mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 10:59:53 +07:00
05016b0f0a
Pull getname/putname updates from Al Viro: "Rework of getname/getname_kernel/etc., mostly from Paul Moore. Gets rid of quite a pile of kludges between namei and audit..." * 'getname2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: audit: replace getname()/putname() hacks with reference counters audit: fix filename matching in __audit_inode() and __audit_inode_child() audit: enable filename recording via getname_kernel() simpler calling conventions for filename_mountpoint() fs: create proper filename objects using getname_kernel() fs: rework getname_kernel to handle up to PATH_MAX sized filenames cut down the number of do_path_lookup() callers
2434 lines
64 KiB
C
2434 lines
64 KiB
C
/* auditsc.c -- System-call auditing support
|
|
* Handles all system-call specific auditing features.
|
|
*
|
|
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
|
|
* Copyright 2005 Hewlett-Packard Development Company, L.P.
|
|
* Copyright (C) 2005, 2006 IBM Corporation
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
|
|
*
|
|
* Many of the ideas implemented here are from Stephen C. Tweedie,
|
|
* especially the idea of avoiding a copy by using getname.
|
|
*
|
|
* The method for actual interception of syscall entry and exit (not in
|
|
* this file -- see entry.S) is based on a GPL'd patch written by
|
|
* okir@suse.de and Copyright 2003 SuSE Linux AG.
|
|
*
|
|
* POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
|
|
* 2006.
|
|
*
|
|
* The support of additional filter rules compares (>, <, >=, <=) was
|
|
* added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
|
|
*
|
|
* Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
|
|
* filesystem information.
|
|
*
|
|
* Subject and object context labeling support added by <danjones@us.ibm.com>
|
|
* and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/init.h>
|
|
#include <asm/types.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/mqueue.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/personality.h>
|
|
#include <linux/time.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/compiler.h>
|
|
#include <asm/unistd.h>
|
|
#include <linux/security.h>
|
|
#include <linux/list.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/syscalls.h>
|
|
#include <asm/syscall.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/fs_struct.h>
|
|
#include <linux/compat.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/string.h>
|
|
#include <uapi/linux/limits.h>
|
|
|
|
#include "audit.h"
|
|
|
|
/* flags stating the success for a syscall */
|
|
#define AUDITSC_INVALID 0
|
|
#define AUDITSC_SUCCESS 1
|
|
#define AUDITSC_FAILURE 2
|
|
|
|
/* no execve audit message should be longer than this (userspace limits) */
|
|
#define MAX_EXECVE_AUDIT_LEN 7500
|
|
|
|
/* max length to print of cmdline/proctitle value during audit */
|
|
#define MAX_PROCTITLE_AUDIT_LEN 128
|
|
|
|
/* number of audit rules */
|
|
int audit_n_rules;
|
|
|
|
/* determines whether we collect data for signals sent */
|
|
int audit_signals;
|
|
|
|
struct audit_aux_data {
|
|
struct audit_aux_data *next;
|
|
int type;
|
|
};
|
|
|
|
#define AUDIT_AUX_IPCPERM 0
|
|
|
|
/* Number of target pids per aux struct. */
|
|
#define AUDIT_AUX_PIDS 16
|
|
|
|
struct audit_aux_data_pids {
|
|
struct audit_aux_data d;
|
|
pid_t target_pid[AUDIT_AUX_PIDS];
|
|
kuid_t target_auid[AUDIT_AUX_PIDS];
|
|
kuid_t target_uid[AUDIT_AUX_PIDS];
|
|
unsigned int target_sessionid[AUDIT_AUX_PIDS];
|
|
u32 target_sid[AUDIT_AUX_PIDS];
|
|
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
|
|
int pid_count;
|
|
};
|
|
|
|
struct audit_aux_data_bprm_fcaps {
|
|
struct audit_aux_data d;
|
|
struct audit_cap_data fcap;
|
|
unsigned int fcap_ver;
|
|
struct audit_cap_data old_pcap;
|
|
struct audit_cap_data new_pcap;
|
|
};
|
|
|
|
struct audit_tree_refs {
|
|
struct audit_tree_refs *next;
|
|
struct audit_chunk *c[31];
|
|
};
|
|
|
|
static int audit_match_perm(struct audit_context *ctx, int mask)
|
|
{
|
|
unsigned n;
|
|
if (unlikely(!ctx))
|
|
return 0;
|
|
n = ctx->major;
|
|
|
|
switch (audit_classify_syscall(ctx->arch, n)) {
|
|
case 0: /* native */
|
|
if ((mask & AUDIT_PERM_WRITE) &&
|
|
audit_match_class(AUDIT_CLASS_WRITE, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_READ) &&
|
|
audit_match_class(AUDIT_CLASS_READ, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_ATTR) &&
|
|
audit_match_class(AUDIT_CLASS_CHATTR, n))
|
|
return 1;
|
|
return 0;
|
|
case 1: /* 32bit on biarch */
|
|
if ((mask & AUDIT_PERM_WRITE) &&
|
|
audit_match_class(AUDIT_CLASS_WRITE_32, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_READ) &&
|
|
audit_match_class(AUDIT_CLASS_READ_32, n))
|
|
return 1;
|
|
if ((mask & AUDIT_PERM_ATTR) &&
|
|
audit_match_class(AUDIT_CLASS_CHATTR_32, n))
|
|
return 1;
|
|
return 0;
|
|
case 2: /* open */
|
|
return mask & ACC_MODE(ctx->argv[1]);
|
|
case 3: /* openat */
|
|
return mask & ACC_MODE(ctx->argv[2]);
|
|
case 4: /* socketcall */
|
|
return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
|
|
case 5: /* execve */
|
|
return mask & AUDIT_PERM_EXEC;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int audit_match_filetype(struct audit_context *ctx, int val)
|
|
{
|
|
struct audit_names *n;
|
|
umode_t mode = (umode_t)val;
|
|
|
|
if (unlikely(!ctx))
|
|
return 0;
|
|
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if ((n->ino != -1) &&
|
|
((n->mode & S_IFMT) == mode))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
|
|
* ->first_trees points to its beginning, ->trees - to the current end of data.
|
|
* ->tree_count is the number of free entries in array pointed to by ->trees.
|
|
* Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
|
|
* "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
|
|
* it's going to remain 1-element for almost any setup) until we free context itself.
|
|
* References in it _are_ dropped - at the same time we free/drop aux stuff.
|
|
*/
|
|
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
static void audit_set_auditable(struct audit_context *ctx)
|
|
{
|
|
if (!ctx->prio) {
|
|
ctx->prio = 1;
|
|
ctx->current_state = AUDIT_RECORD_CONTEXT;
|
|
}
|
|
}
|
|
|
|
static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
|
|
{
|
|
struct audit_tree_refs *p = ctx->trees;
|
|
int left = ctx->tree_count;
|
|
if (likely(left)) {
|
|
p->c[--left] = chunk;
|
|
ctx->tree_count = left;
|
|
return 1;
|
|
}
|
|
if (!p)
|
|
return 0;
|
|
p = p->next;
|
|
if (p) {
|
|
p->c[30] = chunk;
|
|
ctx->trees = p;
|
|
ctx->tree_count = 30;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int grow_tree_refs(struct audit_context *ctx)
|
|
{
|
|
struct audit_tree_refs *p = ctx->trees;
|
|
ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
|
|
if (!ctx->trees) {
|
|
ctx->trees = p;
|
|
return 0;
|
|
}
|
|
if (p)
|
|
p->next = ctx->trees;
|
|
else
|
|
ctx->first_trees = ctx->trees;
|
|
ctx->tree_count = 31;
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static void unroll_tree_refs(struct audit_context *ctx,
|
|
struct audit_tree_refs *p, int count)
|
|
{
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
struct audit_tree_refs *q;
|
|
int n;
|
|
if (!p) {
|
|
/* we started with empty chain */
|
|
p = ctx->first_trees;
|
|
count = 31;
|
|
/* if the very first allocation has failed, nothing to do */
|
|
if (!p)
|
|
return;
|
|
}
|
|
n = count;
|
|
for (q = p; q != ctx->trees; q = q->next, n = 31) {
|
|
while (n--) {
|
|
audit_put_chunk(q->c[n]);
|
|
q->c[n] = NULL;
|
|
}
|
|
}
|
|
while (n-- > ctx->tree_count) {
|
|
audit_put_chunk(q->c[n]);
|
|
q->c[n] = NULL;
|
|
}
|
|
ctx->trees = p;
|
|
ctx->tree_count = count;
|
|
#endif
|
|
}
|
|
|
|
static void free_tree_refs(struct audit_context *ctx)
|
|
{
|
|
struct audit_tree_refs *p, *q;
|
|
for (p = ctx->first_trees; p; p = q) {
|
|
q = p->next;
|
|
kfree(p);
|
|
}
|
|
}
|
|
|
|
static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
|
|
{
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
struct audit_tree_refs *p;
|
|
int n;
|
|
if (!tree)
|
|
return 0;
|
|
/* full ones */
|
|
for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
|
|
for (n = 0; n < 31; n++)
|
|
if (audit_tree_match(p->c[n], tree))
|
|
return 1;
|
|
}
|
|
/* partial */
|
|
if (p) {
|
|
for (n = ctx->tree_count; n < 31; n++)
|
|
if (audit_tree_match(p->c[n], tree))
|
|
return 1;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int audit_compare_uid(kuid_t uid,
|
|
struct audit_names *name,
|
|
struct audit_field *f,
|
|
struct audit_context *ctx)
|
|
{
|
|
struct audit_names *n;
|
|
int rc;
|
|
|
|
if (name) {
|
|
rc = audit_uid_comparator(uid, f->op, name->uid);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
rc = audit_uid_comparator(uid, f->op, n->uid);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_compare_gid(kgid_t gid,
|
|
struct audit_names *name,
|
|
struct audit_field *f,
|
|
struct audit_context *ctx)
|
|
{
|
|
struct audit_names *n;
|
|
int rc;
|
|
|
|
if (name) {
|
|
rc = audit_gid_comparator(gid, f->op, name->gid);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
rc = audit_gid_comparator(gid, f->op, n->gid);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_field_compare(struct task_struct *tsk,
|
|
const struct cred *cred,
|
|
struct audit_field *f,
|
|
struct audit_context *ctx,
|
|
struct audit_names *name)
|
|
{
|
|
switch (f->val) {
|
|
/* process to file object comparisons */
|
|
case AUDIT_COMPARE_UID_TO_OBJ_UID:
|
|
return audit_compare_uid(cred->uid, name, f, ctx);
|
|
case AUDIT_COMPARE_GID_TO_OBJ_GID:
|
|
return audit_compare_gid(cred->gid, name, f, ctx);
|
|
case AUDIT_COMPARE_EUID_TO_OBJ_UID:
|
|
