linux_dsm_epyc7002/drivers/media/dvb-frontends/s5h1420.c
Thomas Gleixner c942fddf87 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
Based on 3 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [kishon] [vijay] [abraham]
  [i] [kishon]@[ti] [com] this program is distributed in the hope that
  it will be useful but without any warranty without even the implied
  warranty of merchantability or fitness for a particular purpose see
  the gnu general public license for more details

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version [author] [graeme] [gregory]
  [gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
  [kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
  [hk] [hemahk]@[ti] [com] this program is distributed in the hope
  that it will be useful but without any warranty without even the
  implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1105 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:37 -07:00

965 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Driver for
* Samsung S5H1420 and
* PnpNetwork PN1010 QPSK Demodulator
*
* Copyright (C) 2005 Andrew de Quincey <adq_dvb@lidskialf.net>
* Copyright (C) 2005-8 Patrick Boettcher <pb@linuxtv.org>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <asm/div64.h>
#include <linux/i2c.h>
#include <media/dvb_frontend.h>
#include "s5h1420.h"
#include "s5h1420_priv.h"
#define TONE_FREQ 22000
struct s5h1420_state {
struct i2c_adapter* i2c;
const struct s5h1420_config* config;
struct dvb_frontend frontend;
struct i2c_adapter tuner_i2c_adapter;
u8 CON_1_val;
u8 postlocked:1;
u32 fclk;
u32 tunedfreq;
enum fe_code_rate fec_inner;
u32 symbol_rate;
/* FIXME: ugly workaround for flexcop's incapable i2c-controller
* it does not support repeated-start, workaround: write addr-1
* and then read
*/
u8 shadow[256];
};
static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
struct dvb_frontend_tune_settings* fesettings);
static int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "enable debugging");
#define dprintk(x...) do { \
if (debug) \
printk(KERN_DEBUG "S5H1420: " x); \
} while (0)
static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg)
{
int ret;
u8 b[2];
struct i2c_msg msg[] = {
{ .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 },
{ .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
{ .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 },
};
b[0] = (reg - 1) & 0xff;
b[1] = state->shadow[(reg - 1) & 0xff];
if (state->config->repeated_start_workaround) {
ret = i2c_transfer(state->i2c, msg, 3);
if (ret != 3)
return ret;
} else {
ret = i2c_transfer(state->i2c, &msg[1], 1);
if (ret != 1)
return ret;
ret = i2c_transfer(state->i2c, &msg[2], 1);
if (ret != 1)
return ret;
}
/* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */
return b[0];
}
static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
{
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
int err;
/* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */
err = i2c_transfer(state->i2c, &msg, 1);
if (err != 1) {
dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data);
return -EREMOTEIO;
}
state->shadow[reg] = data;
return 0;
}
static int s5h1420_set_voltage(struct dvb_frontend *fe,
enum fe_sec_voltage voltage)
{
struct s5h1420_state* state = fe->demodulator_priv;
dprintk("enter %s\n", __func__);
switch(voltage) {
case SEC_VOLTAGE_13:
s5h1420_writereg(state, 0x3c,
(s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
break;
case SEC_VOLTAGE_18:
s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
break;
case SEC_VOLTAGE_OFF:
s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
break;
}
dprintk("leave %s\n", __func__);
return 0;
}
static int s5h1420_set_tone(struct dvb_frontend *fe,
enum fe_sec_tone_mode tone)
