlflash_cfg *cfg)
{
device_unregister(cfg->chardev);
cfg->chardev = NULL;
cdev_del(&cfg->cdev);
cxlflash_put_minor(MINOR(cfg->cdev.dev));
}
/**
* cxlflash_remove() - PCI entry point to tear down host
* @pdev: PCI device associated with the host.
*
* Safe to use as a cleanup in partially allocated/initialized state. Note that
* the reset_waitq is flushed as part of the stop/termination of user contexts.
*/
static void cxlflash_remove(struct pci_dev *pdev)
{
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &pdev->dev;
ulong lock_flags;
if (!pci_is_enabled(pdev)) {
dev_dbg(dev, "%s: Device is disabled\n", __func__);
return;
}
/* Yield to running recovery threads before continuing with remove */
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
cfg->state != STATE_PROBING);
spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
if (cfg->tmf_active)
wait_event_interruptible_lock_irq(cfg->tmf_waitq,
!cfg->tmf_active,
cfg->tmf_slock);
spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
/* Notify AFU and wait for shutdown processing to complete */
notify_shutdown(cfg, true);
cfg->state = STATE_FAILTERM;
cxlflash_stop_term_user_contexts(cfg);
switch (cfg->init_state) {
case INIT_STATE_CDEV:
cxlflash_release_chrdev(cfg);
case INIT_STATE_SCSI:
cxlflash_term_local_luns(cfg);
scsi_remove_host(cfg->host);
case INIT_STATE_AFU:
term_afu(cfg);
case INIT_STATE_PCI:
cfg->ops->destroy_afu(cfg->afu_cookie);
pci_disable_device(pdev);
case INIT_STATE_NONE:
free_mem(cfg);
scsi_host_put(cfg->host);
break;
}
dev_dbg(dev, "%s: returning\n", __func__);
}
/**
* alloc_mem() - allocates the AFU and its command pool
* @cfg: Internal structure associated with the host.
*
* A partially allocated state remains on failure.
*
* Return:
* 0 on success
* -ENOMEM on failure to allocate memory
*/
static int alloc_mem(struct cxlflash_cfg *cfg)
{
int rc = 0;
struct device *dev = &cfg->dev->dev;
/* AFU is ~28k, i.e. only one 64k page or up to seven 4k pages */
cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(sizeof(struct afu)));
if (unlikely(!cfg->afu)) {
dev_err(dev, "%s: cannot get %d free pages\n",
__func__, get_order(sizeof(struct afu)));
rc = -ENOMEM;
goto out;
}
cfg->afu->parent = cfg;
cfg->afu->desired_hwqs = CXLFLASH_DEF_HWQS;
cfg->afu->afu_map = NULL;
out:
return rc;
}
/**
* init_pci() - initializes the host as a PCI device
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_pci(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
struct device *dev = &cfg->dev->dev;
int rc = 0;
rc = pci_enable_device(pdev);
if (rc || pci_channel_offline(pdev)) {
if (pci_channel_offline(pdev)) {
cxlflash_wait_for_pci_err_recovery(cfg);
rc = pci_enable_device(pdev);
}
if (rc) {
dev_err(dev, "%s: Cannot enable adapter\n", __func__);
cxlflash_wait_for_pci_err_recovery(cfg);
goto out;
}
}
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_scsi() - adds the host to the SCSI stack and kicks off host scan
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_scsi(struct cxlflash_cfg *cfg)
{
struct pci_dev *pdev = cfg->dev;
struct device *dev = &cfg->dev->dev;
int rc = 0;
rc = scsi_add_host(cfg->host, &pdev->dev);
if (rc) {
dev_err(dev, "%s: scsi_add_host failed rc=%d\n", __func__, rc);
goto out;
}
scsi_scan_host(cfg->host);
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* set_port_online() - transitions the specified host FC port to online state
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call. Online state means
* that the FC link layer has synced, completed the handshaking process, and
* is ready for login to start.
*/
static void set_port_online(__be64 __iomem *fc_regs)
{
u64 cmdcfg;
cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
}
/**
* set_port_offline() - transitions the specified host FC port to offline state
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call.
*/
static void set_port_offline(__be64 __iomem *fc_regs)
{
u64 cmdcfg;
cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
}
/**
* wait_port_online() - waits for the specified host FC port come online
* @fc_regs: Top of MMIO region defined for specified port.
* @delay_us: Number of microseconds to delay between reading port status.
* @nretry: Number of cycles to retry reading port status.
*
* The provided MMIO region must be mapped prior to call. This will timeout
* when the cable is not plugged in.
*
* Return:
* TRUE (1) when the specified port is online
* FALSE (0) when the specified port fails to come online after timeout
*/
static bool wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
{
u64 status;
WARN_ON(delay_us < 1000);
do {
msleep(delay_us / 1000);
status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
if (status == U64_MAX)
nretry /= 2;
} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
nretry--);
return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
}
/**
* wait_port_offline() - waits for the specified host FC port go offline
* @fc_regs: Top of MMIO region defined for specified port.
* @delay_us: Number of microseconds to delay between reading port status.
* @nretry: Number of cycles to retry reading port status.
*
* The provided MMIO region must be mapped prior to call.
*
* Return:
* TRUE (1) when the specified port is offline
* FALSE (0) when the specified port fails to go offline after timeout
*/
static bool wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
{
u64 status;
WARN_ON(delay_us < 1000);
do {
msleep(delay_us / 1000);
status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
if (status == U64_MAX)
nretry /= 2;
} while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
nretry--);
return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
}
/**
* afu_set_wwpn() - configures the WWPN for the specified host FC port
* @afu: AFU associated with the host that owns the specified FC port.
* @port: Port number being configured.
* @fc_regs: Top of MMIO region defined for specified port.
* @wwpn: The world-wide-port-number previously discovered for port.
*
* The provided MMIO region must be mapped prior to call. As part of the
* sequence to configure the WWPN, the port is toggled offline and then back
* online. This toggling action can cause this routine to delay up to a few
* seconds. When configured to use the internal LUN feature of the AFU, a
* failure to come online is overridden.
*/
static void afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
u64 wwpn)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
set_port_offline(fc_regs);
if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT)) {
dev_dbg(dev, "%s: wait on port %d to go offline timed out\n",
__func__, port);
}
writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
set_port_online(fc_regs);
if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT)) {
dev_dbg(dev, "%s: wait on port %d to go online timed out\n",
__func__, port);
}
}
/**
* afu_link_reset() - resets the specified host FC port
* @afu: AFU associated with the host that owns the specified FC port.
* @port: Port number being configured.
* @fc_regs: Top of MMIO region defined for specified port.
*
* The provided MMIO region must be mapped prior to call. The sequence to
* reset the port involves toggling it offline and then back online. This
* action can cause this routine to delay up to a few seconds. An effort
* is made to maintain link with the device by switching to host to use
* the alternate port exclusively while the reset takes place.
* failure to come online is overridden.
*/
static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
u64 port_sel;
/* first switch the AFU to the other links, if any */
port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
port_sel &= ~(1ULL << port);
writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
set_port_offline(fc_regs);
if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT))
dev_err(dev, "%s: wait on port %d to go offline timed out\n",
__func__, port);
set_port_online(fc_regs);
if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
FC_PORT_STATUS_RETRY_CNT))
dev_err(dev, "%s: wait on port %d to go online timed out\n",
__func__, port);
/* switch back to include this port */
port_sel |= (1ULL << port);
writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
dev_dbg(dev, "%s: returning port_sel=%016llx\n", __func__, port_sel);
}
/**
* afu_err_intr_init() - clears and initializes the AFU for error interrupts
* @afu: AFU associated with the host.
*/
static void afu_err_intr_init(struct afu *afu)
{
struct cxlflash_cfg *cfg = afu->parent;
__be64 __iomem *fc_port_regs;
int i;
struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
u64 reg;
/* global async interrupts: AFU clears afu_ctrl on context exit
* if async interrupts were sent to that context. This prevents
* the AFU form sending further async interrupts when
* there is
* nobody to receive them.
*/
/* mask all */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
/* set LISN# to send and point to primary master context */
reg = ((u64) (((hwq->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
if (afu->internal_lun)
reg |= 1; /* Bit 63 indicates local lun */
writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
/* clear all */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
/* unmask bits that are of interest */
/* note: afu can send an interrupt after this step */
writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
/* clear again in case a bit came on after previous clear but before */
/* unmask */
writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
/* Clear/Set internal lun bits */
fc_port_regs = get_fc_port_regs(cfg, 0);
reg = readq_be(&fc_port_regs[FC_CONFIG2 / 8]);
reg &= SISL_FC_INTERNAL_MASK;
if (afu->internal_lun)
reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
writeq_be(reg, &fc_port_regs[FC_CONFIG2 / 8]);
/* now clear FC errors */
for (i = 0; i < cfg->num_fc_ports; i++) {
fc_port_regs = get_fc_port_regs(cfg, i);
writeq_be(0xFFFFFFFFU, &fc_port_regs[FC_ERROR / 8]);
writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
}
/* sync interrupts for master's IOARRIN write */
/* note that unlike asyncs, there can be no pending sync interrupts */
/* at this time (this is a fresh context and master has not written */
/* IOARRIN yet), so there is nothing to clear. */
/* set LISN#, it is always sent to the context that wrote IOARRIN */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
reg = readq_be(&hwq->host_map->ctx_ctrl);
WARN_ON((reg & SISL_CTX_CTRL_LISN_MASK) != 0);
reg |= SISL_MSI_SYNC_ERROR;
writeq_be(reg, &hwq->host_map->ctx_ctrl);
writeq_be(SISL_ISTATUS_MASK, &hwq->host_map->intr_mask);
}
}
/**
* cxlflash_sync_err_irq() - interrupt handler for synchronous errors
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: Always return IRQ_HANDLED.
*/
static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
{
struct hwq *hwq = (struct hwq *)data;
struct cxlflash_cfg *cfg = hwq->afu->parent;
struct device *dev = &cfg->dev->dev;
u64 reg;
u64 reg_unmasked;
reg = readq_be(&hwq->host_map->intr_status);
reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
if (reg_unmasked == 0UL) {
dev_err(dev, "%s: spurious interrupt, intr_status=%016llx\n",
__func__, reg);
goto cxlflash_sync_err_irq_exit;
}
dev_err(dev, "%s: unexpected interrupt, intr_status=%016llx\n",
__func__, reg);
writeq_be(reg_unmasked, &hwq->host_map->intr_clear);
cxlflash_sync_err_irq_exit:
return IRQ_HANDLED;
}
/**
* process_hrrq() - process the read-response queue
* @afu: AFU associated with the host.