return audit_compare_uid(cred->euid, name, f, ctx);
|
|
case AUDIT_COMPARE_EGID_TO_OBJ_GID:
|
|
return audit_compare_gid(cred->egid, name, f, ctx);
|
|
case AUDIT_COMPARE_AUID_TO_OBJ_UID:
|
|
return audit_compare_uid(tsk->loginuid, name, f, ctx);
|
|
case AUDIT_COMPARE_SUID_TO_OBJ_UID:
|
|
return audit_compare_uid(cred->suid, name, f, ctx);
|
|
case AUDIT_COMPARE_SGID_TO_OBJ_GID:
|
|
return audit_compare_gid(cred->sgid, name, f, ctx);
|
|
case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
|
|
return audit_compare_uid(cred->fsuid, name, f, ctx);
|
|
case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
|
|
return audit_compare_gid(cred->fsgid, name, f, ctx);
|
|
/* uid comparisons */
|
|
case AUDIT_COMPARE_UID_TO_AUID:
|
|
return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
|
|
case AUDIT_COMPARE_UID_TO_EUID:
|
|
return audit_uid_comparator(cred->uid, f->op, cred->euid);
|
|
case AUDIT_COMPARE_UID_TO_SUID:
|
|
return audit_uid_comparator(cred->uid, f->op, cred->suid);
|
|
case AUDIT_COMPARE_UID_TO_FSUID:
|
|
return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
|
|
/* auid comparisons */
|
|
case AUDIT_COMPARE_AUID_TO_EUID:
|
|
return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
|
|
case AUDIT_COMPARE_AUID_TO_SUID:
|
|
return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
|
|
case AUDIT_COMPARE_AUID_TO_FSUID:
|
|
return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
|
|
/* euid comparisons */
|
|
case AUDIT_COMPARE_EUID_TO_SUID:
|
|
return audit_uid_comparator(cred->euid, f->op, cred->suid);
|
|
case AUDIT_COMPARE_EUID_TO_FSUID:
|
|
return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
|
|
/* suid comparisons */
|
|
case AUDIT_COMPARE_SUID_TO_FSUID:
|
|
return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
|
|
/* gid comparisons */
|
|
case AUDIT_COMPARE_GID_TO_EGID:
|
|
return audit_gid_comparator(cred->gid, f->op, cred->egid);
|
|
case AUDIT_COMPARE_GID_TO_SGID:
|
|
return audit_gid_comparator(cred->gid, f->op, cred->sgid);
|
|
case AUDIT_COMPARE_GID_TO_FSGID:
|
|
return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
|
|
/* egid comparisons */
|
|
case AUDIT_COMPARE_EGID_TO_SGID:
|
|
return audit_gid_comparator(cred->egid, f->op, cred->sgid);
|
|
case AUDIT_COMPARE_EGID_TO_FSGID:
|
|
return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
|
|
/* sgid comparison */
|
|
case AUDIT_COMPARE_SGID_TO_FSGID:
|
|
return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
|
|
default:
|
|
WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
|
|
return 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Determine if any context name data matches a rule's watch data */
|
|
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
|
|
* otherwise.
|
|
*
|
|
* If task_creation is true, this is an explicit indication that we are
|
|
* filtering a task rule at task creation time. This and tsk == current are
|
|
* the only situations where tsk->cred may be accessed without an rcu read lock.
|
|
*/
|
|
static int audit_filter_rules(struct task_struct *tsk,
|
|
struct audit_krule *rule,
|
|
struct audit_context *ctx,
|
|
struct audit_names *name,
|
|
enum audit_state *state,
|
|
bool task_creation)
|
|
{
|
|
const struct cred *cred;
|
|
int i, need_sid = 1;
|
|
u32 sid;
|
|
|
|
cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
|
|
|
|
for (i = 0; i < rule->field_count; i++) {
|
|
struct audit_field *f = &rule->fields[i];
|
|
struct audit_names *n;
|
|
int result = 0;
|
|
pid_t pid;
|
|
|
|
switch (f->type) {
|
|
case AUDIT_PID:
|
|
pid = task_pid_nr(tsk);
|
|
result = audit_comparator(pid, f->op, f->val);
|
|
break;
|
|
case AUDIT_PPID:
|
|
if (ctx) {
|
|
if (!ctx->ppid)
|
|
ctx->ppid = task_ppid_nr(tsk);
|
|
result = audit_comparator(ctx->ppid, f->op, f->val);
|
|
}
|
|
break;
|
|
case AUDIT_UID:
|
|
result = audit_uid_comparator(cred->uid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_EUID:
|
|
result = audit_uid_comparator(cred->euid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_SUID:
|
|
result = audit_uid_comparator(cred->suid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_FSUID:
|
|
result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_GID:
|
|
result = audit_gid_comparator(cred->gid, f->op, f->gid);
|
|
if (f->op == Audit_equal) {
|
|
if (!result)
|
|
result = in_group_p(f->gid);
|
|
} else if (f->op == Audit_not_equal) {
|
|
if (result)
|
|
result = !in_group_p(f->gid);
|
|
}
|
|
break;
|
|
case AUDIT_EGID:
|
|
result = audit_gid_comparator(cred->egid, f->op, f->gid);
|
|
if (f->op == Audit_equal) {
|
|
if (!result)
|
|
result = in_egroup_p(f->gid);
|
|
} else if (f->op == Audit_not_equal) {
|
|
if (result)
|
|
result = !in_egroup_p(f->gid);
|
|
}
|
|
break;
|
|
case AUDIT_SGID:
|
|
result = audit_gid_comparator(cred->sgid, f->op, f->gid);
|
|
break;
|
|
case AUDIT_FSGID:
|
|
result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
|
|
break;
|
|
case AUDIT_PERS:
|
|
result = audit_comparator(tsk->personality, f->op, f->val);
|
|
break;
|
|
case AUDIT_ARCH:
|
|
if (ctx)
|
|
result = audit_comparator(ctx->arch, f->op, f->val);
|
|
break;
|
|
|
|
case AUDIT_EXIT:
|
|
if (ctx && ctx->return_valid)
|
|
result = audit_comparator(ctx->return_code, f->op, f->val);
|
|
break;
|
|
case AUDIT_SUCCESS:
|
|
if (ctx && ctx->return_valid) {
|
|
if (f->val)
|
|
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
|
|
else
|
|
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
|
|
}
|
|
break;
|
|
case AUDIT_DEVMAJOR:
|
|
if (name) {
|
|
if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
|
|
audit_comparator(MAJOR(name->rdev), f->op, f->val))
|
|
++result;
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
|
|
audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_DEVMINOR:
|
|
if (name) {
|
|
if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
|
|
audit_comparator(MINOR(name->rdev), f->op, f->val))
|
|
++result;
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
|
|
audit_comparator(MINOR(n->rdev), f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_INODE:
|
|
if (name)
|
|
result = audit_comparator(name->ino, f->op, f->val);
|
|
else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_comparator(n->ino, f->op, f->val)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_OBJ_UID:
|
|
if (name) {
|
|
result = audit_uid_comparator(name->uid, f->op, f->uid);
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_uid_comparator(n->uid, f->op, f->uid)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_OBJ_GID:
|
|
if (name) {
|
|
result = audit_gid_comparator(name->gid, f->op, f->gid);
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_gid_comparator(n->gid, f->op, f->gid)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case AUDIT_WATCH:
|
|
if (name)
|
|
result = audit_watch_compare(rule->watch, name->ino, name->dev);
|
|
break;
|
|
case AUDIT_DIR:
|
|
if (ctx)
|
|
result = match_tree_refs(ctx, rule->tree);
|
|
break;
|
|
case AUDIT_LOGINUID:
|
|
result = 0;
|
|
if (ctx)
|
|
result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
|
|
break;
|
|
case AUDIT_LOGINUID_SET:
|
|
result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
|
|
break;
|
|
case AUDIT_SUBJ_USER:
|
|
case AUDIT_SUBJ_ROLE:
|
|
case AUDIT_SUBJ_TYPE:
|
|
case AUDIT_SUBJ_SEN:
|
|
case AUDIT_SUBJ_CLR:
|
|
/* NOTE: this may return negative values indicating
|
|
a temporary error. We simply treat this as a
|
|
match for now to avoid losing information that
|
|
may be wanted. An error message will also be
|
|
logged upon error */
|
|
if (f->lsm_rule) {
|
|
if (need_sid) {
|
|
security_task_getsecid(tsk, &sid);
|
|
need_sid = 0;
|
|
}
|
|
result = security_audit_rule_match(sid, f->type,
|
|
f->op,
|
|
f->lsm_rule,
|
|
ctx);
|
|
}
|
|
break;
|
|
case AUDIT_OBJ_USER:
|
|
case AUDIT_OBJ_ROLE:
|
|
case AUDIT_OBJ_TYPE:
|
|
case AUDIT_OBJ_LEV_LOW:
|
|
case AUDIT_OBJ_LEV_HIGH:
|
|
/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
|
|
also applies here */
|
|
if (f->lsm_rule) {
|
|
/* Find files that match */
|
|
if (name) {
|
|
result = security_audit_rule_match(
|
|
name->osid, f->type, f->op,
|
|
f->lsm_rule, ctx);
|
|
} else if (ctx) {
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (security_audit_rule_match(n->osid, f->type,
|
|
f->op, f->lsm_rule,
|
|
ctx)) {
|
|
++result;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
/* Find ipc objects that match */
|
|
if (!ctx || ctx->type != AUDIT_IPC)
|
|
break;
|
|
if (security_audit_rule_match(ctx->ipc.osid,
|
|
f->type, f->op,
|
|
f->lsm_rule, ctx))
|
|
++result;
|
|
}
|
|
break;
|
|
case AUDIT_ARG0:
|
|
case AUDIT_ARG1:
|
|
case AUDIT_ARG2:
|
|
case AUDIT_ARG3:
|
|
if (ctx)
|
|
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
|
|
break;
|
|
case AUDIT_FILTERKEY:
|
|
/* ignore this field for filtering */
|
|
result = 1;
|
|
break;
|
|
case AUDIT_PERM:
|
|
result = audit_match_perm(ctx, f->val);
|
|
break;
|
|
case AUDIT_FILETYPE:
|
|
result = audit_match_filetype(ctx, f->val);
|
|
break;
|
|
case AUDIT_FIELD_COMPARE:
|
|
result = audit_field_compare(tsk, cred, f, ctx, name);
|
|
break;
|
|
}
|
|
if (!result)
|
|
return 0;
|
|
}
|
|
|
|
if (ctx) {
|
|
if (rule->prio <= ctx->prio)
|
|
return 0;
|
|
if (rule->filterkey) {
|
|
kfree(ctx->filterkey);
|
|
ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
|
|
}
|
|
ctx->prio = rule->prio;
|
|
}
|
|
switch (rule->action) {
|
|
case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
|
|
case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* At process creation time, we can determine if system-call auditing is
|
|
* completely disabled for this task. Since we only have the task
|
|
* structure at this point, we can only check uid and gid.