{
struct s5h1420_state* state = fe->demodulator_priv;
dprintk("enter %s\n", __func__);
switch(tone) {
case SEC_TONE_ON:
s5h1420_writereg(state, 0x3b,
(s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
break;
case SEC_TONE_OFF:
s5h1420_writereg(state, 0x3b,
(s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
break;
}
dprintk("leave %s\n", __func__);
return 0;
}
static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
struct dvb_diseqc_master_cmd* cmd)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int i;
unsigned long timeout;
int result = 0;
dprintk("enter %s\n", __func__);
if (cmd->msg_len > sizeof(cmd->msg))
return -EINVAL;
/* setup for DISEQC */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, 0x02);
msleep(15);
/* write the DISEQC command bytes */
for(i=0; i< cmd->msg_len; i++) {
s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
}
/* kick off transmission */
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
((cmd->msg_len-1) << 4) | 0x08);
/* wait for transmission to complete */
timeout = jiffies + ((100*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x08))
break;
msleep(5);
}
if (time_after(jiffies, timeout))
result = -ETIMEDOUT;
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
dprintk("leave %s\n", __func__);
return result;
}
static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
struct dvb_diseqc_slave_reply* reply)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int i;
int length;
unsigned long timeout;
int result = 0;
/* setup for DISEQC receive */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
msleep(15);
/* wait for reception to complete */
timeout = jiffies + ((reply->timeout*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
break;
msleep(5);
}
if (time_after(jiffies, timeout)) {
result = -ETIMEDOUT;
goto exit;
}
/* check error flag - FIXME: not sure what this does - docs do not describe
* beyond "error flag for diseqc receive data :( */
if (s5h1420_readreg(state, 0x49)) {
result = -EIO;
goto exit;
}
/* check length */
length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
if (length > sizeof(reply->msg)) {
result = -EOVERFLOW;
goto exit;
}
reply->msg_len = length;
/* extract data */
for(i=0; i< length; i++) {
reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
}
exit:
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
return result;
}
static int s5h1420_send_burst(struct dvb_frontend *fe,
enum fe_sec_mini_cmd minicmd)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
int result = 0;
unsigned long timeout;
/* setup for tone burst */
val = s5h1420_readreg(state, 0x3b);
s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
/* set value for B position if requested */
if (minicmd == SEC_MINI_B) {
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
}
msleep(15);
/* start transmission */
s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
/* wait for transmission to complete */
timeout = jiffies + ((100*HZ) / 1000);
while(time_before(jiffies, timeout)) {
if (!(s5h1420_readreg(state, 0x3b) & 0x08))
break;
msleep(5);
}
if (time_after(jiffies, timeout))
result = -ETIMEDOUT;
/* restore original settings */
s5h1420_writereg(state, 0x3b, val);
msleep(15);
return result;
}
static enum fe_status s5h1420_get_status_bits(struct s5h1420_state *state)
{
u8 val;
enum fe_status status = 0;
val = s5h1420_readreg(state, 0x14);
if (val & 0x02)
status |= FE_HAS_SIGNAL;
if (val & 0x01)
status |= FE_HAS_CARRIER;
val = s5h1420_readreg(state, 0x36);
if (val & 0x01)
status |= FE_HAS_VITERBI;
if (val & 0x20)
status |= FE_HAS_SYNC;
if (status == (FE_HAS_SIGNAL|FE_HAS_CARRIER|FE_HAS_VITERBI|FE_HAS_SYNC))
status |= FE_HAS_LOCK;
return status;
}
static int s5h1420_read_status(struct dvb_frontend *fe,