* @doneq: Queue of commands harvested from the RRQ.
* @budget: Threshold of RRQ entries to process.
*
* This routine must be called holding the disabled RRQ spin lock.
*
* Return: The number of entries processed.
*/
static int process_hrrq(struct hwq *hwq, struct list_head *doneq, int budget)
{
struct afu *afu = hwq->afu;
struct afu_cmd *cmd;
struct sisl_ioasa *ioasa;
struct sisl_ioarcb *ioarcb;
bool toggle = hwq->toggle;
int num_hrrq = 0;
u64 entry,
*hrrq_start = hwq->hrrq_start,
*hrrq_end = hwq->hrrq_end,
*hrrq_curr = hwq->hrrq_curr;
/* Process ready RRQ entries up to the specified budget (if any) */
while (true) {
entry = *hrrq_curr;
if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
break;
entry &= ~SISL_RESP_HANDLE_T_BIT;
if (afu_is_sq_cmd_mode(afu)) {
ioasa = (struct sisl_ioasa *)entry;
cmd = container_of(ioasa, struct afu_cmd, sa);
} else {
ioarcb = (struct sisl_ioarcb *)entry;
cmd = container_of(ioarcb, struct afu_cmd, rcb);
}
list_add_tail(&cmd->queue, doneq);
/* Advance to next entry or wrap and flip the toggle bit */
if (hrrq_curr < hrrq_end)
hrrq_curr++;
else {
hrrq_curr = hrrq_start;
toggle ^= SISL_RESP_HANDLE_T_BIT;
}
atomic_inc(&hwq->hsq_credits);
num_hrrq++;
if (budget > 0 && num_hrrq >= budget)
break;
}
hwq->hrrq_curr = hrrq_curr;
hwq->toggle = toggle;
return num_hrrq;
}
/**
* process_cmd_doneq() - process a queue of harvested RRQ commands
* @doneq: Queue of completed commands.
*
* Note that upon return the queue can no longer be trusted.
*/
static void process_cmd_doneq(struct list_head *doneq)
{
struct afu_cmd *cmd, *tmp;
WARN_ON(list_empty(doneq));
list_for_each_entry_safe(cmd, tmp, doneq, queue)
cmd_complete(cmd);
}
/**
* cxlflash_irqpoll() - process a queue of harvested RRQ commands
* @irqpoll: IRQ poll structure associated with queue to poll.
* @budget: Threshold of RRQ entries to process per poll.
*
* Return: The number of entries processed.
*/
static int cxlflash_irqpoll(struct irq_poll *irqpoll, int budget)
{
struct hwq *hwq = container_of(irqpoll, struct hwq, irqpoll);
unsigned long hrrq_flags;
LIST_HEAD(doneq);
int num_entries = 0;
spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
num_entries = process_hrrq(hwq, &doneq, budget);
if (num_entries < budget)
irq_poll_complete(irqpoll);
spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
process_cmd_doneq(&doneq);
return num_entries;
}
/**
* cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: IRQ_HANDLED or IRQ_NONE when no ready entries found.
*/
static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
{
struct hwq *hwq = (struct hwq *)data;
struct afu *afu = hwq->afu;
unsigned long hrrq_flags;
LIST_HEAD(doneq);
int num_entries = 0;
spin_lock_irqsave(&hwq->hrrq_slock, hrrq_flags);
/* Silently drop spurious interrupts when queue is not online */
if (!hwq->hrrq_online) {
spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
return IRQ_HANDLED;
}
if (afu_is_irqpoll_enabled(afu)) {
irq_poll_sched(&hwq->irqpoll);
spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
return IRQ_HANDLED;
}
num_entries = process_hrrq(hwq, &doneq, -1);
spin_unlock_irqrestore(&hwq->hrrq_slock, hrrq_flags);
if (num_entries == 0)
return IRQ_NONE;
process_cmd_doneq(&doneq);
return IRQ_HANDLED;
}
/*
* Asynchronous interrupt information table
*
* NOTE:
* - Order matters here as this array is indexed by bit position.
*
* - The checkpatch script considers the BUILD_SISL_ASTATUS_FC_PORT macro
* as complex and complains due to a lack of parentheses/braces.
*/
#define ASTATUS_FC(_a, _b, _c, _d) \
{ SISL_ASTATUS_FC##_a##_##_b, _c, _a, (_d) }
#define BUILD_SISL_ASTATUS_FC_PORT(_a) \
ASTATUS_FC(_a, LINK_UP, "link up", 0), \
ASTATUS_FC(_a, LINK_DN, "link down", 0), \
ASTATUS_FC(_a, LOGI_S, "login succeeded", SCAN_HOST), \
ASTATUS_FC(_a, LOGI_F, "login failed", CLR_FC_ERROR), \
ASTATUS_FC(_a, LOGI_R, "login timed out, retrying", LINK_RESET), \
ASTATUS_FC(_a, CRC_T, "CRC threshold exceeded", LINK_RESET), \
ASTATUS_FC(_a, LOGO, "target initiated LOGO", 0), \
ASTATUS_FC(_a, OTHER, "other error", CLR_FC_ERROR | LINK_RESET)
static const struct asyc_intr_info ainfo[] = {
BUILD_SISL_ASTATUS_FC_PORT(1),
BUILD_SISL_ASTATUS_FC_PORT(0),
BUILD_SISL_ASTATUS_FC_PORT(3),
BUILD_SISL_ASTATUS_FC_PORT(2)
};
/**
* cxlflash_async_err_irq() - interrupt handler for asynchronous errors
* @irq: Interrupt number.
* @data: Private data provided at interrupt registration, the AFU.
*
* Return: Always return IRQ_HANDLED.
*/
static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
{
struct hwq *hwq = (struct hwq *)data;
struct afu *afu = hwq->afu;
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
const struct asyc_intr_info *info;
struct sisl_global_map __iomem *global = &afu->afu_map->global;
__be64 __iomem *fc_port_regs;
u64 reg_unmasked;
u64 reg;
u64 bit;
u8 port;
reg = readq_be(&global->regs.aintr_status);
reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
if (unlikely(reg_unmasked == 0)) {
dev_err(dev, "%s: spurious interrupt, aintr_status=%016llx\n",
__func__, reg);
goto out;
}
/* FYI, it is 'okay' to clear AFU status before FC_ERROR */
writeq_be(reg_unmasked, &global->regs.aintr_clear);
/* Check each bit that is on */
for_each_set_bit(bit, (ulong *)&reg_unmasked, BITS_PER_LONG) {
if (unlikely(bit >= ARRAY_SIZE(ainfo))) {
WARN_ON_ONCE(1);
continue;
}
info = &ainfo[bit];
if (unlikely(info->status != 1ULL << bit)) {
WARN_ON_ONCE(1);
continue;
}
port = info->port;
fc_port_regs = get_fc_port_regs(cfg, port);
dev_err(dev, "%s: FC Port %d -> %s, fc_status=%016llx\n",
__func__, port, info->desc,
readq_be(&fc_port_regs[FC_STATUS / 8]));
/*
* Do link reset first, some OTHER errors will set FC_ERROR
* again if cleared before or w/o a reset
*/
if (info->action & LINK_RESET) {
dev_err(dev, "%s: FC Port %d: resetting link\n",
__func__, port);
cfg->lr_state = LINK_RESET_REQUIRED;
cfg->lr_port = port;
schedule_work(&cfg->work_q);
}
if (info->action & CLR_FC_ERROR) {
reg = readq_be(&fc_port_regs[FC_ERROR / 8]);
/*
* Since all errors are unmasked, FC_ERROR and FC_ERRCAP
* should be the same and tracing one is sufficient.
*/
dev_err(dev, "%s: fc %d: clearing fc_error=%016llx\n",
__func__, port, reg);
writeq_be(reg, &fc_port_regs[FC_ERROR / 8]);
writeq_be(0, &fc_port_regs[FC_ERRCAP / 8]);
}
if (info->action & SCAN_HOST) {
atomic_inc(&cfg->scan_host_needed);
schedule_work(&cfg->work_q);
}
}
out:
return IRQ_HANDLED;
}
/**
* read_vpd() - obtains the WWPNs from VPD
* @cfg: Internal structure associated with the host.
* @wwpn: Array of size MAX_FC_PORTS to pass back WWPNs
*
* Return: 0 on success, -errno on failure
*/
static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
{
struct device *dev = &cfg->dev->dev;
struct pci_dev *pdev = cfg->dev;
int rc = 0;
int ro_start, ro_size, i, j, k;
ssize_t vpd_size;
char vpd_data[CXLFLASH_VPD_LEN];
char tmp_buf[WWPN_BUF_LEN] = { 0 };
const struct dev_dependent_vals *ddv = (struct dev_dependent_vals *)
cfg->dev_id->driver_data;
const bool wwpn_vpd_required = ddv->flags & CXLFLASH_WWPN_VPD_REQUIRED;
const char *wwpn_vpd_tags[MAX_FC_PORTS] = { "V5", "V6", "V7", "V8" };
/* Get the VPD data from the device */
vpd_size = cfg->ops->read_adapter_vpd(pdev, vpd_data, sizeof(vpd_data));
if (unlikely(vpd_size <= 0)) {
dev_err(dev, "%s: Unable to read VPD (size = %ld)\n",
__func__, vpd_size);
rc = -ENODEV;
goto out;
}
/* Get the read only section offset */
ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
PCI_VPD_LRDT_RO_DATA);
if (unlikely(ro_start < 0)) {
dev_err(dev, "%s: VPD Read-only data not found\n", __func__);
rc = -ENODEV;
goto out;
}
/* Get the read only section size, cap when extends beyond read VPD */
ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
j = ro_size;
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
if (unlikely((i + j) > vpd_size)) {
dev_dbg(dev, "%s: Might need to read more VPD (%d > %ld)\n",
__func__, (i + j), vpd_size);
ro_size = vpd_size - i;
}
/*
* Find the offset of the WWPN tag within the read only
* VPD data and validate the found field (partials are
* no good to us). Convert the ASCII data to an integer
* value. Note that we must copy to a temporary buffer
* because the conversion service requires that the ASCII
* string be terminated.