|
|
*/
|
|
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
|
|
{
|
|
struct audit_entry *e;
|
|
enum audit_state state;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
|
|
if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
|
|
&state, true)) {
|
|
if (state == AUDIT_RECORD_CONTEXT)
|
|
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
|
|
rcu_read_unlock();
|
|
return state;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return AUDIT_BUILD_CONTEXT;
|
|
}
|
|
|
|
static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
|
|
{
|
|
int word, bit;
|
|
|
|
if (val > 0xffffffff)
|
|
return false;
|
|
|
|
word = AUDIT_WORD(val);
|
|
if (word >= AUDIT_BITMASK_SIZE)
|
|
return false;
|
|
|
|
bit = AUDIT_BIT(val);
|
|
|
|
return rule->mask[word] & bit;
|
|
}
|
|
|
|
/* At syscall entry and exit time, this filter is called if the
|
|
* audit_state is not low enough that auditing cannot take place, but is
|
|
* also not high enough that we already know we have to write an audit
|
|
* record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
|
|
*/
|
|
static enum audit_state audit_filter_syscall(struct task_struct *tsk,
|
|
struct audit_context *ctx,
|
|
struct list_head *list)
|
|
{
|
|
struct audit_entry *e;
|
|
enum audit_state state;
|
|
|
|
if (audit_pid && tsk->tgid == audit_pid)
|
|
return AUDIT_DISABLED;
|
|
|
|
rcu_read_lock();
|
|
if (!list_empty(list)) {
|
|
list_for_each_entry_rcu(e, list, list) {
|
|
if (audit_in_mask(&e->rule, ctx->major) &&
|
|
audit_filter_rules(tsk, &e->rule, ctx, NULL,
|
|
&state, false)) {
|
|
rcu_read_unlock();
|
|
ctx->current_state = state;
|
|
return state;
|
|
}
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
return AUDIT_BUILD_CONTEXT;
|
|
}
|
|
|
|
/*
|
|
* Given an audit_name check the inode hash table to see if they match.
|
|
* Called holding the rcu read lock to protect the use of audit_inode_hash
|
|
*/
|
|
static int audit_filter_inode_name(struct task_struct *tsk,
|
|
struct audit_names *n,
|
|
struct audit_context *ctx) {
|
|
int h = audit_hash_ino((u32)n->ino);
|
|
struct list_head *list = &audit_inode_hash[h];
|
|
struct audit_entry *e;
|
|
enum audit_state state;
|
|
|
|
if (list_empty(list))
|
|
return 0;
|
|
|
|
list_for_each_entry_rcu(e, list, list) {
|
|
if (audit_in_mask(&e->rule, ctx->major) &&
|
|
audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
|
|
ctx->current_state = state;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* At syscall exit time, this filter is called if any audit_names have been
|
|
* collected during syscall processing. We only check rules in sublists at hash
|
|
* buckets applicable to the inode numbers in audit_names.
|
|
* Regarding audit_state, same rules apply as for audit_filter_syscall().
|
|
*/
|
|
void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
|
|
{
|
|
struct audit_names *n;
|
|
|
|
if (audit_pid && tsk->tgid == audit_pid)
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
|
|
list_for_each_entry(n, &ctx->names_list, list) {
|
|
if (audit_filter_inode_name(tsk, n, ctx))
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
|
|
static inline struct audit_context *audit_take_context(struct task_struct *tsk,
|
|
int return_valid,
|
|
long return_code)
|
|
{
|
|
struct audit_context *context = tsk->audit_context;
|
|
|
|
if (!context)
|
|
return NULL;
|
|
context->return_valid = return_valid;
|
|
|
|
/*
|
|
* we need to fix up the return code in the audit logs if the actual
|
|
* return codes are later going to be fixed up by the arch specific
|
|
* signal handlers
|
|
*
|
|
* This is actually a test for:
|
|
* (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
|
|
* (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
|
|
*
|
|
* but is faster than a bunch of ||
|
|
*/
|
|
if (unlikely(return_code <= -ERESTARTSYS) &&
|
|
(return_code >= -ERESTART_RESTARTBLOCK) &&
|
|
(return_code != -ENOIOCTLCMD))
|
|
context->return_code = -EINTR;
|
|
else
|
|
context->return_code = return_code;
|
|
|
|
if (context->in_syscall && !context->dummy) {
|
|
audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
|
|
audit_filter_inodes(tsk, context);
|
|
}
|
|
|
|
tsk->audit_context = NULL;
|
|
return context;
|
|
}
|
|
|
|
static inline void audit_proctitle_free(struct audit_context *context)
|
|
{
|
|
kfree(context->proctitle.value);
|
|
context->proctitle.value = NULL;
|
|
context->proctitle.len = 0;
|
|
}
|
|
|
|
static inline void audit_free_names(struct audit_context *context)
|
|
{
|
|
struct audit_names *n, *next;
|
|
|
|
list_for_each_entry_safe(n, next, &context->names_list, list) {
|
|
list_del(&n->list);
|
|
if (n->name)
|
|
putname(n->name);
|
|
if (n->should_free)
|
|
kfree(n);
|
|
}
|
|
context->name_count = 0;
|
|
path_put(&context->pwd);
|
|
context->pwd.dentry = NULL;
|
|
context->pwd.mnt = NULL;
|
|
}
|
|
|
|
static inline void audit_free_aux(struct audit_context *context)
|
|
{
|
|
struct audit_aux_data *aux;
|
|
|
|
while ((aux = context->aux)) {
|
|
context->aux = aux->next;
|
|
kfree(aux);
|
|
}
|
|
while ((aux = context->aux_pids)) {
|
|
context->aux_pids = aux->next;
|
|
kfree(aux);
|
|
}
|
|
}
|
|
|
|
static inline struct audit_context *audit_alloc_context(enum audit_state state)
|
|
{
|
|
struct audit_context *context;
|
|
|
|
context = kzalloc(sizeof(*context), GFP_KERNEL);
|
|
if (!context)
|
|
return NULL;
|
|
context->state = state;
|
|
context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
|
|
INIT_LIST_HEAD(&context->killed_trees);
|
|
INIT_LIST_HEAD(&context->names_list);
|
|
return context;
|
|
}
|
|
|
|
/**
|
|
* audit_alloc - allocate an audit context block for a task
|
|
* @tsk: task
|
|
*
|
|
* Filter on the task information and allocate a per-task audit context
|
|
* if necessary. Doing so turns on system call auditing for the
|
|
* specified task. This is called from copy_process, so no lock is
|
|
* needed.