enum fe_status *status)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val;
dprintk("enter %s\n", __func__);
if (status == NULL)
return -EINVAL;
/* determine lock state */
*status = s5h1420_get_status_bits(state);
/* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
the inversion, wait a bit and check again */
if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) {
val = s5h1420_readreg(state, Vit10);
if ((val & 0x07) == 0x03) {
if (val & 0x08)
s5h1420_writereg(state, Vit09, 0x13);
else
s5h1420_writereg(state, Vit09, 0x1b);
/* wait a bit then update lock status */
mdelay(200);
*status = s5h1420_get_status_bits(state);
}
}
/* perform post lock setup */
if ((*status & FE_HAS_LOCK) && !state->postlocked) {
/* calculate the data rate */
u32 tmp = s5h1420_getsymbolrate(state);
switch (s5h1420_readreg(state, Vit10) & 0x07) {
case 0: tmp = (tmp * 2 * 1) / 2; break;
case 1: tmp = (tmp * 2 * 2) / 3; break;
case 2: tmp = (tmp * 2 * 3) / 4; break;
case 3: tmp = (tmp * 2 * 5) / 6; break;
case 4: tmp = (tmp * 2 * 6) / 7; break;
case 5: tmp = (tmp * 2 * 7) / 8; break;
}
if (tmp == 0) {
printk(KERN_ERR "s5h1420: avoided division by 0\n");
tmp = 1;
}
tmp = state->fclk / tmp;
/* set the MPEG_CLK_INTL for the calculated data rate */
if (tmp < 2)
val = 0x00;
else if (tmp < 5)
val = 0x01;
else if (tmp < 9)
val = 0x02;
else if (tmp < 13)
val = 0x03;
else if (tmp < 17)
val = 0x04;
else if (tmp < 25)
val = 0x05;
else if (tmp < 33)
val = 0x06;
else
val = 0x07;
dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val);
s5h1420_writereg(state, FEC01, 0x18);
s5h1420_writereg(state, FEC01, 0x10);
s5h1420_writereg(state, FEC01, val);
/* Enable "MPEG_Out" */
val = s5h1420_readreg(state, Mpeg02);
s5h1420_writereg(state, Mpeg02, val | (1 << 6));
/* kicker disable */
val = s5h1420_readreg(state, QPSK01) & 0x7f;
s5h1420_writereg(state, QPSK01, val);
/* DC freeze TODO it was never activated by default or it can stay activated */
if (s5h1420_getsymbolrate(state) >= 20000000) {
s5h1420_writereg(state, Loop04, 0x8a);
s5h1420_writereg(state, Loop05, 0x6a);
} else {
s5h1420_writereg(state, Loop04, 0x58);
s5h1420_writereg(state, Loop05, 0x27);
}
/* post-lock processing has been done! */
state->postlocked = 1;
}
dprintk("leave %s\n", __func__);
return 0;
}
static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
{
struct s5h1420_state* state = fe->demodulator_priv;
s5h1420_writereg(state, 0x46, 0x1d);
mdelay(25);
*ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
return 0;
}
static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
{
struct s5h1420_state* state = fe->demodulator_priv;
u8 val = s5h1420_readreg(state, 0x15);
*strength = (u16) ((val << 8) | val);
return 0;
}
static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
{
struct s5h1420_state* state = fe->demodulator_priv;
s5h1420_writereg(state, 0x46, 0x1f);
mdelay(25);
*ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
return 0;
}
static void s5h1420_reset(struct s5h1420_state* state)
{
dprintk("%s\n", __func__);
s5h1420_writereg (state, 0x01, 0x08);
s5h1420_writereg (state, 0x01, 0x00);
udelay(10);
}
static void s5h1420_setsymbolrate(struct s5h1420_state* state,
struct dtv_frontend_properties *p)
{
u8 v;
u64 val;
dprintk("enter %s\n", __func__);
val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24);
if (p->symbol_rate < 29000000)
val *= 2;
do_div(val, (state->fclk / 1000));
dprintk("symbol rate register: %06llx\n", (unsigned long long)val);
v = s5h1420_readreg(state, Loop01);
s5h1420_writereg(state, Loop01, v & 0x7f);
s5h1420_writereg(state, Tnco01, val >> 16);
s5h1420_writereg(state, Tnco02, val >> 8);
s5h1420_writereg(state, Tnco03, val & 0xff);
s5h1420_writereg(state, Loop01, v | 0x80);
dprintk("leave %s\n", __func__);
}
static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