*
* Allow for WWPN not being found for all devices, setting
* the returned WWPN to zero when not found. Notify with a
* log error for cards that should have had WWPN keywords
* in the VPD - cards requiring WWPN will not have their
* ports programmed and operate in an undefined state.
*/
for (k = 0; k < cfg->num_fc_ports; k++) {
j = ro_size;
i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
if (i < 0) {
if (wwpn_vpd_required)
dev_err(dev, "%s: Port %d WWPN not found\n",
__func__, k);
wwpn[k] = 0ULL;
continue;
}
j = pci_vpd_info_field_size(&vpd_data[i]);
i += PCI_VPD_INFO_FLD_HDR_SIZE;
if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
dev_err(dev, "%s: Port %d WWPN incomplete or bad VPD\n",
__func__, k);
rc = -ENODEV;
goto out;
}
memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
if (unlikely(rc)) {
dev_err(dev, "%s: WWPN conversion failed for port %d\n",
__func__, k);
rc = -ENODEV;
goto out;
}
dev_dbg(dev, "%s: wwpn%d=%016llx\n", __func__, k, wwpn[k]);
}
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_pcr() - initialize the provisioning and control registers
* @cfg: Internal structure associated with the host.
*
* Also sets up fast access to the mapped registers and initializes AFU
* command fields that never change.
*/
static void init_pcr(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct sisl_ctrl_map __iomem *ctrl_map;
struct hwq *hwq;
void *cookie;
int i;
for (i = 0; i < MAX_CONTEXT; i++) {
ctrl_map = &afu->afu_map->ctrls[i].ctrl;
/* Disrupt any clients that could be running */
/* e.g. clients that survived a master restart */
writeq_be(0, &ctrl_map->rht_start);
writeq_be(0, &ctrl_map->rht_cnt_id);
writeq_be(0, &ctrl_map->ctx_cap);
}
/* Copy frequently used fields into hwq */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
cookie = hwq->ctx_cookie;
hwq->ctx_hndl = (u16) cfg->ops->process_element(cookie);
hwq->host_map = &afu->afu_map->hosts[hwq->ctx_hndl].host;
hwq->ctrl_map = &afu->afu_map->ctrls[hwq->ctx_hndl].ctrl;
/* Program the Endian Control for the master context */
writeq_be(SISL_ENDIAN_CTRL, &hwq->host_map->endian_ctrl);
}
}
/**
* init_global() - initialize AFU global registers
* @cfg: Internal structure associated with the host.
*/
static int init_global(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
struct sisl_host_map __iomem *hmap;
__be64 __iomem *fc_port_regs;
u64 wwpn[MAX_FC_PORTS]; /* wwpn of AFU ports */
int i = 0, num_ports = 0;
int rc = 0;
int j;
void *ctx;
u64 reg;
rc = read_vpd(cfg, &wwpn[0]);
if (rc) {
dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
goto out;
}
/* Set up RRQ and SQ in HWQ for master issued cmds */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
hmap = hwq->host_map;
writeq_be((u64) hwq->hrrq_start, &hmap->rrq_start);
writeq_be((u64) hwq->hrrq_end, &hmap->rrq_end);
hwq->hrrq_online = true;
if (afu_is_sq_cmd_mode(afu)) {
writeq_be((u64)hwq->hsq_start, &hmap->sq_start);
writeq_be((u64)hwq->hsq_end, &hmap->sq_end);
}
}
/* AFU configuration */
reg = readq_be(&afu->afu_map->global.regs.afu_config);
reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
/* enable all auto retry options and control endianness */
/* leave others at default: */
/* CTX_CAP write protected, mbox_r does not clear on read and */
/* checker on if dual afu */
writeq_be(reg, &afu->afu_map->global.regs.afu_config);
/* Global port select: select either port */
if (afu->internal_lun) {
/* Only use port 0 */
writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
num_ports = 0;
} else {
writeq_be(PORT_MASK(cfg->num_fc_ports),
&afu->afu_map->global.regs.afu_port_sel);
num_ports = cfg->num_fc_ports;
}
for (i = 0; i < num_ports; i++) {
fc_port_regs = get_fc_port_regs(cfg, i);
/* Unmask all errors (but they are still masked at AFU) */
writeq_be(0, &fc_port_regs[FC_ERRMSK / 8]);
/* Clear CRC error cnt & set a threshold */
(void)readq_be(&fc_port_regs[FC_CNT_CRCERR / 8]);
writeq_be(MC_CRC_THRESH, &fc_port_regs[FC_CRC_THRESH / 8]);
/* Set WWPNs. If already programmed, wwpn[i] is 0 */
if (wwpn[i] != 0)
afu_set_wwpn(afu, i, &fc_port_regs[0], wwpn[i]);
/* Programming WWPN back to back causes additional
* offline/online transitions and a PLOGI
*/
msleep(100);
}
if (afu_is_ocxl_lisn(afu)) {
/* Set up the LISN effective address for each master */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
ctx = hwq->ctx_cookie;
for (j = 0; j < hwq->num_irqs; j++) {
reg = cfg->ops->get_irq_objhndl(ctx, j);
writeq_be(reg, &hwq->ctrl_map->lisn_ea[j]);
}
reg = hwq->ctx_hndl;
writeq_be(SISL_LISN_PASID(reg, reg),
&hwq->ctrl_map->lisn_pasid[0]);
writeq_be(SISL_LISN_PASID(0UL, reg),
&hwq->ctrl_map->lisn_pasid[1]);
}
}
/* Set up master's own CTX_CAP to allow real mode, host translation */
/* tables, afu cmds and read/write GSCSI cmds. */
/* First, unlock ctx_cap write by reading mbox */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
(void)readq_be(&hwq->ctrl_map->mbox_r); /* unlock ctx_cap */
writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
&hwq->ctrl_map->ctx_cap);
}
/*
* Determine write-same unmap support for host by evaluating the unmap
* sector support bit of the context control register associated with
* the primary hardware queue. Note that while this status is reflected
* in a context register, the outcome can be assumed to be host-wide.
*/
hwq = get_hwq(afu, PRIMARY_HWQ);
reg = readq_be(&hwq->host_map->ctx_ctrl);
if (reg & SISL_CTX_CTRL_UNMAP_SECTOR)
cfg->ws_unmap = true;
/* Initialize heartbeat */
afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
out:
return rc;
}
/**
* start_afu() - initializes and starts the AFU
* @cfg: Internal structure associated with the host.
*/
static int start_afu(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
int rc = 0;
int i;
init_pcr(cfg);
/* Initialize each HWQ */
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
/* After an AFU reset, RRQ entries are stale, clear them */
memset(&hwq->rrq_entry, 0, sizeof(hwq->rrq_entry));
/* Initialize RRQ pointers */
hwq->hrrq_start = &hwq->rrq_entry[0];
hwq->hrrq_end = &hwq->rrq_entry[NUM_RRQ_ENTRY - 1];
hwq->hrrq_curr = hwq->hrrq_start;
hwq->toggle = 1;
/* Initialize spin locks */
spin_lock_init(&hwq->hrrq_slock);
spin_lock_init(&hwq->hsq_slock);
/* Initialize SQ */
if (afu_is_sq_cmd_mode(afu)) {
memset(&hwq->sq, 0, sizeof(hwq->sq));
hwq->hsq_start = &hwq->sq[0];
hwq->hsq_end = &hwq->sq[NUM_SQ_ENTRY - 1];
hwq->hsq_curr = hwq->hsq_start;
atomic_set(&hwq->hsq_credits, NUM_SQ_ENTRY - 1);
}
/* Initialize IRQ poll */
if (afu_is_irqpoll_enabled(afu))
irq_poll_init(&hwq->irqpoll, afu->irqpoll_weight,
cxlflash_irqpoll);
}
rc = init_global(cfg);
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* init_intr() - setup interrupt handlers for the master context
* @cfg: Internal structure associated with the host.
* @hwq: Hardware queue to initialize.
*
* Return: 0 on success, -errno on failure
*/
static enum undo_level init_intr(struct cxlflash_cfg *cfg,
struct hwq *hwq)
{
struct device *dev = &cfg->dev->dev;
void *ctx = hwq->ctx_cookie;
int rc = 0;
enum undo_level level = UNDO_NOOP;
bool is_primary_hwq = (hwq->index == PRIMARY_HWQ);
int num_irqs = hwq->num_irqs;
rc = cfg->ops->allocate_afu_irqs(ctx, num_irqs);
if (unlikely(rc)) {
dev_err(dev, "%s: allocate_afu_irqs failed rc=%d\n",
__func__, rc);
level = UNDO_NOOP;
goto out;
}
rc = cfg->ops->map_afu_irq(ctx, 1, cxlflash_sync_err_irq, hwq,
"SISL_MSI_SYNC_ERROR");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: SISL_MSI_SYNC_ERROR map failed\n", __func__);
level = FREE_IRQ;
goto out;
}
rc = cfg->ops->map_afu_irq(ctx, 2, cxlflash_rrq_irq, hwq,
"SISL_MSI_RRQ_UPDATED");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: SISL_MSI_RRQ_UPDATED map failed\n", __func__);
level = UNMAP_ONE;
goto out;
}
/* SISL_MSI_ASYNC_ERROR is setup only for the primary HWQ */
if (!is_primary_hwq)
goto out;
rc = cfg->ops->map_afu_irq(ctx, 3, cxlflash_async_err_irq, hwq,
"SISL_MSI_ASYNC_ERROR");
if (unlikely(rc <= 0)) {
dev_err(dev, "%s: SISL_MSI_ASYNC_ERROR map failed\n", __func__);
level = UNMAP_TWO;
goto out;
}
out:
return level;
}
/**
* init_mc() - create and register as the master context
* @cfg: Internal structure associated with the host.
* index: HWQ Index of the master context.