|
|
*/
|
|
int audit_alloc(struct task_struct *tsk)
|
|
{
|
|
struct audit_context *context;
|
|
enum audit_state state;
|
|
char *key = NULL;
|
|
|
|
if (likely(!audit_ever_enabled))
|
|
return 0; /* Return if not auditing. */
|
|
|
|
state = audit_filter_task(tsk, &key);
|
|
if (state == AUDIT_DISABLED) {
|
|
clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
|
|
return 0;
|
|
}
|
|
|
|
if (!(context = audit_alloc_context(state))) {
|
|
kfree(key);
|
|
audit_log_lost("out of memory in audit_alloc");
|
|
return -ENOMEM;
|
|
}
|
|
context->filterkey = key;
|
|
|
|
tsk->audit_context = context;
|
|
set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
|
|
return 0;
|
|
}
|
|
|
|
static inline void audit_free_context(struct audit_context *context)
|
|
{
|
|
audit_free_names(context);
|
|
unroll_tree_refs(context, NULL, 0);
|
|
free_tree_refs(context);
|
|
audit_free_aux(context);
|
|
kfree(context->filterkey);
|
|
kfree(context->sockaddr);
|
|
audit_proctitle_free(context);
|
|
kfree(context);
|
|
}
|
|
|
|
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
|
|
kuid_t auid, kuid_t uid, unsigned int sessionid,
|
|
u32 sid, char *comm)
|
|
{
|
|
struct audit_buffer *ab;
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
int rc = 0;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
|
|
if (!ab)
|
|
return rc;
|
|
|
|
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
|
|
from_kuid(&init_user_ns, auid),
|
|
from_kuid(&init_user_ns, uid), sessionid);
|
|
if (sid) {
|
|
if (security_secid_to_secctx(sid, &ctx, &len)) {
|
|
audit_log_format(ab, " obj=(none)");
|
|
rc = 1;
|
|
} else {
|
|
audit_log_format(ab, " obj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
audit_log_format(ab, " ocomm=");
|
|
audit_log_untrustedstring(ab, comm);
|
|
audit_log_end(ab);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* to_send and len_sent accounting are very loose estimates. We aren't
|
|
* really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
|
|
* within about 500 bytes (next page boundary)
|
|
*
|
|
* why snprintf? an int is up to 12 digits long. if we just assumed when
|
|
* logging that a[%d]= was going to be 16 characters long we would be wasting
|
|
* space in every audit message. In one 7500 byte message we can log up to
|
|
* about 1000 min size arguments. That comes down to about 50% waste of space
|
|
* if we didn't do the snprintf to find out how long arg_num_len was.
|
|
*/
|
|
static int audit_log_single_execve_arg(struct audit_context *context,
|
|
struct audit_buffer **ab,
|
|
int arg_num,
|
|
size_t *len_sent,
|
|
const char __user *p,
|
|
char *buf)
|
|
{
|
|
char arg_num_len_buf[12];
|
|
const char __user *tmp_p = p;
|
|
/* how many digits are in arg_num? 5 is the length of ' a=""' */
|
|
size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
|
|
size_t len, len_left, to_send;
|
|
size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
|
|
unsigned int i, has_cntl = 0, too_long = 0;
|
|
int ret;
|
|
|
|
/* strnlen_user includes the null we don't want to send */
|
|
len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
|
|
|
|
/*
|
|
* We just created this mm, if we can't find the strings
|
|
* we just copied into it something is _very_ wrong. Similar
|
|
* for strings that are too long, we should not have created
|
|
* any.
|
|
*/
|
|
if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
|
|
WARN_ON(1);
|
|
send_sig(SIGKILL, current, 0);
|
|
return -1;
|
|
}
|
|
|
|
/* walk the whole argument looking for non-ascii chars */
|
|
do {
|
|
if (len_left > MAX_EXECVE_AUDIT_LEN)
|
|
to_send = MAX_EXECVE_AUDIT_LEN;
|
|
else
|
|
to_send = len_left;
|
|
ret = copy_from_user(buf, tmp_p, to_send);
|
|
/*
|
|
* There is no reason for this copy to be short. We just
|
|
* copied them here, and the mm hasn't been exposed to user-
|
|
* space yet.
|
|
*/
|
|
if (ret) {
|
|
WARN_ON(1);
|
|
send_sig(SIGKILL, current, 0);
|
|
return -1;
|
|
}
|
|
buf[to_send] = '\0';
|
|
has_cntl = audit_string_contains_control(buf, to_send);
|
|
if (has_cntl) {
|
|
/*
|
|
* hex messages get logged as 2 bytes, so we can only
|
|
* send half as much in each message
|
|
*/
|
|
max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
|
|
break;
|
|
}
|
|
len_left -= to_send;
|
|
tmp_p += to_send;
|
|
} while (len_left > 0);
|
|
|
|
len_left = len;
|
|
|
|
if (len > max_execve_audit_len)
|
|
too_long = 1;
|
|
|
|
/* rewalk the argument actually logging the message */
|
|
for (i = 0; len_left > 0; i++) {
|
|
int room_left;
|
|
|
|
if (len_left > max_execve_audit_len)
|
|
to_send = max_execve_audit_len;
|
|
else
|
|
to_send = len_left;
|
|
|
|
/* do we have space left to send this argument in this ab? */
|
|
room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
|
|
if (has_cntl)
|
|
room_left -= (to_send * 2);
|
|
else
|
|
room_left -= to_send;
|
|
if (room_left < 0) {
|
|
*len_sent = 0;
|
|
audit_log_end(*ab);
|
|
*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
|
|
if (!*ab)
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* first record needs to say how long the original string was
|
|
* so we can be sure nothing was lost.
|
|
*/
|
|
if ((i == 0) && (too_long))
|
|
audit_log_format(*ab, " a%d_len=%zu", arg_num,
|
|
has_cntl ? 2*len : len);
|
|
|
|
/*
|
|
* normally arguments are small enough to fit and we already
|
|
* filled buf above when we checked for control characters
|
|
* so don't bother with another copy_from_user
|
|
*/
|
|
if (len >= max_execve_audit_len)
|
|
ret = copy_from_user(buf, p, to_send);
|
|
else
|
|
ret = 0;
|
|
if (ret) {
|
|
WARN_ON(1);
|
|
send_sig(SIGKILL, current, 0);
|
|
return -1;
|
|
}
|
|
buf[to_send] = '\0';
|
|
|
|
/* actually log it */
|
|
audit_log_format(*ab, " a%d", arg_num);
|
|
if (too_long)
|
|
audit_log_format(*ab, "[%d]", i);
|
|
audit_log_format(*ab, "=");
|
|
if (has_cntl)
|
|
audit_log_n_hex(*ab, buf, to_send);
|
|
else
|
|
audit_log_string(*ab, buf);
|
|
|
|
p += to_send;
|
|
len_left -= to_send;
|
|
*len_sent += arg_num_len;
|
|
if (has_cntl)
|
|
*len_sent += to_send * 2;
|
|
else
|
|
*len_sent += to_send;
|
|
}
|
|
/* include the null we didn't log */
|
|
return len + 1;
|
|
}
|
|
|
|
static void audit_log_execve_info(struct audit_context *context,
|
|
struct audit_buffer **ab)
|
|
{
|
|
int i, len;
|
|
size_t len_sent = 0;
|
|
const char __user *p;
|
|
char *buf;
|
|
|
|
p = (const char __user *)current->mm->arg_start;
|
|
|
|
audit_log_format(*ab, "argc=%d", context->execve.argc);
|
|
|
|
/*
|
|
* we need some kernel buffer to hold the userspace args. Just
|
|
* allocate one big one rather than allocating one of the right size
|
|
* for every single argument inside audit_log_single_execve_arg()
|
|
* should be <8k allocation so should be pretty safe.