{
return state->symbol_rate;
}
static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
{
int val;
u8 v;
dprintk("enter %s\n", __func__);
/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
* divide fclk by 1000000 to get the correct value. */
val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val);
v = s5h1420_readreg(state, Loop01);
s5h1420_writereg(state, Loop01, v & 0xbf);
s5h1420_writereg(state, Pnco01, val >> 16);
s5h1420_writereg(state, Pnco02, val >> 8);
s5h1420_writereg(state, Pnco03, val & 0xff);
s5h1420_writereg(state, Loop01, v | 0x40);
dprintk("leave %s\n", __func__);
}
static int s5h1420_getfreqoffset(struct s5h1420_state* state)
{
int val;
s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
val = s5h1420_readreg(state, 0x0e) << 16;
val |= s5h1420_readreg(state, 0x0f) << 8;
val |= s5h1420_readreg(state, 0x10);
s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
if (val & 0x800000)
val |= 0xff000000;
/* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
* divide fclk by 1000000 to get the correct value. */
val = (((-val) * (state->fclk/1000000)) / (1<<24));
return val;
}
static void s5h1420_setfec_inversion(struct s5h1420_state* state,
struct dtv_frontend_properties *p)
{
u8 inversion = 0;
u8 vit08, vit09;
dprintk("enter %s\n", __func__);
if (p->inversion == INVERSION_OFF)
inversion = state->config->invert ? 0x08 : 0;
else if (p->inversion == INVERSION_ON)
inversion = state->config->invert ? 0 : 0x08;
if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
vit08 = 0x3f;
vit09 = 0;
} else {
switch (p->fec_inner) {
case FEC_1_2:
vit08 = 0x01;
vit09 = 0x10;
break;
case FEC_2_3:
vit08 = 0x02;
vit09 = 0x11;
break;
case FEC_3_4:
vit08 = 0x04;
vit09 = 0x12;
break;
case FEC_5_6:
vit08 = 0x08;
vit09 = 0x13;
break;
case FEC_6_7:
vit08 = 0x10;
vit09 = 0x14;
break;
case FEC_7_8:
vit08 = 0x20;
vit09 = 0x15;
break;
default:
return;
}
}
vit09 |= inversion;
dprintk("fec: %02x %02x\n", vit08, vit09);
s5h1420_writereg(state, Vit08, vit08);
s5h1420_writereg(state, Vit09, vit09);
dprintk("leave %s\n", __func__);
}
static enum fe_code_rate s5h1420_getfec(struct s5h1420_state *state)
{
switch(s5h1420_readreg(state, 0x32) & 0x07) {
case 0:
return FEC_1_2;
case 1:
return FEC_2_3;
case 2:
return FEC_3_4;
case 3:
return FEC_5_6;
case 4:
return FEC_6_7;
case 5:
return FEC_7_8;
}
return FEC_NONE;
}
static enum fe_spectral_inversion
s5h1420_getinversion(struct s5h1420_state *state)
{
if (s5h1420_readreg(state, 0x32) & 0x08)
return INVERSION_ON;
return INVERSION_OFF;
}
static int s5h1420_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct s5h1420_state* state = fe->demodulator_priv;
int frequency_delta;
struct dvb_frontend_tune_settings fesettings;
dprintk("enter %s\n", __func__);
/* check if we should do a fast-tune */
s5h1420_get_tune_settings(fe, &fesettings);
frequency_delta = p->frequency - state->tunedfreq;
if ((frequency_delta > -fesettings.max_drift) &&
(frequency_delta < fesettings.max_drift) &&
(frequency_delta != 0) &&
(state->fec_inner == p->fec_inner) &&
(state->symbol_rate == p->symbol_rate)) {
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
}
if (fe->ops.tuner_ops.get_frequency) {
u32 tmp;
fe->ops.tuner_ops.get_frequency(fe, &tmp);
if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
s5h1420_setfreqoffset(state, p->frequency - tmp);
} else {
s5h1420_setfreqoffset(state, 0);
}
dprintk("simple tune\n");
return 0;
}
dprintk("tuning demod\n");
/* first of all, software reset */
s5h1420_reset(state);
/* set s5h1420 fclk PLL according to desired symbol rate */
if (p->symbol_rate > 33000000)
state->fclk = 80000000;
else if (p->symbol_rate > 28500000)
state->fclk = 59000000;
else if (p->symbol_rate > 25000000)
state->fclk = 86000000;