*
* Return: 0 on success, -errno on failure
*/
static int init_mc(struct cxlflash_cfg *cfg, u32 index)
{
void *ctx;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq = get_hwq(cfg->afu, index);
int rc = 0;
int num_irqs;
enum undo_level level;
hwq->afu = cfg->afu;
hwq->index = index;
INIT_LIST_HEAD(&hwq->pending_cmds);
if (index == PRIMARY_HWQ) {
ctx = cfg->ops->get_context(cfg->dev, cfg->afu_cookie);
num_irqs = 3;
} else {
ctx = cfg->ops->dev_context_init(cfg->dev, cfg->afu_cookie);
num_irqs = 2;
}
if (IS_ERR_OR_NULL(ctx)) {
rc = -ENOMEM;
goto err1;
}
WARN_ON(hwq->ctx_cookie);
hwq->ctx_cookie = ctx;
hwq->num_irqs = num_irqs;
/* Set it up as a master with the CXL */
cfg->ops->set_master(ctx);
/* Reset AFU when initializing primary context */
if (index == PRIMARY_HWQ) {
rc = cfg->ops->afu_reset(ctx);
if (unlikely(rc)) {
dev_err(dev, "%s: AFU reset failed rc=%d\n",
__func__, rc);
goto err1;
}
}
level = init_intr(cfg, hwq);
if (unlikely(level)) {
dev_err(dev, "%s: interrupt init failed rc=%d\n", __func__, rc);
goto err2;
}
/* Finally, activate the context by starting it */
rc = cfg->ops->start_context(hwq->ctx_cookie);
if (unlikely(rc)) {
dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
level = UNMAP_THREE;
goto err2;
}
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
err2:
term_intr(cfg, level, index);
if (index != PRIMARY_HWQ)
cfg->ops->release_context(ctx);
err1:
hwq->ctx_cookie = NULL;
goto out;
}
/**
* get_num_afu_ports() - determines and configures the number of AFU ports
* @cfg: Internal structure associated with the host.
*
* This routine determines the number of AFU ports by converting the global
* port selection mask. The converted value is only valid following an AFU
* reset (explicit or power-on). This routine must be invoked shortly after
* mapping as other routines are dependent on the number of ports during the
* initialization sequence.
*
* To support legacy AFUs that might not have reflected an initial global
* port mask (value read is 0), default to the number of ports originally
* supported by the cxlflash driver (2) before hardware with other port
* offerings was introduced.
*/
static void get_num_afu_ports(struct cxlflash_cfg *cfg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
u64 port_mask;
int num_fc_ports = LEGACY_FC_PORTS;
port_mask = readq_be(&afu->afu_map->global.regs.afu_port_sel);
if (port_mask != 0ULL)
num_fc_ports = min(ilog2(port_mask) + 1, MAX_FC_PORTS);
dev_dbg(dev, "%s: port_mask=%016llx num_fc_ports=%d\n",
__func__, port_mask, num_fc_ports);
cfg->num_fc_ports = num_fc_ports;
cfg->host->max_channel = PORTNUM2CHAN(num_fc_ports);
}
/**
* init_afu() - setup as master context and start AFU
* @cfg: Internal structure associated with the host.
*
* This routine is a higher level of control for configuring the
* AFU on probe and reset paths.
*
* Return: 0 on success, -errno on failure
*/
static int init_afu(struct cxlflash_cfg *cfg)
{
u64 reg;
int rc = 0;
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct hwq *hwq;
int i;
cfg->ops->perst_reloads_same_image(cfg->afu_cookie, true);
mutex_init(&afu->sync_active);
afu->num_hwqs = afu->desired_hwqs;
for (i = 0; i < afu->num_hwqs; i++) {
rc = init_mc(cfg, i);
if (rc) {
dev_err(dev, "%s: init_mc failed rc=%d index=%d\n",
__func__, rc, i);
goto err1;
}
}
/* Map the entire MMIO space of the AFU using the first context */
hwq = get_hwq(afu, PRIMARY_HWQ);
afu->afu_map = cfg->ops->psa_map(hwq->ctx_cookie);
if (!afu->afu_map) {
dev_err(dev, "%s: psa_map failed\n", __func__);
rc = -ENOMEM;
goto err1;
}
/* No byte reverse on reading afu_version or string will be backwards */
reg = readq(&afu->afu_map->global.regs.afu_version);
memcpy(afu->version, &reg, sizeof(reg));
afu->interface_version =
readq_be(&afu->afu_map->global.regs.interface_version);
if ((afu->interface_version + 1) == 0) {
dev_err(dev, "Back level AFU, please upgrade. AFU version %s "
"interface version %016llx\n", afu->version,
afu->interface_version);
rc = -EINVAL;
goto err1;
}
if (afu_is_sq_cmd_mode(afu)) {
afu->send_cmd = send_cmd_sq;
afu->context_reset = context_reset_sq;
} else {
afu->send_cmd = send_cmd_ioarrin;
afu->context_reset = context_reset_ioarrin;
}
dev_dbg(dev, "%s: afu_ver=%s interface_ver=%016llx\n", __func__,
afu->version, afu->interface_version);
get_num_afu_ports(cfg);
rc = start_afu(cfg);
if (rc) {
dev_err(dev, "%s: start_afu failed, rc=%d\n", __func__, rc);
goto err1;
}
afu_err_intr_init(cfg->afu);
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
hwq->room = readq_be(&hwq->host_map->cmd_room);
}
/* Restore the LUN mappings */
cxlflash_restore_luntable(cfg);
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
err1:
for (i = afu->num_hwqs - 1; i >= 0; i--) {
term_intr(cfg, UNMAP_THREE, i);
term_mc(cfg, i);
}
goto out;
}
/**
* afu_reset() - resets the AFU
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int afu_reset(struct cxlflash_cfg *cfg)
{
struct device *dev = &cfg->dev->dev;
int rc = 0;
/* Stop the context before the reset. Since the context is
* no longer available restart it after the reset is complete
*/
term_afu(cfg);
rc = init_afu(cfg);
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* drain_ioctls() - wait until all currently executing ioctls have completed
* @cfg: Internal structure associated with the host.
*
* Obtain write access to read/write semaphore that wraps ioctl
* handling to 'drain' ioctls currently executing.
*/
static void drain_ioctls(struct cxlflash_cfg *cfg)
{
down_write(&cfg->ioctl_rwsem);
up_write(&cfg->ioctl_rwsem);
}
/**
* cxlflash_async_reset_host() - asynchronous host reset handler
* @data: Private data provided while scheduling reset.
* @cookie: Cookie that can be used for checkpointing.
*/
static void cxlflash_async_reset_host(void *data, async_cookie_t cookie)
{
struct cxlflash_cfg *cfg = data;
struct device *dev = &cfg->dev->dev;
int rc = 0;
if (cfg->state != STATE_RESET) {
dev_dbg(dev, "%s: Not performing a reset, state=%d\n",
__func__, cfg->state);
goto out;
}
drain_ioctls(cfg);
cxlflash_mark_contexts_error(cfg);
rc = afu_reset(cfg);
if (rc)
cfg->state = STATE_FAILTERM;
else
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
out:
scsi_unblock_requests(cfg->host);
}
/**
* cxlflash_schedule_async_reset() - schedule an asynchronous host reset
* @cfg: Internal structure associated with the host.
*/
static void cxlflash_schedule_async_reset(struct cxlflash_cfg *cfg)
{
struct device *dev = &cfg->dev->dev;
if (cfg->state != STATE_NORMAL) {
dev_dbg(dev, "%s: Not performing reset state=%d\n",
__func__, cfg->state);
return;
}
cfg->state = STATE_RESET;
scsi_block_requests(cfg->host);
cfg->async_reset_cookie = async_schedule(cxlflash_async_reset_host,
cfg);
}
/**
* send_afu_cmd() - builds and sends an internal AFU command
* @afu: AFU associated with the host.
* @rcb: Pre-populated IOARCB describing command to send.
*
* The AFU can only take one internal AFU command at a time. This limitation is
* enforced by using a mutex to provide exclusive access to the AFU during the
* operation. This design point requires calling threads to not be on interrupt
* context due to the possibility of sleeping during concurrent AFU operations.
*
* The command status is optionally passed back to the caller when the caller
* populates the IOASA field of the IOARCB with a pointer to an IOASA structure.
*
* Return:
* 0 on success, -errno on failure
*/
static int send_afu_cmd(struct afu *afu, struct sisl_ioarcb *rcb)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct afu_cmd *cmd = NULL;
struct hwq *hwq = get_hwq(afu, PRIMARY_HWQ);
ulong lock_flags;
char *buf = NULL;
int rc = 0;
int nretry = 0;
if (cfg->state != STATE_NORMAL) {
dev_dbg(dev, "%s: Sync not required state=%u\n",
__func__, cfg->state);
return 0;
}
mutex_lock(&afu->sync_active);
atomic_inc(&afu->cmds_active);
buf = kmalloc(sizeof(*cmd) + __alignof__(*cmd) - 1, GFP_KERNEL);
if (unlikely(!buf)) {
dev_err(dev, "%s: no memory for command\n", __func__);
rc = -ENOMEM;
goto out;
}
cmd = (struct afu_cmd *)PTR_ALIGN(buf, __alignof__(*cmd));
retry:
memset(cmd, 0, sizeof(*cmd));
memcpy(&cmd->rcb, rcb, sizeof(*rcb));
INIT_LIST_HEAD(&cmd->queue);
init_completion(&cmd->cevent);
cmd->parent = afu;
cmd->hwq_index = hwq->index;
cmd->rcb.ctx_id = hwq->ctx_hndl;
dev_dbg(dev, "%s: afu=%p cmd=%p type=%02x nretry=%d\n",
__func__, afu, cmd, cmd->rcb.cdb[0], nretry);
rc = afu->send_cmd(afu, cmd);
if (unlikely(rc)) {
rc = -ENOBUFS;
goto out;
}
rc = wait_resp(afu, cmd);
switch (rc) {
case -ETIMEDOUT:
rc = afu->context_reset(hwq);
if (rc) {
/* Delete the command from pending_cmds list */
spin_lock_irqsave(&hwq->hsq_slock, lock_flags);
list_del(&cmd->list);
spin_unlock_irqrestore(&hwq->hsq_slock, lock_flags);
cxlflash_schedule_async_reset(cfg);
break;
}
/* fall through to retry */
case -EAGAIN:
if (++nretry < 2)
goto retry;
/* fall through to exit */
default:
break;
}
if (rcb->ioasa)
*rcb->ioasa = cmd->sa;
out:
atomic_dec(&afu->cmds_active);
mutex_unlock(&afu->sync_active);
kfree(buf);
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_afu_sync() - builds and sends an AFU sync command
* @afu: AFU associated with the host.