|
|
*/
|
|
buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
|
|
if (!buf) {
|
|
audit_panic("out of memory for argv string");
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < context->execve.argc; i++) {
|
|
len = audit_log_single_execve_arg(context, ab, i,
|
|
&len_sent, p, buf);
|
|
if (len <= 0)
|
|
break;
|
|
p += len;
|
|
}
|
|
kfree(buf);
|
|
}
|
|
|
|
static void show_special(struct audit_context *context, int *call_panic)
|
|
{
|
|
struct audit_buffer *ab;
|
|
int i;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, context->type);
|
|
if (!ab)
|
|
return;
|
|
|
|
switch (context->type) {
|
|
case AUDIT_SOCKETCALL: {
|
|
int nargs = context->socketcall.nargs;
|
|
audit_log_format(ab, "nargs=%d", nargs);
|
|
for (i = 0; i < nargs; i++)
|
|
audit_log_format(ab, " a%d=%lx", i,
|
|
context->socketcall.args[i]);
|
|
break; }
|
|
case AUDIT_IPC: {
|
|
u32 osid = context->ipc.osid;
|
|
|
|
audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
|
|
from_kuid(&init_user_ns, context->ipc.uid),
|
|
from_kgid(&init_user_ns, context->ipc.gid),
|
|
context->ipc.mode);
|
|
if (osid) {
|
|
char *ctx = NULL;
|
|
u32 len;
|
|
if (security_secid_to_secctx(osid, &ctx, &len)) {
|
|
audit_log_format(ab, " osid=%u", osid);
|
|
*call_panic = 1;
|
|
} else {
|
|
audit_log_format(ab, " obj=%s", ctx);
|
|
security_release_secctx(ctx, len);
|
|
}
|
|
}
|
|
if (context->ipc.has_perm) {
|
|
audit_log_end(ab);
|
|
ab = audit_log_start(context, GFP_KERNEL,
|
|
AUDIT_IPC_SET_PERM);
|
|
if (unlikely(!ab))
|
|
return;
|
|
audit_log_format(ab,
|
|
"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
|
|
context->ipc.qbytes,
|
|
context->ipc.perm_uid,
|
|
context->ipc.perm_gid,
|
|
context->ipc.perm_mode);
|
|
}
|
|
break; }
|
|
case AUDIT_MQ_OPEN: {
|
|
audit_log_format(ab,
|
|
"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
|
|
"mq_msgsize=%ld mq_curmsgs=%ld",
|
|
context->mq_open.oflag, context->mq_open.mode,
|
|
context->mq_open.attr.mq_flags,
|
|
context->mq_open.attr.mq_maxmsg,
|
|
context->mq_open.attr.mq_msgsize,
|
|
context->mq_open.attr.mq_curmsgs);
|
|
break; }
|
|
case AUDIT_MQ_SENDRECV: {
|
|
audit_log_format(ab,
|
|
"mqdes=%d msg_len=%zd msg_prio=%u "
|
|
"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
|
|
context->mq_sendrecv.mqdes,
|
|
context->mq_sendrecv.msg_len,
|
|
context->mq_sendrecv.msg_prio,
|
|
context->mq_sendrecv.abs_timeout.tv_sec,
|
|
context->mq_sendrecv.abs_timeout.tv_nsec);
|
|
break; }
|
|
case AUDIT_MQ_NOTIFY: {
|
|
audit_log_format(ab, "mqdes=%d sigev_signo=%d",
|
|
context->mq_notify.mqdes,
|
|
context->mq_notify.sigev_signo);
|
|
break; }
|
|
case AUDIT_MQ_GETSETATTR: {
|
|
struct mq_attr *attr = &context->mq_getsetattr.mqstat;
|
|
audit_log_format(ab,
|
|
"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
|
|
"mq_curmsgs=%ld ",
|
|
context->mq_getsetattr.mqdes,
|
|
attr->mq_flags, attr->mq_maxmsg,
|
|
attr->mq_msgsize, attr->mq_curmsgs);
|
|
break; }
|
|
case AUDIT_CAPSET: {
|
|
audit_log_format(ab, "pid=%d", context->capset.pid);
|
|
audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
|
|
audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
|
|
audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
|
|
break; }
|
|
case AUDIT_MMAP: {
|
|
audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
|
|
context->mmap.flags);
|
|
break; }
|
|
case AUDIT_EXECVE: {
|
|
audit_log_execve_info(context, &ab);
|
|
break; }
|
|
}
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
static inline int audit_proctitle_rtrim(char *proctitle, int len)
|
|
{
|
|
char *end = proctitle + len - 1;
|
|
while (end > proctitle && !isprint(*end))
|
|
end--;
|
|
|
|
/* catch the case where proctitle is only 1 non-print character */
|
|
len = end - proctitle + 1;
|
|
len -= isprint(proctitle[len-1]) == 0;
|
|
return len;
|
|
}
|
|
|
|
static void audit_log_proctitle(struct task_struct *tsk,
|
|
struct audit_context *context)
|
|
{
|
|
int res;
|
|
char *buf;
|
|
char *msg = "(null)";
|
|
int len = strlen(msg);
|
|
struct audit_buffer *ab;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
|
|
if (!ab)
|
|
return; /* audit_panic or being filtered */
|
|
|
|
audit_log_format(ab, "proctitle=");
|
|
|
|
/* Not cached */
|
|
if (!context->proctitle.value) {
|
|
buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
|
|
if (!buf)
|
|
goto out;
|
|
/* Historically called this from procfs naming */
|
|
res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
|
|
if (res == 0) {
|
|
kfree(buf);
|
|
goto out;
|
|
}
|
|
res = audit_proctitle_rtrim(buf, res);
|
|
if (res == 0) {
|
|
kfree(buf);
|
|
goto out;
|
|
}
|
|
context->proctitle.value = buf;
|
|
context->proctitle.len = res;
|
|
}
|
|
msg = context->proctitle.value;
|
|
len = context->proctitle.len;
|
|
out:
|
|
audit_log_n_untrustedstring(ab, msg, len);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
|
|
{
|
|
int i, call_panic = 0;
|
|
struct audit_buffer *ab;
|
|
struct audit_aux_data *aux;
|
|
struct audit_names *n;
|
|
|
|
/* tsk == current */
|
|
context->personality = tsk->personality;
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
|
|
if (!ab)
|
|
return; /* audit_panic has been called */
|
|
audit_log_format(ab, "arch=%x syscall=%d",
|
|
context->arch, context->major);
|
|
if (context->personality != PER_LINUX)
|
|
audit_log_format(ab, " per=%lx", context->personality);
|
|
if (context->return_valid)
|
|
audit_log_format(ab, " success=%s exit=%ld",
|
|
(context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
|
|
context->return_code);
|
|
|
|
audit_log_format(ab,
|
|
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
|
|
context->argv[0],
|
|
context->argv[1],
|
|
context->argv[2],
|
|
context->argv[3],
|
|
context->name_count);
|
|
|
|
audit_log_task_info(ab, tsk);
|
|
audit_log_key(ab, context->filterkey);
|
|
audit_log_end(ab);
|
|
|
|
for (aux = context->aux; aux; aux = aux->next) {
|
|
|
|
ab = audit_log_start(context, GFP_KERNEL, aux->type);
|
|
if (!ab)
|
|
continue; /* audit_panic has been called */
|
|
|
|
switch (aux->type) {
|
|
|
|
case AUDIT_BPRM_FCAPS: {
|
|
struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
|
|
audit_log_format(ab, "fver=%x", axs->fcap_ver);
|
|
audit_log_cap(ab, "fp", &axs->fcap.permitted);
|
|
audit_log_cap(ab, "fi", &axs->fcap.inheritable);
|
|
audit_log_format(ab, " fe=%d", axs->fcap.fE);
|
|
audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
|
|
audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
|
|
audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
|
|
audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
|
|
audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
|
|
audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
|
|
break; }
|
|
|
|
}
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
if (context->type)
|
|
show_special(context, &call_panic);
|
|
|
|
if (context->fds[0] >= 0) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
|
|
if (ab) {
|
|
audit_log_format(ab, "fd0=%d fd1=%d",
|
|
context->fds[0], context->fds[1]);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
if (context->sockaddr_len) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
|
|
if (ab) {
|
|
audit_log_format(ab, "saddr=");
|
|
audit_log_n_hex(ab, (void *)context->sockaddr,
|
|
context->sockaddr_len);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
for (aux = context->aux_pids; aux; aux = aux->next) {
|
|
struct audit_aux_data_pids *axs = (void *)aux;
|
|
|
|
for (i = 0; i < axs->pid_count; i++)
|
|
if (audit_log_pid_context(context, axs->target_pid[i],
|
|
axs->target_auid[i],
|
|
axs->target_uid[i],
|
|
axs->target_sessionid[i],
|
|
axs->target_sid[i],
|
|
axs->target_comm[i]))
|
|
call_panic = 1;
|
|
}
|
|
|
|
if (context->target_pid &&
|
|
audit_log_pid_context(context, context->target_pid,
|
|
context->target_auid, context->target_uid,
|
|
context->target_sessionid,
|
|
context->target_sid, context->target_comm))
|
|
call_panic = 1;
|
|
|
|
if (context->pwd.dentry && context->pwd.mnt) {
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
|
|
if (ab) {
|
|
audit_log_d_path(ab, " cwd=", &context->pwd);
|
|
audit_log_end(ab);
|
|
}
|
|
}
|
|
|
|
i = 0;
|
|
list_for_each_entry(n, &context->names_list, list) {
|
|
if (n->hidden)
|
|
continue;
|
|
audit_log_name(context, n, NULL, i++, &call_panic);
|
|
}
|
|
|
|
audit_log_proctitle(tsk, context);
|
|
|
|
/* Send end of event record to help user space know we are finished */
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
|
|
if (ab)
|
|
audit_log_end(ab);
|
|
if (call_panic)
|
|
audit_panic("error converting sid to string");
|
|
}
|
|
|
|
/**
|
|
* audit_free - free a per-task audit context
|
|
* @tsk: task whose audit context block to free
|
|
*
|
|
* Called from copy_process and do_exit
|
|
*/
|
|
void __audit_free(struct task_struct *tsk)
|
|
{
|
|
struct audit_context *context;
|
|
|
|
context = audit_take_context(tsk, 0, 0);
|
|
if (!context)
|
|
return;
|
|
|
|
/* Check for system calls that do not go through the exit
|
|
* function (e.g., exit_group), then free context block.
|
|
* We use GFP_ATOMIC here because we might be doing this
|
|
* in the context of the idle thread */
|
|
/* that can happen only if we are called from do_exit() */
|
|
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
|
|
audit_log_exit(context, tsk);
|
|
if (!list_empty(&context->killed_trees))
|
|
audit_kill_trees(&context->killed_trees);
|
|
|
|
audit_free_context(context);
|
|
}
|
|
|
|
/**
|
|
* audit_syscall_entry - fill in an audit record at syscall entry
|
|
* @major: major syscall type (function)
|
|
* @a1: additional syscall register 1
|
|
* @a2: additional syscall register 2
|
|
* @a3: additional syscall register 3
|
|
* @a4: additional syscall register 4
|
|
*
|
|
* Fill in audit context at syscall entry. This only happens if the
|
|
* audit context was created when the task was created and the state or
|
|
* filters demand the audit context be built. If the state from the
|
|
* per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
|
|
* then the record will be written at syscall exit time (otherwise, it
|
|
* will only be written if another part of the kernel requests that it
|
|
* be written).