else if (p->symbol_rate > 1900000)
state->fclk = 88000000;
else
state->fclk = 44000000;
dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8);
s5h1420_writereg(state, PLL02, 0x40);
s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
/* TODO DC offset removal, config parameter ? */
if (p->symbol_rate > 29000000)
s5h1420_writereg(state, QPSK01, 0xae | 0x10);
else
s5h1420_writereg(state, QPSK01, 0xac | 0x10);
/* set misc registers */
s5h1420_writereg(state, CON_1, 0x00);
s5h1420_writereg(state, QPSK02, 0x00);
s5h1420_writereg(state, Pre01, 0xb0);
s5h1420_writereg(state, Loop01, 0xF0);
s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */
s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */
if (p->symbol_rate > 20000000)
s5h1420_writereg(state, Loop04, 0x79);
else
s5h1420_writereg(state, Loop04, 0x58);
s5h1420_writereg(state, Loop05, 0x6b);
if (p->symbol_rate >= 8000000)
s5h1420_writereg(state, Post01, (0 << 6) | 0x10);
else if (p->symbol_rate >= 4000000)
s5h1420_writereg(state, Post01, (1 << 6) | 0x10);
else
s5h1420_writereg(state, Post01, (3 << 6) | 0x10);
s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */
s5h1420_writereg(state, Sync01, 0x33);
s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity);
s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */
s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */
s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */
s5h1420_writereg(state, DiS03, 0x00);
s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */
/* set tuner PLL */
if (fe->ops.tuner_ops.set_params) {
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
s5h1420_setfreqoffset(state, 0);
}
/* set the reset of the parameters */
s5h1420_setsymbolrate(state, p);
s5h1420_setfec_inversion(state, p);
/* start QPSK */
s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1);
state->fec_inner = p->fec_inner;
state->symbol_rate = p->symbol_rate;
state->postlocked = 0;
state->tunedfreq = p->frequency;
dprintk("leave %s\n", __func__);
return 0;
}
static int s5h1420_get_frontend(struct dvb_frontend* fe,
struct dtv_frontend_properties *p)
{
struct s5h1420_state* state = fe->demodulator_priv;
p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
p->inversion = s5h1420_getinversion(state);
p->symbol_rate = s5h1420_getsymbolrate(state);
p->fec_inner = s5h1420_getfec(state);
return 0;
}
static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
struct dvb_frontend_tune_settings* fesettings)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
if (p->symbol_rate > 20000000) {
fesettings->min_delay_ms = 50;
fesettings->step_size = 2000;
fesettings->max_drift = 8000;
} else if (p->symbol_rate > 12000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 1500;
fesettings->max_drift = 9000;
} else if (p->symbol_rate > 8000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 1000;
fesettings->max_drift = 8000;
} else if (p->symbol_rate > 4000000) {
fesettings->min_delay_ms = 100;
fesettings->step_size = 500;
fesettings->max_drift = 7000;
} else if (p->symbol_rate > 2000000) {
fesettings->min_delay_ms = 200;
fesettings->step_size = (p->symbol_rate / 8000);
fesettings->max_drift = 14 * fesettings->step_size;
} else {
fesettings->min_delay_ms = 200;
fesettings->step_size = (p->symbol_rate / 8000);
fesettings->max_drift = 18 * fesettings->step_size;
}
return 0;
}
static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
{
struct s5h1420_state* state = fe->demodulator_priv;
if (enable)
return s5h1420_writereg(state, 0x02, state->CON_1_val | 1);
else
return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe);
}
static int s5h1420_init (struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
/* disable power down and do reset */
state->CON_1_val = state->config->serial_mpeg << 4;