* @ctx: Identifies context requesting sync.
* @res: Identifies resource requesting sync.
* @mode: Type of sync to issue (lightweight, heavyweight, global).
*
* AFU sync operations are only necessary and allowed when the device is
* operating normally. When not operating normally, sync requests can occur as
* part of cleaning up resources associated with an adapter prior to removal.
* In this scenario, these requests are simply ignored (safe due to the AFU
* going away).
*
* Return:
* 0 on success, -errno on failure
*/
int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx, res_hndl_t res, u8 mode)
{
struct cxlflash_cfg *cfg = afu->parent;
struct device *dev = &cfg->dev->dev;
struct sisl_ioarcb rcb = { 0 };
dev_dbg(dev, "%s: afu=%p ctx=%u res=%u mode=%u\n",
__func__, afu, ctx, res, mode);
rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
rcb.msi = SISL_MSI_RRQ_UPDATED;
rcb.timeout = MC_AFU_SYNC_TIMEOUT;
rcb.cdb[0] = SISL_AFU_CMD_SYNC;
rcb.cdb[1] = mode;
put_unaligned_be16(ctx, &rcb.cdb[2]);
put_unaligned_be32(res, &rcb.cdb[4]);
return send_afu_cmd(afu, &rcb);
}
/**
* cxlflash_eh_abort_handler() - abort a SCSI command
* @scp: SCSI command to abort.
*
* CXL Flash devices do not support a single command abort. Reset the context
* as per SISLite specification. Flush any pending commands in the hardware
* queue before the reset.
*
* Return: SUCCESS/FAILED as defined in scsi/scsi.h
*/
static int cxlflash_eh_abort_handler(struct scsi_cmnd *scp)
{
int rc = FAILED;
struct Scsi_Host *host = scp->device->host;
struct cxlflash_cfg *cfg = shost_priv(host);
struct afu_cmd *cmd = sc_to_afuc(scp);
struct device *dev = &cfg->dev->dev;
struct afu *afu = cfg->afu;
struct hwq *hwq = get_hwq(afu, cmd->hwq_index);
dev_dbg(dev, "%s: (scp=%p) %d/%d/%d/%llu "
"cdb=(%08x-%08x-%08x-%08x)\n", __func__, scp, host->host_no,
scp->device->channel, scp->device->id, scp->device->lun,
get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
/* When the state is not normal, another reset/reload is in progress.
* Return failed and the mid-layer will invoke host reset handler.
*/
if (cfg->state != STATE_NORMAL) {
dev_dbg(dev, "%s: Invalid state for abort, state=%d\n",
__func__, cfg->state);
goto out;
}
rc = afu->context_reset(hwq);
if (unlikely(rc))
goto out;
rc = SUCCESS;
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_eh_device_reset_handler() - reset a single LUN
* @scp: SCSI command to send.
*
* Return:
* SUCCESS as defined in scsi/scsi.h
* FAILED as defined in scsi/scsi.h
*/
static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
{
int rc = SUCCESS;
struct scsi_device *sdev = scp->device;
struct Scsi_Host *host = sdev->host;
struct cxlflash_cfg *cfg = shost_priv(host);
struct device *dev = &cfg->dev->dev;
int rcr = 0;
dev_dbg(dev, "%s: %d/%d/%d/%llu\n", __func__,
host->host_no, sdev->channel, sdev->id, sdev->lun);
retry:
switch (cfg->state) {
case STATE_NORMAL:
rcr = send_tmf(cfg, sdev, TMF_LUN_RESET);
if (unlikely(rcr))
rc = FAILED;
break;
case STATE_RESET:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
goto retry;
default:
rc = FAILED;
break;
}
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_eh_host_reset_handler() - reset the host adapter
* @scp: SCSI command from stack identifying host.
*
* Following a reset, the state is evaluated again in case an EEH occurred
* during the reset. In such a scenario, the host reset will either yield
* until the EEH recovery is complete or return success or failure based
* upon the current device state.
*
* Return:
* SUCCESS as defined in scsi/scsi.h
* FAILED as defined in scsi/scsi.h
*/
static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
{
int rc = SUCCESS;
int rcr = 0;
struct Scsi_Host *host = scp->device->host;
struct cxlflash_cfg *cfg = shost_priv(host);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: %d\n", __func__, host->host_no);
switch (cfg->state) {
case STATE_NORMAL:
cfg->state = STATE_RESET;
drain_ioctls(cfg);
cxlflash_mark_contexts_error(cfg);
rcr = afu_reset(cfg);
if (rcr) {
rc = FAILED;
cfg->state = STATE_FAILTERM;
} else
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
ssleep(1);
/* fall through */
case STATE_RESET:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
if (cfg->state == STATE_NORMAL)
break;
/* fall through */
default:
rc = FAILED;
break;
}
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_change_queue_depth() - change the queue depth for the device
* @sdev: SCSI device destined for queue depth change.
* @qdepth: Requested queue depth value to set.
*
* The requested queue depth is capped to the maximum supported value.
*
* Return: The actual queue depth set.
*/
static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
{
if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
scsi_change_queue_depth(sdev, qdepth);
return sdev->queue_depth;
}
/**
* cxlflash_show_port_status() - queries and presents the current port status
* @port: Desired port for status reporting.
* @cfg: Internal structure associated with the host.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf or -EINVAL.
*/
static ssize_t cxlflash_show_port_status(u32 port,
struct cxlflash_cfg *cfg,
char *buf)
{
struct device *dev = &cfg->dev->dev;
char *disp_status;
u64 status;
__be64 __iomem *fc_port_regs;
WARN_ON(port >= MAX_FC_PORTS);
if (port >= cfg->num_fc_ports) {
dev_info(dev, "%s: Port %d not supported on this card.\n",
__func__, port);
return -EINVAL;
}
fc_port_regs = get_fc_port_regs(cfg, port);
status = readq_be(&fc_port_regs[FC_MTIP_STATUS / 8]);
status &= FC_MTIP_STATUS_MASK;
if (status == FC_MTIP_STATUS_ONLINE)
disp_status = "online";
else if (status == FC_MTIP_STATUS_OFFLINE)
disp_status = "offline";
else
disp_status = "unknown";
return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
}
/**
* port0_show() - queries and presents the current status of port 0
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port0_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_status(0, cfg, buf);
}
/**
* port1_show() - queries and presents the current status of port 1
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port1_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_status(1, cfg, buf);
}
/**
* port2_show() - queries and presents the current status of port 2
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port2_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_status(2, cfg, buf);
}
/**
* port3_show() - queries and presents the current status of port 3
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port3_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_status(3, cfg, buf);
}
/**
* lun_mode_show() - presents the current LUN mode of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the LUN mode.
* @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t lun_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
}
/**
* lun_mode_store() - sets the LUN mode of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the LUN mode.
* @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
* @count: Length of data resizing in @buf.
*
* The CXL Flash AFU supports a dummy LUN mode where the external
* links and storage are not required. Space on the FPGA is used
* to create 1 or 2 small LUNs which are presented to the system
* as if they were a normal storage device. This feature is useful
* during development and also provides manufacturing with a way
* to test the AFU without an actual device.
*
* 0 = external LUN[s] (default)
* 1 = internal LUN (1 x 64K, 512B blocks, id 0)
* 2 = internal LUN (1 x 64K, 4K blocks, id 0)
* 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
* 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t lun_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = shost_priv(shost);
struct afu *afu = cfg->afu;
int rc;
u32 lun_mode;
rc = kstrtouint(buf, 10, &lun_mode);
if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
afu->internal_lun = lun_mode;
/*
* When configured for internal LUN, there is only one channel,
* channel number 0, else there will be one less than the number
* of fc ports for this card.
*/
if (afu->internal_lun)
shost->max_channel = 0;
else
shost->max_channel = PORTNUM2CHAN(cfg->num_fc_ports);
afu_reset(cfg);
scsi_scan_host(cfg->host);
}
return count;
}
/**
* ioctl_version_show() - presents the current ioctl version of the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the ioctl version.
* @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t ioctl_version_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
ssize_t bytes = 0;
bytes = scnprintf(buf, PAGE_SIZE,
"disk: %u\n", DK_CXLFLASH_VERSION_0);
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
"host: %u\n", HT_CXLFLASH_VERSION_0);
return bytes;
}
/**
* cxlflash_show_port_lun_table() - queries and presents the port LUN table
* @port: Desired port for status reporting.
* @cfg: Internal structure associated with the host.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf or -EINVAL.
*/
static ssize_t cxlflash_show_port_lun_table(u32 port,
struct cxlflash_cfg *cfg,
char *buf)
{
struct device *dev = &cfg->dev->dev;
__be64 __iomem *fc_port_luns;
int i;
ssize_t bytes = 0;
WARN_ON(port >= MAX_FC_PORTS);
if (port >= cfg->num_fc_ports) {
dev_info(dev, "%s: Port %d not supported on this card.\n",
__func__, port);
return -EINVAL;
}
fc_port_luns = get_fc_port_luns(cfg, port);
for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
"%03d: %016llx\n",
i, readq_be(&fc_port_luns[i]));
return bytes;
}
/**
* port0_lun_table_show() - presents the current LUN table of port 0
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port0_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_lun_table(0, cfg, buf);
}
/**
* port1_lun_table_show() - presents the current LUN table of port 1
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port1_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_lun_table(1, cfg, buf);
}
/**
* port2_lun_table_show() - presents the current LUN table of port 2
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port2_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_lun_table(2, cfg, buf);
}
/**
* port3_lun_table_show() - presents the current LUN table of port 3
* @dev: Generic device associated with the host owning the port.
* @attr: Device attribute representing the port.
* @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t port3_lun_table_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
return cxlflash_show_port_lun_table(3, cfg, buf);
}
/**
* irqpoll_weight_show() - presents the current IRQ poll weight for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the IRQ poll weight.
* @buf: Buffer of length PAGE_SIZE to report back the current IRQ poll
* weight in ASCII.