|
|
*/
|
|
void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
|
|
unsigned long a3, unsigned long a4)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct audit_context *context = tsk->audit_context;
|
|
enum audit_state state;
|
|
|
|
if (!context)
|
|
return;
|
|
|
|
BUG_ON(context->in_syscall || context->name_count);
|
|
|
|
if (!audit_enabled)
|
|
return;
|
|
|
|
context->arch = syscall_get_arch();
|
|
context->major = major;
|
|
context->argv[0] = a1;
|
|
context->argv[1] = a2;
|
|
context->argv[2] = a3;
|
|
context->argv[3] = a4;
|
|
|
|
state = context->state;
|
|
context->dummy = !audit_n_rules;
|
|
if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
|
|
context->prio = 0;
|
|
state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
|
|
}
|
|
if (state == AUDIT_DISABLED)
|
|
return;
|
|
|
|
context->serial = 0;
|
|
context->ctime = CURRENT_TIME;
|
|
context->in_syscall = 1;
|
|
context->current_state = state;
|
|
context->ppid = 0;
|
|
}
|
|
|
|
/**
|
|
* audit_syscall_exit - deallocate audit context after a system call
|
|
* @success: success value of the syscall
|
|
* @return_code: return value of the syscall
|
|
*
|
|
* Tear down after system call. If the audit context has been marked as
|
|
* auditable (either because of the AUDIT_RECORD_CONTEXT state from
|
|
* filtering, or because some other part of the kernel wrote an audit
|
|
* message), then write out the syscall information. In call cases,
|
|
* free the names stored from getname().
|
|
*/
|
|
void __audit_syscall_exit(int success, long return_code)
|
|
{
|
|
struct task_struct *tsk = current;
|
|
struct audit_context *context;
|
|
|
|
if (success)
|
|
success = AUDITSC_SUCCESS;
|
|
else
|
|
success = AUDITSC_FAILURE;
|
|
|
|
context = audit_take_context(tsk, success, return_code);
|
|
if (!context)
|
|
return;
|
|
|
|
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
|
|
audit_log_exit(context, tsk);
|
|
|
|
context->in_syscall = 0;
|
|
context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
|
|
|
|
if (!list_empty(&context->killed_trees))
|
|
audit_kill_trees(&context->killed_trees);
|
|
|
|
audit_free_names(context);
|
|
unroll_tree_refs(context, NULL, 0);
|
|
audit_free_aux(context);
|
|
context->aux = NULL;
|
|
context->aux_pids = NULL;
|
|
context->target_pid = 0;
|
|
context->target_sid = 0;
|
|
context->sockaddr_len = 0;
|
|
context->type = 0;
|
|
context->fds[0] = -1;
|
|
if (context->state != AUDIT_RECORD_CONTEXT) {
|
|
kfree(context->filterkey);
|
|
context->filterkey = NULL;
|
|
}
|
|
tsk->audit_context = context;
|
|
}
|
|
|
|
static inline void handle_one(const struct inode *inode)
|
|
{
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
struct audit_context *context;
|
|
struct audit_tree_refs *p;
|
|
struct audit_chunk *chunk;
|
|
int count;
|
|
if (likely(hlist_empty(&inode->i_fsnotify_marks)))
|
|
return;
|
|
context = current->audit_context;
|
|
p = context->trees;
|
|
count = context->tree_count;
|
|
rcu_read_lock();
|
|
chunk = audit_tree_lookup(inode);
|
|
rcu_read_unlock();
|
|
if (!chunk)
|
|
return;
|
|
if (likely(put_tree_ref(context, chunk)))
|
|
return;
|
|
if (unlikely(!grow_tree_refs(context))) {
|
|
pr_warn("out of memory, audit has lost a tree reference\n");
|
|
audit_set_auditable(context);
|
|
audit_put_chunk(chunk);
|
|
unroll_tree_refs(context, p, count);
|
|
return;
|
|
}
|
|
put_tree_ref(context, chunk);
|
|
#endif
|
|
}
|
|
|
|
static void handle_path(const struct dentry *dentry)
|
|
{
|
|
#ifdef CONFIG_AUDIT_TREE
|
|
struct audit_context *context;
|
|
struct audit_tree_refs *p;
|
|
const struct dentry *d, *parent;
|
|
struct audit_chunk *drop;
|
|
unsigned long seq;
|
|
int count;
|
|
|
|
context = current->audit_context;
|
|
p = context->trees;
|
|
count = context->tree_count;
|
|
retry:
|
|
drop = NULL;
|
|
d = dentry;
|
|
rcu_read_lock();
|
|
seq = read_seqbegin(&rename_lock);
|
|
for(;;) {
|
|
struct inode *inode = d->d_inode;
|
|
if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
|
|
struct audit_chunk *chunk;
|
|
chunk = audit_tree_lookup(inode);
|
|
if (chunk) {
|
|
if (unlikely(!put_tree_ref(context, chunk))) {
|
|
drop = chunk;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
parent = d->d_parent;
|
|
if (parent == d)
|
|
break;
|
|
d = parent;
|
|
}
|
|
if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
|
|
rcu_read_unlock();
|
|
if (!drop) {
|
|
/* just a race with rename */
|
|
unroll_tree_refs(context, p, count);
|
|
goto retry;
|
|
}
|
|
audit_put_chunk(drop);
|
|
if (grow_tree_refs(context)) {
|
|
/* OK, got more space */
|
|
unroll_tree_refs(context, p, count);
|
|
goto retry;
|
|
}
|
|
/* too bad */
|
|
pr_warn("out of memory, audit has lost a tree reference\n");
|
|
unroll_tree_refs(context, p, count);
|
|
audit_set_auditable(context);
|
|
return;
|
|
}
|
|
rcu_read_unlock();
|
|
#endif
|
|
}
|
|
|
|
static struct audit_names *audit_alloc_name(struct audit_context *context,
|
|
unsigned char type)
|
|
{
|
|
struct audit_names *aname;
|
|
|
|
if (context->name_count < AUDIT_NAMES) {
|
|
aname = &context->preallocated_names[context->name_count];
|
|
memset(aname, 0, sizeof(*aname));
|
|
} else {
|
|
aname = kzalloc(sizeof(*aname), GFP_NOFS);
|
|
if (!aname)
|
|
return NULL;
|
|
aname->should_free = true;
|
|
}
|
|
|
|
aname->ino = (unsigned long)-1;
|
|
aname->type = type;
|
|
list_add_tail(&aname->list, &context->names_list);
|
|
|
|
context->name_count++;
|
|
return aname;
|
|
}
|
|
|
|
/**
|
|
* audit_reusename - fill out filename with info from existing entry
|
|
* @uptr: userland ptr to pathname
|
|
*
|
|
* Search the audit_names list for the current audit context. If there is an
|
|
* existing entry with a matching "uptr" then return the filename
|
|
* associated with that audit_name. If not, return NULL.
|
|
*/
|
|
struct filename *
|
|
__audit_reusename(const __user char *uptr)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
struct audit_names *n;
|
|
|
|
list_for_each_entry(n, &context->names_list, list) {
|
|
if (!n->name)
|
|
continue;
|
|
if (n->name->uptr == uptr) {
|
|
n->name->refcnt++;
|
|
return n->name;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* audit_getname - add a name to the list
|
|
* @name: name to add
|
|
*
|
|
* Add a name to the list of audit names for this context.
|
|
* Called from fs/namei.c:getname().
|
|
*/
|
|
void __audit_getname(struct filename *name)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
struct audit_names *n;
|
|
|
|
if (!context->in_syscall)
|
|
return;
|
|
|
|
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
|
|
if (!n)
|
|
return;
|
|
|
|
n->name = name;
|
|
n->name_len = AUDIT_NAME_FULL;
|
|
name->aname = n;
|
|
name->refcnt++;
|
|
|
|
if (!context->pwd.dentry)
|
|
get_fs_pwd(current->fs, &context->pwd);
|
|
}
|
|
|
|
/**
|
|
* __audit_inode - store the inode and device from a lookup
|
|
* @name: name being audited
|
|
* @dentry: dentry being audited
|
|
* @flags: attributes for this particular entry
|
|
*/
|
|
void __audit_inode(struct filename *name, const struct dentry *dentry,
|
|
unsigned int flags)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
const struct inode *inode = dentry->d_inode;
|
|
struct audit_names *n;
|
|
bool parent = flags & AUDIT_INODE_PARENT;
|
|
|
|
if (!context->in_syscall)
|
|
return;
|
|
|
|
if (!name)
|
|
goto out_alloc;
|
|
|
|
/*
|
|
* If we have a pointer to an audit_names entry already, then we can
|
|
* just use it directly if the type is correct.
|
|
*/
|
|
n = name->aname;
|
|
if (n) {
|
|
if (parent) {
|
|
if (n->type == AUDIT_TYPE_PARENT ||
|
|
n->type == AUDIT_TYPE_UNKNOWN)
|
|
goto out;
|
|
} else {
|
|
if (n->type != AUDIT_TYPE_PARENT)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry_reverse(n, &context->names_list, list) {
|
|
if (n->ino) {
|
|
/* valid inode number, use that for the comparison */
|
|
if (n->ino != inode->i_ino ||
|
|
n->dev != inode->i_sb->s_dev)
|
|
continue;
|
|
} else if (n->name) {
|
|
/* inode number has not been set, check the name */
|
|
if (strcmp(n->name->name, name->name))
|
|
continue;
|
|
} else
|
|
/* no inode and no name (?!) ... this is odd ... */
|
|
continue;
|
|
|
|
/* match the correct record type */
|
|
if (parent) {
|
|
if (n->type == AUDIT_TYPE_PARENT ||
|
|
n->type == AUDIT_TYPE_UNKNOWN)
|
|
goto out;
|
|
} else {
|
|
if (n->type != AUDIT_TYPE_PARENT)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out_alloc:
|
|
/* unable to find an entry with both a matching name and type */
|
|
n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
|
|
if (!n)
|
|
return;
|
|
if (name) {
|
|
n->name = name;
|
|
name->refcnt++;
|
|
}
|
|
|
|
out:
|
|
if (parent) {
|
|
n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
|
|
n->type = AUDIT_TYPE_PARENT;
|
|
if (flags & AUDIT_INODE_HIDDEN)
|
|
n->hidden = true;
|
|
} else {
|
|
n->name_len = AUDIT_NAME_FULL;
|
|
n->type = AUDIT_TYPE_NORMAL;
|
|
}
|
|
handle_path(dentry);
|
|
audit_copy_inode(n, dentry, inode);
|
|
}
|
|
|
|
void __audit_file(const struct file *file)
|
|
{
|
|
__audit_inode(NULL, file->f_path.dentry, 0);
|
|
}
|
|
|
|
/**
|
|
* __audit_inode_child - collect inode info for created/removed objects
|
|
* @parent: inode of dentry parent
|
|
* @dentry: dentry being audited
|
|
* @type: AUDIT_TYPE_* value that we're looking for
|
|
*
|
|
* For syscalls that create or remove filesystem objects, audit_inode
|
|
* can only collect information for the filesystem object's parent.