s5h1420_writereg(state, 0x02, state->CON_1_val);
msleep(10);
s5h1420_reset(state);
return 0;
}
static int s5h1420_sleep(struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
state->CON_1_val = 0x12;
return s5h1420_writereg(state, 0x02, state->CON_1_val);
}
static void s5h1420_release(struct dvb_frontend* fe)
{
struct s5h1420_state* state = fe->demodulator_priv;
i2c_del_adapter(&state->tuner_i2c_adapter);
kfree(state);
}
static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct s5h1420_state *state = i2c_get_adapdata(i2c_adap);
struct i2c_msg m[3];
u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */
if (1 + num > ARRAY_SIZE(m)) {
printk(KERN_WARNING
"%s: i2c xfer: num=%d is too big!\n",
KBUILD_MODNAME, num);
return -EOPNOTSUPP;
}
memset(m, 0, sizeof(struct i2c_msg) * (1 + num));
m[0].addr = state->config->demod_address;
m[0].buf = tx_open;
m[0].len = 2;
memcpy(&m[1], msg, sizeof(struct i2c_msg) * num);
return i2c_transfer(state->i2c, m, 1 + num) == 1 + num ? num : -EIO;
}
static const struct i2c_algorithm s5h1420_tuner_i2c_algo = {
.master_xfer = s5h1420_tuner_i2c_tuner_xfer,
.functionality = s5h1420_tuner_i2c_func,
};
struct i2c_adapter *s5h1420_get_tuner_i2c_adapter(struct dvb_frontend *fe)
{
struct s5h1420_state *state = fe->demodulator_priv;
return &state->tuner_i2c_adapter;
}
EXPORT_SYMBOL(s5h1420_get_tuner_i2c_adapter);
static const struct dvb_frontend_ops s5h1420_ops;
struct dvb_frontend *s5h1420_attach(const struct s5h1420_config *config,
struct i2c_adapter *i2c)
{
/* allocate memory for the internal state */
struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
u8 i;
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->postlocked = 0;
state->fclk = 88000000;
state->tunedfreq = 0;
state->fec_inner = FEC_NONE;
state->symbol_rate = 0;
/* check if the demod is there + identify it */
i = s5h1420_readreg(state, ID01);
if (i != 0x03)
goto error;
memset(state->shadow, 0xff, sizeof(state->shadow));
for (i = 0; i < 0x50; i++)
state->shadow[i] = s5h1420_readreg(state, i);
/* create dvb_frontend */
memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
/* create tuner i2c adapter */
strscpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus",
sizeof(state->tuner_i2c_adapter.name));
state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo;
state->tuner_i2c_adapter.algo_data = NULL;
i2c_set_adapdata(&state->tuner_i2c_adapter, state);
if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n");
goto error;
}
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(s5h1420_attach);
static const struct dvb_frontend_ops s5h1420_ops = {
.delsys = { SYS_DVBS },
.info = {
.name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S",
.frequency_min_hz = 950 * MHz,
.frequency_max_hz = 2150 * MHz,
.frequency_stepsize_hz = 125 * kHz,
.frequency_tolerance_hz = 29500 * kHz,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
/* .symbol_rate_tolerance = ???,*/
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK
},
.release = s5h1420_release,
.init = s5h1420_init,
.sleep = s5h1420_sleep,
.i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
.set_frontend = s5h1420_set_frontend,
.get_frontend = s5h1420_get_frontend,
.get_tune_settings = s5h1420_get_tune_settings,
.read_status = s5h1420_read_status,
.read_ber = s5h1420_read_ber,
.read_signal_strength = s5h1420_read_signal_strength,
.read_ucblocks = s5h1420_read_ucblocks,
.diseqc_send_master_cmd = s5h1420_send_master_cmd,
.diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
.diseqc_send_burst = s5h1420_send_burst,
.set_tone = s5h1420_set_tone,
.set_voltage = s5h1420_set_voltage,
};
MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver");
MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher");
MODULE_LICENSE("GPL");