*
* An IRQ poll weight of 0 indicates polling is disabled.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t irqpoll_weight_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%u\n", afu->irqpoll_weight);
}
/**
* irqpoll_weight_store() - sets the current IRQ poll weight for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the IRQ poll weight.
* @buf: Buffer of length PAGE_SIZE containing the desired IRQ poll
* weight in ASCII.
* @count: Length of data resizing in @buf.
*
* An IRQ poll weight of 0 indicates polling is disabled.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t irqpoll_weight_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct device *cfgdev = &cfg->dev->dev;
struct afu *afu = cfg->afu;
struct hwq *hwq;
u32 weight;
int rc, i;
rc = kstrtouint(buf, 10, &weight);
if (rc)
return -EINVAL;
if (weight > 256) {
dev_info(cfgdev,
"Invalid IRQ poll weight. It must be 256 or less.\n");
return -EINVAL;
}
if (weight == afu->irqpoll_weight) {
dev_info(cfgdev,
"Current IRQ poll weight has the same weight.\n");
return -EINVAL;
}
if (afu_is_irqpoll_enabled(afu)) {
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
irq_poll_disable(&hwq->irqpoll);
}
}
afu->irqpoll_weight = weight;
if (weight > 0) {
for (i = 0; i < afu->num_hwqs; i++) {
hwq = get_hwq(afu, i);
irq_poll_init(&hwq->irqpoll, weight, cxlflash_irqpoll);
}
}
return count;
}
/**
* num_hwqs_show() - presents the number of hardware queues for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the number of hardware queues.
* @buf: Buffer of length PAGE_SIZE to report back the number of hardware
* queues in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t num_hwqs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%u\n", afu->num_hwqs);
}
/**
* num_hwqs_store() - sets the number of hardware queues for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the number of hardware queues.
* @buf: Buffer of length PAGE_SIZE containing the number of hardware
* queues in ASCII.
* @count: Length of data resizing in @buf.
*
* n > 0: num_hwqs = n
* n = 0: num_hwqs = num_online_cpus()
* n < 0: num_online_cpus() / abs(n)
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t num_hwqs_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
int rc;
int nhwqs, num_hwqs;
rc = kstrtoint(buf, 10, &nhwqs);
if (rc)
return -EINVAL;
if (nhwqs >= 1)
num_hwqs = nhwqs;
else if (nhwqs == 0)
num_hwqs = num_online_cpus();
else
num_hwqs = num_online_cpus() / abs(nhwqs);
afu->desired_hwqs = min(num_hwqs, CXLFLASH_MAX_HWQS);
WARN_ON_ONCE(afu->desired_hwqs == 0);
retry:
switch (cfg->state) {
case STATE_NORMAL:
cfg->state = STATE_RESET;
drain_ioctls(cfg);
cxlflash_mark_contexts_error(cfg);
rc = afu_reset(cfg);
if (rc)
cfg->state = STATE_FAILTERM;
else
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
break;
case STATE_RESET:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
if (cfg->state == STATE_NORMAL)
goto retry;
default:
/* Ideally should not happen */
dev_err(dev, "%s: Device is not ready, state=%d\n",
__func__, cfg->state);
break;
}
return count;
}
static const char *hwq_mode_name[MAX_HWQ_MODE] = { "rr", "tag", "cpu" };
/**
* hwq_mode_show() - presents the HWQ steering mode for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the HWQ steering mode.
* @buf: Buffer of length PAGE_SIZE to report back the HWQ steering mode
* as a character string.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t hwq_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct cxlflash_cfg *cfg = shost_priv(class_to_shost(dev));
struct afu *afu = cfg->afu;
return scnprintf(buf, PAGE_SIZE, "%s\n", hwq_mode_name[afu->hwq_mode]);
}
/**
* hwq_mode_store() - sets the HWQ steering mode for the host
* @dev: Generic device associated with the host.
* @attr: Device attribute representing the HWQ steering mode.
* @buf: Buffer of length PAGE_SIZE containing the HWQ steering mode
* as a character string.
* @count: Length of data resizing in @buf.
*
* rr = Round-Robin
* tag = Block MQ Tagging
* cpu = CPU Affinity
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t hwq_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct cxlflash_cfg *cfg = shost_priv(shost);
struct device *cfgdev = &cfg->dev->dev;
struct afu *afu = cfg->afu;
int i;
u32 mode = MAX_HWQ_MODE;
for (i = 0; i < MAX_HWQ_MODE; i++) {
if (!strncmp(hwq_mode_name[i], buf, strlen(hwq_mode_name[i]))) {
mode = i;
break;
}
}
if (mode >= MAX_HWQ_MODE) {
dev_info(cfgdev, "Invalid HWQ steering mode.\n");
return -EINVAL;
}
if ((mode == HWQ_MODE_TAG) && !shost_use_blk_mq(shost)) {
dev_info(cfgdev, "SCSI-MQ is not enabled, use a different "
"HWQ steering mode.\n");
return -EINVAL;
}
afu->hwq_mode = mode;
return count;
}
/**
* mode_show() - presents the current mode of the device
* @dev: Generic device associated with the device.
* @attr: Device attribute representing the device mode.
* @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
*
* Return: The size of the ASCII string returned in @buf.
*/
static ssize_t mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct scsi_device *sdev = to_scsi_device(dev);
return scnprintf(buf, PAGE_SIZE, "%s\n",
sdev->hostdata ? "superpipe" : "legacy");
}
/*
* Host attributes
*/
static DEVICE_ATTR_RO(port0);
static DEVICE_ATTR_RO(port1);
static DEVICE_ATTR_RO(port2);
static DEVICE_ATTR_RO(port3);
static DEVICE_ATTR_RW(lun_mode);
static DEVICE_ATTR_RO(ioctl_version);
static DEVICE_ATTR_RO(port0_lun_table);
static DEVICE_ATTR_RO(port1_lun_table);
static DEVICE_ATTR_RO(port2_lun_table);
static DEVICE_ATTR_RO(port3_lun_table);
static DEVICE_ATTR_RW(irqpoll_weight);
static DEVICE_ATTR_RW(num_hwqs);
static DEVICE_ATTR_RW(hwq_mode);
static struct device_attribute *cxlflash_host_attrs[] = {
&dev_attr_port0,
&dev_attr_port1,
&dev_attr_port2,
&dev_attr_port3,
&dev_attr_lun_mode,
&dev_attr_ioctl_version,
&dev_attr_port0_lun_table,
&dev_attr_port1_lun_table,
&dev_attr_port2_lun_table,
&dev_attr_port3_lun_table,
&dev_attr_irqpoll_weight,
&dev_attr_num_hwqs,
&dev_attr_hwq_mode,
NULL
};
/*
* Device attributes
*/
static DEVICE_ATTR_RO(mode);
static struct device_attribute *cxlflash_dev_attrs[] = {
&dev_attr_mode,
NULL
};
/*
* Host template
*/
static struct scsi_host_template driver_template = {
.module = THIS_MODULE,
.name = CXLFLASH_ADAPTER_NAME,
.info = cxlflash_driver_info,
.ioctl = cxlflash_ioctl,
.proc_name = CXLFLASH_NAME,
.queuecommand = cxlflash_queuecommand,
.eh_abort_handler = cxlflash_eh_abort_handler,
.eh_device_reset_handler = cxlflash_eh_device_reset_handler,
.eh_host_reset_handler = cxlflash_eh_host_reset_handler,
.change_queue_depth = cxlflash_change_queue_depth,
.cmd_per_lun = CXLFLASH_MAX_CMDS_PER_LUN,
.can_queue = CXLFLASH_MAX_CMDS,
.cmd_size = sizeof(struct afu_cmd) + __alignof__(struct afu_cmd) - 1,
.this_id = -1,
.sg_tablesize = 1, /* No scatter gather support */
.max_sectors = CXLFLASH_MAX_SECTORS,
.use_clustering = ENABLE_CLUSTERING,
.shost_attrs = cxlflash_host_attrs,
.sdev_attrs = cxlflash_dev_attrs,
};
/*
* Device dependent values
*/
static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS,
CXLFLASH_WWPN_VPD_REQUIRED };
static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS,
CXLFLASH_NOTIFY_SHUTDOWN };
static struct dev_dependent_vals dev_briard_vals = { CXLFLASH_MAX_SECTORS,
(CXLFLASH_NOTIFY_SHUTDOWN |
CXLFLASH_OCXL_DEV) };
/*
* PCI device binding table
*/
static struct pci_device_id cxlflash_pci_table[] = {
{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
{PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_BRIARD,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_briard_vals},
{}
};
MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
/**
* cxlflash_worker_thread() - work thread handler for the AFU
* @work: Work structure contained within cxlflash associated with host.
*
* Handles the following events:
* - Link reset which cannot be performed on interrupt context due to
* blocking up to a few seconds
* - Rescan the host
*/
static void cxlflash_worker_thread(struct work_struct *work)
{
struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
work_q);
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
__be64 __iomem *fc_port_regs;
int port;
ulong lock_flags;
/* Avoid MMIO if the device has failed */
if (cfg->state != STATE_NORMAL)
return;
spin_lock_irqsave(cfg->host->host_lock, lock_flags);
if (cfg->lr_state == LINK_RESET_REQUIRED) {
port = cfg->lr_port;
if (port < 0)
dev_err(dev, "%s: invalid port index %d\n",
__func__, port);
else {
spin_unlock_irqrestore(cfg->host->host_lock,
lock_flags);
/* The reset can block... */
fc_port_regs = get_fc_port_regs(cfg, port);
afu_link_reset(afu, port, fc_port_regs);
spin_lock_irqsave(cfg->host->host_lock, lock_flags);
}
cfg->lr_state = LINK_RESET_COMPLETE;
}
spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
scsi_scan_host(cfg->host);
}
/**
* cxlflash_chr_open() - character device open handler
* @inode: Device inode associated with this character device.
* @file: File pointer for this device.
*
* Only users with admin privileges are allowed to open the character device.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_chr_open(struct inode *inode, struct file *file)
{
struct cxlflash_cfg *cfg;
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
cfg = container_of(inode->i_cdev, struct cxlflash_cfg, cdev);
file->private_data = cfg;
return 0;
}
/**
* decode_hioctl() - translates encoded host ioctl to easily identifiable string
* @cmd: The host ioctl command to decode.