|
|
* This call updates the audit context with the child's information.
|
|
* Syscalls that create a new filesystem object must be hooked after
|
|
* the object is created. Syscalls that remove a filesystem object
|
|
* must be hooked prior, in order to capture the target inode during
|
|
* unsuccessful attempts.
|
|
*/
|
|
void __audit_inode_child(const struct inode *parent,
|
|
const struct dentry *dentry,
|
|
const unsigned char type)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
const struct inode *inode = dentry->d_inode;
|
|
const char *dname = dentry->d_name.name;
|
|
struct audit_names *n, *found_parent = NULL, *found_child = NULL;
|
|
|
|
if (!context->in_syscall)
|
|
return;
|
|
|
|
if (inode)
|
|
handle_one(inode);
|
|
|
|
/* look for a parent entry first */
|
|
list_for_each_entry(n, &context->names_list, list) {
|
|
if (!n->name ||
|
|
(n->type != AUDIT_TYPE_PARENT &&
|
|
n->type != AUDIT_TYPE_UNKNOWN))
|
|
continue;
|
|
|
|
if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
|
|
!audit_compare_dname_path(dname,
|
|
n->name->name, n->name_len)) {
|
|
if (n->type == AUDIT_TYPE_UNKNOWN)
|
|
n->type = AUDIT_TYPE_PARENT;
|
|
found_parent = n;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* is there a matching child entry? */
|
|
list_for_each_entry(n, &context->names_list, list) {
|
|
/* can only match entries that have a name */
|
|
if (!n->name ||
|
|
(n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
|
|
continue;
|
|
|
|
if (!strcmp(dname, n->name->name) ||
|
|
!audit_compare_dname_path(dname, n->name->name,
|
|
found_parent ?
|
|
found_parent->name_len :
|
|
AUDIT_NAME_FULL)) {
|
|
if (n->type == AUDIT_TYPE_UNKNOWN)
|
|
n->type = type;
|
|
found_child = n;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found_parent) {
|
|
/* create a new, "anonymous" parent record */
|
|
n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
|
|
if (!n)
|
|
return;
|
|
audit_copy_inode(n, NULL, parent);
|
|
}
|
|
|
|
if (!found_child) {
|
|
found_child = audit_alloc_name(context, type);
|
|
if (!found_child)
|
|
return;
|
|
|
|
/* Re-use the name belonging to the slot for a matching parent
|
|
* directory. All names for this context are relinquished in
|
|
* audit_free_names() */
|
|
if (found_parent) {
|
|
found_child->name = found_parent->name;
|
|
found_child->name_len = AUDIT_NAME_FULL;
|
|
found_child->name->refcnt++;
|
|
}
|
|
}
|
|
|
|
if (inode)
|
|
audit_copy_inode(found_child, dentry, inode);
|
|
else
|
|
found_child->ino = (unsigned long)-1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__audit_inode_child);
|
|
|
|
/**
|
|
* auditsc_get_stamp - get local copies of audit_context values
|
|
* @ctx: audit_context for the task
|
|
* @t: timespec to store time recorded in the audit_context
|
|
* @serial: serial value that is recorded in the audit_context
|
|
*
|
|
* Also sets the context as auditable.
|
|
*/
|
|
int auditsc_get_stamp(struct audit_context *ctx,
|
|
struct timespec *t, unsigned int *serial)
|
|
{
|
|
if (!ctx->in_syscall)
|
|
return 0;
|
|
if (!ctx->serial)
|
|
ctx->serial = audit_serial();
|
|
t->tv_sec = ctx->ctime.tv_sec;
|
|
t->tv_nsec = ctx->ctime.tv_nsec;
|
|
*serial = ctx->serial;
|
|
if (!ctx->prio) {
|
|
ctx->prio = 1;
|
|
ctx->current_state = AUDIT_RECORD_CONTEXT;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* global counter which is incremented every time something logs in */
|
|
static atomic_t session_id = ATOMIC_INIT(0);
|
|
|
|
static int audit_set_loginuid_perm(kuid_t loginuid)
|
|
{
|
|
/* if we are unset, we don't need privs */
|
|
if (!audit_loginuid_set(current))
|
|
return 0;
|
|
/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
|
|
if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
|
|
return -EPERM;
|
|
/* it is set, you need permission */
|
|
if (!capable(CAP_AUDIT_CONTROL))
|
|
return -EPERM;
|
|
/* reject if this is not an unset and we don't allow that */
|
|
if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
|
|
unsigned int oldsessionid, unsigned int sessionid,
|
|
int rc)
|
|
{
|
|
struct audit_buffer *ab;
|
|
uid_t uid, oldloginuid, loginuid;
|
|
|
|
if (!audit_enabled)
|
|
return;
|
|
|
|
uid = from_kuid(&init_user_ns, task_uid(current));
|
|
oldloginuid = from_kuid(&init_user_ns, koldloginuid);
|
|
loginuid = from_kuid(&init_user_ns, kloginuid),
|
|
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
|
|
if (!ab)
|
|
return;
|
|
audit_log_format(ab, "pid=%d uid=%u", task_pid_nr(current), uid);
|
|
audit_log_task_context(ab);
|
|
audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
|
|
oldloginuid, loginuid, oldsessionid, sessionid, !rc);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
/**
|
|
* audit_set_loginuid - set current task's audit_context loginuid
|
|
* @loginuid: loginuid value
|
|
*
|
|
* Returns 0.
|
|
*
|
|
* Called (set) from fs/proc/base.c::proc_loginuid_write().
|
|
*/
|
|
int audit_set_loginuid(kuid_t loginuid)
|
|
{
|
|
struct task_struct *task = current;
|
|
unsigned int oldsessionid, sessionid = (unsigned int)-1;
|
|
kuid_t oldloginuid;
|
|
int rc;
|
|
|
|
oldloginuid = audit_get_loginuid(current);
|
|
oldsessionid = audit_get_sessionid(current);
|
|
|
|
rc = audit_set_loginuid_perm(loginuid);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* are we setting or clearing? */
|
|
if (uid_valid(loginuid))
|
|
sessionid = (unsigned int)atomic_inc_return(&session_id);
|
|
|
|
task->sessionid = sessionid;
|
|
task->loginuid = loginuid;
|
|
out:
|
|
audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_open - record audit data for a POSIX MQ open
|
|
* @oflag: open flag
|
|
* @mode: mode bits
|
|
* @attr: queue attributes
|
|
*
|
|
*/
|
|
void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (attr)
|
|
memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
|
|
else
|
|
memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
|
|
|
|
context->mq_open.oflag = oflag;
|
|
context->mq_open.mode = mode;
|
|
|
|
context->type = AUDIT_MQ_OPEN;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
|
|
* @mqdes: MQ descriptor
|
|
* @msg_len: Message length
|
|
* @msg_prio: Message priority
|
|
* @abs_timeout: Message timeout in absolute time
|
|
*
|
|
*/
|
|
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
|
|
const struct timespec *abs_timeout)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
struct timespec *p = &context->mq_sendrecv.abs_timeout;
|
|
|
|
if (abs_timeout)
|
|
memcpy(p, abs_timeout, sizeof(struct timespec));
|
|
else
|
|
memset(p, 0, sizeof(struct timespec));
|
|
|
|
context->mq_sendrecv.mqdes = mqdes;
|
|
context->mq_sendrecv.msg_len = msg_len;
|
|
context->mq_sendrecv.msg_prio = msg_prio;
|
|
|
|
context->type = AUDIT_MQ_SENDRECV;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_notify - record audit data for a POSIX MQ notify
|
|
* @mqdes: MQ descriptor
|
|
* @notification: Notification event
|
|
*
|
|
*/
|
|
|
|
void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (notification)
|
|
context->mq_notify.sigev_signo = notification->sigev_signo;
|
|
else
|
|
context->mq_notify.sigev_signo = 0;
|
|
|
|
context->mq_notify.mqdes = mqdes;
|
|
context->type = AUDIT_MQ_NOTIFY;
|
|
}
|
|
|
|
/**
|
|
* __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
|
|
* @mqdes: MQ descriptor
|
|
* @mqstat: MQ flags
|
|
*
|
|
*/
|
|
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->mq_getsetattr.mqdes = mqdes;
|
|
context->mq_getsetattr.mqstat = *mqstat;
|
|
context->type = AUDIT_MQ_GETSETATTR;
|
|
}
|
|
|
|
/**
|
|
* audit_ipc_obj - record audit data for ipc object
|
|
* @ipcp: ipc permissions
|
|
*
|
|
*/
|
|
void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->ipc.uid = ipcp->uid;
|
|
context->ipc.gid = ipcp->gid;
|
|
context->ipc.mode = ipcp->mode;
|
|
context->ipc.has_perm = 0;
|
|
security_ipc_getsecid(ipcp, &context->ipc.osid);
|
|
context->type = AUDIT_IPC;
|
|
}
|
|
|
|
/**
|
|
* audit_ipc_set_perm - record audit data for new ipc permissions
|
|
* @qbytes: msgq bytes
|
|
* @uid: msgq user id
|
|
* @gid: msgq group id
|
|
* @mode: msgq mode (permissions)
|
|
*
|
|
* Called only after audit_ipc_obj().