*
* Return: A string identifying the decoded host ioctl.
*/
static char *decode_hioctl(int cmd)
{
switch (cmd) {
case HT_CXLFLASH_LUN_PROVISION:
return __stringify_1(HT_CXLFLASH_LUN_PROVISION);
}
return "UNKNOWN";
}
/**
* cxlflash_lun_provision() - host LUN provisioning handler
* @cfg: Internal structure associated with the host.
* @arg: Kernel copy of userspace ioctl data structure.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_lun_provision(struct cxlflash_cfg *cfg,
struct ht_cxlflash_lun_provision *lunprov)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct sisl_ioarcb rcb;
struct sisl_ioasa asa;
__be64 __iomem *fc_port_regs;
u16 port = lunprov->port;
u16 scmd = lunprov->hdr.subcmd;
u16 type;
u64 reg;
u64 size;
u64 lun_id;
int rc = 0;
if (!afu_is_lun_provision(afu)) {
rc = -ENOTSUPP;
goto out;
}
if (port >= cfg->num_fc_ports) {
rc = -EINVAL;
goto out;
}
switch (scmd) {
case HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN:
type = SISL_AFU_LUN_PROVISION_CREATE;
size = lunprov->size;
lun_id = 0;
break;
case HT_CXLFLASH_LUN_PROVISION_SUBCMD_DELETE_LUN:
type = SISL_AFU_LUN_PROVISION_DELETE;
size = 0;
lun_id = lunprov->lun_id;
break;
case HT_CXLFLASH_LUN_PROVISION_SUBCMD_QUERY_PORT:
fc_port_regs = get_fc_port_regs(cfg, port);
reg = readq_be(&fc_port_regs[FC_MAX_NUM_LUNS / 8]);
lunprov->max_num_luns = reg;
reg = readq_be(&fc_port_regs[FC_CUR_NUM_LUNS / 8]);
lunprov->cur_num_luns = reg;
reg = readq_be(&fc_port_regs[FC_MAX_CAP_PORT / 8]);
lunprov->max_cap_port = reg;
reg = readq_be(&fc_port_regs[FC_CUR_CAP_PORT / 8]);
lunprov->cur_cap_port = reg;
goto out;
default:
rc = -EINVAL;
goto out;
}
memset(&rcb, 0, sizeof(rcb));
memset(&asa, 0, sizeof(asa));
rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
rcb.lun_id = lun_id;
rcb.msi = SISL_MSI_RRQ_UPDATED;
rcb.timeout = MC_LUN_PROV_TIMEOUT;
rcb.ioasa = &asa;
rcb.cdb[0] = SISL_AFU_CMD_LUN_PROVISION;
rcb.cdb[1] = type;
rcb.cdb[2] = port;
put_unaligned_be64(size, &rcb.cdb[8]);
rc = send_afu_cmd(afu, &rcb);
if (rc) {
dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
__func__, rc, asa.ioasc, asa.afu_extra);
goto out;
}
if (scmd == HT_CXLFLASH_LUN_PROVISION_SUBCMD_CREATE_LUN) {
lunprov->lun_id = (u64)asa.lunid_hi << 32 | asa.lunid_lo;
memcpy(lunprov->wwid, asa.wwid, sizeof(lunprov->wwid));
}
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_afu_debug() - host AFU debug handler
* @cfg: Internal structure associated with the host.
* @arg: Kernel copy of userspace ioctl data structure.
*
* For debug requests requiring a data buffer, always provide an aligned
* (cache line) buffer to the AFU to appease any alignment requirements.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_afu_debug(struct cxlflash_cfg *cfg,
struct ht_cxlflash_afu_debug *afu_dbg)
{
struct afu *afu = cfg->afu;
struct device *dev = &cfg->dev->dev;
struct sisl_ioarcb rcb;
struct sisl_ioasa asa;
char *buf = NULL;
char *kbuf = NULL;
void __user *ubuf = (__force void __user *)afu_dbg->data_ea;
u16 req_flags = SISL_REQ_FLAGS_AFU_CMD;
u32 ulen = afu_dbg->data_len;
bool is_write = afu_dbg->hdr.flags & HT_CXLFLASH_HOST_WRITE;
int rc = 0;
if (!afu_is_afu_debug(afu)) {
rc = -ENOTSUPP;
goto out;
}
if (ulen) {
req_flags |= SISL_REQ_FLAGS_SUP_UNDERRUN;
if (ulen > HT_CXLFLASH_AFU_DEBUG_MAX_DATA_LEN) {
rc = -EINVAL;
goto out;
}
buf = kmalloc(ulen + cache_line_size() - 1, GFP_KERNEL);
if (unlikely(!buf)) {
rc = -ENOMEM;
goto out;
}
kbuf = PTR_ALIGN(buf, cache_line_size());
if (is_write) {
req_flags |= SISL_REQ_FLAGS_HOST_WRITE;
if (copy_from_user(kbuf, ubuf, ulen)) {
rc = -EFAULT;
goto out;
}
}
}
memset(&rcb, 0, sizeof(rcb));
memset(&asa, 0, sizeof(asa));
rcb.req_flags = req_flags;
rcb.msi = SISL_MSI_RRQ_UPDATED;
rcb.timeout = MC_AFU_DEBUG_TIMEOUT;
rcb.ioasa = &asa;
if (ulen) {
rcb.data_len = ulen;
rcb.data_ea = (uintptr_t)kbuf;
}
rcb.cdb[0] = SISL_AFU_CMD_DEBUG;
memcpy(&rcb.cdb[4], afu_dbg->afu_subcmd,
HT_CXLFLASH_AFU_DEBUG_SUBCMD_LEN);
rc = send_afu_cmd(afu, &rcb);
if (rc) {
dev_err(dev, "%s: send_afu_cmd failed rc=%d asc=%08x afux=%x\n",
__func__, rc, asa.ioasc, asa.afu_extra);
goto out;
}
if (ulen && !is_write) {
if (copy_to_user(ubuf, kbuf, ulen))
rc = -EFAULT;
}
out:
kfree(buf);
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
}
/**
* cxlflash_chr_ioctl() - character device IOCTL handler
* @file: File pointer for this device.
* @cmd: IOCTL command.
* @arg: Userspace ioctl data structure.
*
* A read/write semaphore is used to implement a 'drain' of currently
* running ioctls. The read semaphore is taken at the beginning of each
* ioctl thread and released upon concluding execution. Additionally the
* semaphore should be released and then reacquired in any ioctl execution
* path which will wait for an event to occur that is outside the scope of
* the ioctl (i.e. an adapter reset). To drain the ioctls currently running,
* a thread simply needs to acquire the write semaphore.
*
* Return: 0 on success, -errno on failure
*/
static long cxlflash_chr_ioctl(struct file *file, unsigned int cmd,
unsigned long arg)
{
typedef int (*hioctl) (struct cxlflash_cfg *, void *);
struct cxlflash_cfg *cfg = file->private_data;
struct device *dev = &cfg->dev->dev;
char buf[sizeof(union cxlflash_ht_ioctls)];
void __user *uarg = (void __user *)arg;
struct ht_cxlflash_hdr *hdr;
size_t size = 0;
bool known_ioctl = false;
int idx = 0;
int rc = 0;
hioctl do_ioctl = NULL;
static const struct {
size_t size;
hioctl ioctl;
} ioctl_tbl[] = { /* NOTE: order matters here */
{ sizeof(struct ht_cxlflash_lun_provision),
(hioctl)cxlflash_lun_provision },
{ sizeof(struct ht_cxlflash_afu_debug),
(hioctl)cxlflash_afu_debug },
};
/* Hold read semaphore so we can drain if needed */
down_read(&cfg->ioctl_rwsem);
dev_dbg(dev, "%s: cmd=%u idx=%d tbl_size=%lu\n",
__func__, cmd, idx, sizeof(ioctl_tbl));
switch (cmd) {
case HT_CXLFLASH_LUN_PROVISION:
case HT_CXLFLASH_AFU_DEBUG:
known_ioctl = true;
idx = _IOC_NR(HT_CXLFLASH_LUN_PROVISION) - _IOC_NR(cmd);
size = ioctl_tbl[idx].size;
do_ioctl = ioctl_tbl[idx].ioctl;
if (likely(do_ioctl))
break;
/* fall through */
default:
rc = -EINVAL;
goto out;
}
if (unlikely(copy_from_user(&buf, uarg, size))) {
dev_err(dev, "%s: copy_from_user() fail "
"size=%lu cmd=%d (%s) uarg=%p\n",
__func__, size, cmd, decode_hioctl(cmd), uarg);
rc = -EFAULT;
goto out;
}
hdr = (struct ht_cxlflash_hdr *)&buf;
if (hdr->version != HT_CXLFLASH_VERSION_0) {
dev_dbg(dev, "%s: Version %u not supported for %s\n",
__func__, hdr->version, decode_hioctl(cmd));
rc = -EINVAL;
goto out;
}
if (hdr->rsvd[0] || hdr->rsvd[1] || hdr->return_flags) {
dev_dbg(dev, "%s: Reserved/rflags populated\n", __func__);
rc = -EINVAL;
goto out;
}
rc = do_ioctl(cfg, (void *)&buf);
if (likely(!rc))
if (unlikely(copy_to_user(uarg, &buf, size))) {
dev_err(dev, "%s: copy_to_user() fail "
"size=%lu cmd=%d (%s) uarg=%p\n",
__func__, size, cmd, decode_hioctl(cmd), uarg);
rc = -EFAULT;
}
/* fall through to exit */
out:
up_read(&cfg->ioctl_rwsem);
if (unlikely(rc && known_ioctl))
dev_err(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
__func__, decode_hioctl(cmd), cmd, rc);
else
dev_dbg(dev, "%s: ioctl %s (%08X) returned rc=%d\n",
__func__, decode_hioctl(cmd), cmd, rc);
return rc;
}
/*
* Character device file operations
*/
static const struct file_operations cxlflash_chr_fops = {
.owner = THIS_MODULE,
.open = cxlflash_chr_open,
.unlocked_ioctl = cxlflash_chr_ioctl,
.compat_ioctl = cxlflash_chr_ioctl,
};
/**
* init_chrdev() - initialize the character device for the host
* @cfg: Internal structure associated with the host.
*
* Return: 0 on success, -errno on failure
*/
static int init_chrdev(struct cxlflash_cfg *cfg)
{
struct device *dev = &cfg->dev->dev;
struct device *char_dev;
dev_t devno;
int minor;
int rc = 0;
minor = cxlflash_get_minor();
if (unlikely(minor < 0)) {
dev_err(dev, "%s: Exhausted allowed adapters\n", __func__);
rc = -ENOSPC;
goto out;
}
devno = MKDEV(cxlflash_major, minor);
cdev_init(&cfg->cdev, &cxlflash_chr_fops);
rc = cdev_add(&cfg->cdev, devno, 1);
if (rc) {
dev_err(dev, "%s: cdev_add failed rc=%d\n", __func__, rc);
goto err1;
}
char_dev = device_create(cxlflash_class, NULL, devno,
NULL, "cxlflash%d", minor);
if (IS_ERR(char_dev)) {
rc = PTR_ERR(char_dev);
dev_err(dev, "%s: device_create failed rc=%d\n",
__func__, rc);
goto err2;
}
cfg->chardev = char_dev;
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
err2:
cdev_del(&cfg->cdev);
err1:
cxlflash_put_minor(minor);
goto out;
}
/**
* cxlflash_probe() - PCI entry point to add host
* @pdev: PCI device associated with the host.
* @dev_id: PCI device id associated with device.
*
* The device will initially start out in a 'probing' state and
* transition to the 'normal' state at the end of a successful
* probe. Should an EEH event occur during probe, the notification
* thread (error_detected()) will wait until the probe handler
* is nearly complete. At that time, the device will be moved to
* a 'probed' state and the EEH thread woken up to drive the slot
* reset and recovery (device moves to 'normal' state). Meanwhile,
* the probe will be allowed to exit successfully.
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_probe(struct pci_dev *pdev,
const struct pci_device_id *dev_id)
{
struct Scsi_Host *host;
struct cxlflash_cfg *cfg = NULL;
struct device *dev = &pdev->dev;
struct dev_dependent_vals *ddv;
int rc = 0;
int k;
dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
__func__, pdev->irq);
ddv = (struct dev_dependent_vals *)dev_id->driver_data;
driver_template.max_sectors = ddv->max_sectors;
host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
if (!host) {
dev_err(dev, "%s: scsi_host_alloc failed\n", __func__);
rc = -ENOMEM;
goto out;
}
host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
host->unique_id = host->host_no;
host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
cfg = shost_priv(host);
cfg->host = host;
rc = alloc_mem(cfg);
if (rc) {
dev_err(dev, "%s: alloc_mem failed\n", __func__);
rc = -ENOMEM;
scsi_host_put(cfg->host);
goto out;
}
cfg->init_state = INIT_STATE_NONE;
cfg->dev = pdev;
cfg->cxl_fops = cxlflash_cxl_fops;
cfg->ops = cxlflash_assign_ops(ddv);
WARN_ON_ONCE(!cfg->ops);
/*
* Promoted LUNs move to the top of the LUN table. The rest stay on
* the bottom half. The bottom half grows from the end (index = 255),
* whereas the top half grows from the beginning (index = 0).
*
* Initialize the last LUN index for all possible ports.
*/
cfg->promote_lun_index = 0;
for (k = 0; k < MAX_FC_PORTS; k++)
cfg->last_lun_index[k] = CXLFLASH_NUM_VLUNS/2 - 1;
cfg->dev_id = (struct pci_device_id *)dev_id;
init_waitqueue_head(&cfg->tmf_waitq);
init_waitqueue_head(&cfg->reset_waitq);
INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
cfg->lr_state = LINK_RESET_INVALID;
cfg->lr_port = -1;
spin_lock_init(&cfg->tmf_slock);
mutex_init(&cfg->ctx_tbl_list_mutex);
mutex_init(&cfg->ctx_recovery_mutex);
init_rwsem(&cfg->ioctl_rwsem);
INIT_LIST_HEAD(&cfg->ctx_err_recovery);
INIT_LIST_HEAD(&cfg->lluns);
pci_set_drvdata(pdev, cfg);
rc = init_pci(cfg);
if (rc) {
dev_err(dev, "%s: init_pci failed rc=%d\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_PCI;
cfg->afu_cookie = cfg->ops->create_afu(pdev);
if (unlikely(!cfg->afu_cookie)) {
dev_err(dev, "%s: create_afu failed\n", __func__);
goto out_remove;
}
rc = init_afu(cfg);
if (rc && !wq_has_sleeper(&cfg->reset_waitq)) {
dev_err(dev, "%s: init_afu failed rc=%d\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_AFU;
rc = init_scsi(cfg);
if (rc) {
dev_err(dev, "%s: init_scsi failed rc=%d\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_SCSI;
rc = init_chrdev(cfg);
if (rc) {
dev_err(dev, "%s: init_chrdev failed rc=%d\n", __func__, rc);
goto out_remove;
}
cfg->init_state = INIT_STATE_CDEV;
if (wq_has_sleeper(&cfg->reset_waitq)) {
cfg->state = STATE_PROBED;
wake_up_all(&cfg->reset_waitq);
} else
cfg->state = STATE_NORMAL;
out:
dev_dbg(dev, "%s: returning rc=%d\n", __func__, rc);
return rc;
out_remove:
cxlflash_remove(pdev);
goto out;
}
/**
* cxlflash_pci_error_detected() - called when a PCI error is detected
* @pdev: PCI device struct.
* @state: PCI channel state.
*
* When an EEH occurs during an active reset, wait until the reset is
* complete and then take action based upon the device state.
*
* Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
*/
static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
int rc = 0;
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
switch (state) {
case pci_channel_io_frozen:
wait_event(cfg->reset_waitq, cfg->state != STATE_RESET &&
cfg->state != STATE_PROBING);
if (cfg->state == STATE_FAILTERM)
return PCI_ERS_RESULT_DISCONNECT;
cfg->state = STATE_RESET;
scsi_block_requests(cfg->host);
drain_ioctls(cfg);
rc = cxlflash_mark_contexts_error(cfg);
if (unlikely(rc))
dev_err(dev, "%s: Failed to mark user contexts rc=%d\n",
__func__, rc);
term_afu(cfg);
return PCI_ERS_RESULT_NEED_RESET;
case pci_channel_io_perm_failure:
cfg->state = STATE_FAILTERM;
wake_up_all(&cfg->reset_waitq);
scsi_unblock_requests(cfg->host);
return PCI_ERS_RESULT_DISCONNECT;
default:
break;
}
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* cxlflash_pci_slot_reset() - called when PCI slot has been reset
* @pdev: PCI device struct.
*
* This routine is called by the pci error recovery code after the PCI
* slot has been reset, just before we should resume normal operations.
*
* Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
*/
static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
{
int rc = 0;
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
rc = init_afu(cfg);
if (unlikely(rc)) {
dev_err(dev, "%s: EEH recovery failed rc=%d\n", __func__, rc);
return PCI_ERS_RESULT_DISCONNECT;
}
return PCI_ERS_RESULT_RECOVERED;
}
/**
* cxlflash_pci_resume() - called when normal operation can resume
* @pdev: PCI device struct
*/
static void cxlflash_pci_resume(struct pci_dev *pdev)
{
struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
struct device *dev = &cfg->dev->dev;
dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
cfg->state = STATE_NORMAL;
wake_up_all(&cfg->reset_waitq);
scsi_unblock_requests(cfg->host);
}
/**
* cxlflash_devnode() - provides devtmpfs for devices in the cxlflash class
* @dev: Character device.
* @mode: Mode that can be used to verify access.
*
* Return: Allocated string describing the devtmpfs structure.
*/
static char *cxlflash_devnode(struct device *dev, umode_t *mode)
{
return kasprintf(GFP_KERNEL, "cxlflash/%s", dev_name(dev));
}
/**
* cxlflash_class_init() - create character device class
*
* Return: 0 on success, -errno on failure
*/
static int cxlflash_class_init(void)
{
dev_t devno;
int rc = 0;
rc = alloc_chrdev_region(&devno, 0, CXLFLASH_MAX_ADAPTERS, "cxlflash");
if (unlikely(rc)) {
pr_err("%s: alloc_chrdev_region failed rc=%d\n", __func__, rc);
goto out;
}
cxlflash_major = MAJOR(devno);
cxlflash_class = class_create(THIS_MODULE, "cxlflash");
if (IS_ERR(cxlflash_class)) {
rc = PTR_ERR(cxlflash_class);
pr_err("%s: class_create failed rc=%d\n", __func__, rc);
goto err;
}
cxlflash_class->devnode = cxlflash_devnode;
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
err:
unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
goto out;
}
/**
* cxlflash_class_exit() - destroy character device class
*/
static void cxlflash_class_exit(void)
{
dev_t devno = MKDEV(cxlflash_major, 0);
class_destroy(cxlflash_class);
unregister_chrdev_region(devno, CXLFLASH_MAX_ADAPTERS);
}
static const struct pci_error_handlers cxlflash_err_handler = {
.error_detected = cxlflash_pci_error_detected,
.slot_reset = cxlflash_pci_slot_reset,
.resume = cxlflash_pci_resume,
};
/*
* PCI device structure
*/
static struct pci_driver cxlflash_driver = {
.name = CXLFLASH_NAME,
.id_table = cxlflash_pci_table,
.probe = cxlflash_probe,
.remove = cxlflash_remove,
.shutdown = cxlflash_remove,
.err_handler = &cxlflash_err_handler,
};
/**
* init_cxlflash() - module entry point
*
* Return: 0 on success, -errno on failure
*/
static int __init init_cxlflash(void)
{
int rc;
check_sizes();
cxlflash_list_init();
rc = cxlflash_class_init();
if (unlikely(rc))
goto out;
rc = pci_register_driver(&cxlflash_driver);
if (unlikely(rc))
goto err;
out:
pr_debug("%s: returning rc=%d\n", __func__, rc);
return rc;
err:
cxlflash_class_exit();
goto out;
}
/**
* exit_cxlflash() - module exit point
*/
static void __exit exit_cxlflash(void)
{
cxlflash_term_global_luns();
cxlflash_free_errpage();
pci_unregister_driver(&cxlflash_driver);
cxlflash_class_exit();
}
module_init(init_cxlflash);
module_exit(exit_cxlflash);