|
|
*/
|
|
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
context->ipc.qbytes = qbytes;
|
|
context->ipc.perm_uid = uid;
|
|
context->ipc.perm_gid = gid;
|
|
context->ipc.perm_mode = mode;
|
|
context->ipc.has_perm = 1;
|
|
}
|
|
|
|
void __audit_bprm(struct linux_binprm *bprm)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
context->type = AUDIT_EXECVE;
|
|
context->execve.argc = bprm->argc;
|
|
}
|
|
|
|
|
|
/**
|
|
* audit_socketcall - record audit data for sys_socketcall
|
|
* @nargs: number of args, which should not be more than AUDITSC_ARGS.
|
|
* @args: args array
|
|
*
|
|
*/
|
|
int __audit_socketcall(int nargs, unsigned long *args)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
|
|
return -EINVAL;
|
|
context->type = AUDIT_SOCKETCALL;
|
|
context->socketcall.nargs = nargs;
|
|
memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_fd_pair - record audit data for pipe and socketpair
|
|
* @fd1: the first file descriptor
|
|
* @fd2: the second file descriptor
|
|
*
|
|
*/
|
|
void __audit_fd_pair(int fd1, int fd2)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->fds[0] = fd1;
|
|
context->fds[1] = fd2;
|
|
}
|
|
|
|
/**
|
|
* audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
|
|
* @len: data length in user space
|
|
* @a: data address in kernel space
|
|
*
|
|
* Returns 0 for success or NULL context or < 0 on error.
|
|
*/
|
|
int __audit_sockaddr(int len, void *a)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
if (!context->sockaddr) {
|
|
void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
context->sockaddr = p;
|
|
}
|
|
|
|
context->sockaddr_len = len;
|
|
memcpy(context->sockaddr, a, len);
|
|
return 0;
|
|
}
|
|
|
|
void __audit_ptrace(struct task_struct *t)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
|
|
context->target_pid = task_pid_nr(t);
|
|
context->target_auid = audit_get_loginuid(t);
|
|
context->target_uid = task_uid(t);
|
|
context->target_sessionid = audit_get_sessionid(t);
|
|
security_task_getsecid(t, &context->target_sid);
|
|
memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
|
|
}
|
|
|
|
/**
|
|
* audit_signal_info - record signal info for shutting down audit subsystem
|
|
* @sig: signal value
|
|
* @t: task being signaled
|
|
*
|
|
* If the audit subsystem is being terminated, record the task (pid)
|
|
* and uid that is doing that.
|
|
*/
|
|
int __audit_signal_info(int sig, struct task_struct *t)
|
|
{
|
|
struct audit_aux_data_pids *axp;
|
|
struct task_struct *tsk = current;
|
|
struct audit_context *ctx = tsk->audit_context;
|
|
kuid_t uid = current_uid(), t_uid = task_uid(t);
|
|
|
|
if (audit_pid && t->tgid == audit_pid) {
|
|
if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
|
|
audit_sig_pid = task_pid_nr(tsk);
|
|
if (uid_valid(tsk->loginuid))
|
|
audit_sig_uid = tsk->loginuid;
|
|
else
|
|
audit_sig_uid = uid;
|
|
security_task_getsecid(tsk, &audit_sig_sid);
|
|
}
|
|
if (!audit_signals || audit_dummy_context())
|
|
return 0;
|
|
}
|
|
|
|
/* optimize the common case by putting first signal recipient directly
|
|
* in audit_context */
|
|
if (!ctx->target_pid) {
|
|
ctx->target_pid = task_tgid_nr(t);
|
|
ctx->target_auid = audit_get_loginuid(t);
|
|
ctx->target_uid = t_uid;
|
|
ctx->target_sessionid = audit_get_sessionid(t);
|
|
security_task_getsecid(t, &ctx->target_sid);
|
|
memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
|
|
return 0;
|
|
}
|
|
|
|
axp = (void *)ctx->aux_pids;
|
|
if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
|
|
axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
|
|
if (!axp)
|
|
return -ENOMEM;
|
|
|
|
axp->d.type = AUDIT_OBJ_PID;
|
|
axp->d.next = ctx->aux_pids;
|
|
ctx->aux_pids = (void *)axp;
|
|
}
|
|
BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
|
|
|
|
axp->target_pid[axp->pid_count] = task_tgid_nr(t);
|
|
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
|
|
axp->target_uid[axp->pid_count] = t_uid;
|
|
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
|
|
security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
|
|
memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
|
|
axp->pid_count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
|
|
* @bprm: pointer to the bprm being processed
|
|
* @new: the proposed new credentials
|
|
* @old: the old credentials
|
|
*
|
|
* Simply check if the proc already has the caps given by the file and if not
|
|
* store the priv escalation info for later auditing at the end of the syscall
|
|
*
|
|
* -Eric
|
|
*/
|
|
int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
|
|
const struct cred *new, const struct cred *old)
|
|
{
|
|
struct audit_aux_data_bprm_fcaps *ax;
|
|
struct audit_context *context = current->audit_context;
|
|
struct cpu_vfs_cap_data vcaps;
|
|
|
|
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
|
|
if (!ax)
|
|
return -ENOMEM;
|
|
|
|
ax->d.type = AUDIT_BPRM_FCAPS;
|
|
ax->d.next = context->aux;
|
|
context->aux = (void *)ax;
|
|
|
|
get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
|
|
|
|
ax->fcap.permitted = vcaps.permitted;
|
|
ax->fcap.inheritable = vcaps.inheritable;
|
|
ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
|
|
ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
|
|
|
|
ax->old_pcap.permitted = old->cap_permitted;
|
|
ax->old_pcap.inheritable = old->cap_inheritable;
|
|
ax->old_pcap.effective = old->cap_effective;
|
|
|
|
ax->new_pcap.permitted = new->cap_permitted;
|
|
ax->new_pcap.inheritable = new->cap_inheritable;
|
|
ax->new_pcap.effective = new->cap_effective;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __audit_log_capset - store information about the arguments to the capset syscall
|
|
* @new: the new credentials
|
|
* @old: the old (current) credentials
|
|
*
|
|
* Record the arguments userspace sent to sys_capset for later printing by the
|
|
* audit system if applicable
|
|
*/
|
|
void __audit_log_capset(const struct cred *new, const struct cred *old)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->capset.pid = task_pid_nr(current);
|
|
context->capset.cap.effective = new->cap_effective;
|
|
context->capset.cap.inheritable = new->cap_effective;
|
|
context->capset.cap.permitted = new->cap_permitted;
|
|
context->type = AUDIT_CAPSET;
|
|
}
|
|
|
|
void __audit_mmap_fd(int fd, int flags)
|
|
{
|
|
struct audit_context *context = current->audit_context;
|
|
context->mmap.fd = fd;
|
|
context->mmap.flags = flags;
|
|
context->type = AUDIT_MMAP;
|
|
}
|
|
|
|
static void audit_log_task(struct audit_buffer *ab)
|
|
{
|
|
kuid_t auid, uid;
|
|
kgid_t gid;
|
|
unsigned int sessionid;
|
|
struct mm_struct *mm = current->mm;
|
|
char comm[sizeof(current->comm)];
|
|
|
|
auid = audit_get_loginuid(current);
|
|
sessionid = audit_get_sessionid(current);
|
|
current_uid_gid(&uid, &gid);
|
|
|
|
audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
|
|
from_kuid(&init_user_ns, auid),
|
|
from_kuid(&init_user_ns, uid),
|
|
from_kgid(&init_user_ns, gid),
|
|
sessionid);
|
|
audit_log_task_context(ab);
|
|
audit_log_format(ab, " pid=%d comm=", task_pid_nr(current));
|
|
audit_log_untrustedstring(ab, get_task_comm(comm, current));
|
|
if (mm) {
|
|
down_read(&mm->mmap_sem);
|
|
if (mm->exe_file)
|
|
audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
|
|
up_read(&mm->mmap_sem);
|
|
} else
|
|
audit_log_format(ab, " exe=(null)");
|
|
}
|
|
|
|
/**
|
|
* audit_core_dumps - record information about processes that end abnormally
|
|
* @signr: signal value
|
|
*
|
|
* If a process ends with a core dump, something fishy is going on and we
|
|
* should record the event for investigation.
|
|
*/
|
|
void audit_core_dumps(long signr)
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
if (!audit_enabled)
|
|
return;
|
|
|
|
if (signr == SIGQUIT) /* don't care for those */
|
|
return;
|
|
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
|
|
if (unlikely(!ab))
|
|
return;
|
|
audit_log_task(ab);
|
|
audit_log_format(ab, " sig=%ld", signr);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
void __audit_seccomp(unsigned long syscall, long signr, int code)
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
|
|
if (unlikely(!ab))
|
|
return;
|
|
audit_log_task(ab);
|
|
audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
|
|
signr, syscall_get_arch(), syscall, is_compat_task(),
|
|
KSTK_EIP(current), code);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
struct list_head *audit_killed_trees(void)
|
|
{
|
|
struct audit_context *ctx = current->audit_context;
|
|
if (likely(!ctx || !ctx->in_syscall))
|
|
return NULL;
|
|
return &ctx->killed_trees;
|
|
}
|