linux_dsm_epyc7002/arch/sparc/kernel/pci.c
Linus Torvalds 12f03ee606 libnvdimm for 4.3:
1/ Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
    mechanism for adding device-driver-discovered memory regions to the
    kernel's direct map.  This facility is used by the pmem driver to
    enable pfn_to_page() operations on the page frames returned by DAX
    ('direct_access' in 'struct block_device_operations'). For now, the
    'memmap' allocation for these "device" pages comes from "System
    RAM".  Support for allocating the memmap from device memory will
    arrive in a later kernel.
 
 2/ Introduce memremap() to replace usages of ioremap_cache() and
    ioremap_wt().  memremap() drops the __iomem annotation for these
    mappings to memory that do not have i/o side effects.  The
    replacement of ioremap_cache() with memremap() is limited to the
    pmem driver to ease merging the api change in v4.3.  Completion of
    the conversion is targeted for v4.4.
 
 3/ Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
    driver, update the VFS DAX implementation and PMEM api to provide
    persistence guarantees for kernel operations on a DAX mapping.
 
 4/ Convert the ACPI NFIT 'BLK' driver to map the block apertures as
    cacheable to improve performance.
 
 5/ Miscellaneous updates and fixes to libnvdimm including support
    for issuing "address range scrub" commands, clarifying the optimal
    'sector size' of pmem devices, a clarification of the usage of the
    ACPI '_STA' (status) property for DIMM devices, and other minor
    fixes.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJV6Nx7AAoJEB7SkWpmfYgCWyYQAI5ju6Gvw27RNFtPovHcZUf5
 JGnxXejI6/AqeTQ+IulgprxtEUCrXOHjCDA5dkjr1qvsoqK1qxug+vJHOZLgeW0R
 OwDtmdW4Qrgeqm+CPoxETkorJ8wDOc8mol81kTiMgeV3UqbYeeHIiTAmwe7VzZ0C
 nNdCRDm5g8dHCjTKcvK3rvozgyoNoWeBiHkPe76EbnxDICxCB5dak7XsVKNMIVFQ
 NuYlnw6IYN7+rMHgpgpRux38NtIW8VlYPWTmHExejc2mlioWMNBG/bmtwLyJ6M3e
 zliz4/cnonTMUaizZaVozyinTa65m7wcnpjK+vlyGV2deDZPJpDRvSOtB0lH30bR
 1gy+qrKzuGKpaN6thOISxFLLjmEeYwzYd7SvC9n118r32qShz+opN9XX0WmWSFlA
 sajE1ehm4M7s5pkMoa/dRnAyR8RUPu4RNINdQ/Z9jFfAOx+Q26rLdQXwf9+uqbEb
 bIeSQwOteK5vYYCstvpAcHSMlJAglzIX5UfZBvtEIJN7rlb0VhmGWfxAnTu+ktG1
 o9cqAt+J4146xHaFwj5duTsyKhWb8BL9+xqbKPNpXEp+PbLsrnE/+WkDLFD67jxz
 dgIoK60mGnVXp+16I2uMqYYDgAyO5zUdmM4OygOMnZNa1mxesjbDJC6Wat1Wsndn
 slsw6DkrWT60CRE42nbK
 =o57/
 -----END PGP SIGNATURE-----

Merge tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm

Pull libnvdimm updates from Dan Williams:
 "This update has successfully completed a 0day-kbuild run and has
  appeared in a linux-next release.  The changes outside of the typical
  drivers/nvdimm/ and drivers/acpi/nfit.[ch] paths are related to the
  removal of IORESOURCE_CACHEABLE, the introduction of memremap(), and
  the introduction of ZONE_DEVICE + devm_memremap_pages().

  Summary:

   - Introduce ZONE_DEVICE and devm_memremap_pages() as a generic
     mechanism for adding device-driver-discovered memory regions to the
     kernel's direct map.

     This facility is used by the pmem driver to enable pfn_to_page()
     operations on the page frames returned by DAX ('direct_access' in
     'struct block_device_operations').

     For now, the 'memmap' allocation for these "device" pages comes
     from "System RAM".  Support for allocating the memmap from device
     memory will arrive in a later kernel.

   - Introduce memremap() to replace usages of ioremap_cache() and
     ioremap_wt().  memremap() drops the __iomem annotation for these
     mappings to memory that do not have i/o side effects.  The
     replacement of ioremap_cache() with memremap() is limited to the
     pmem driver to ease merging the api change in v4.3.

     Completion of the conversion is targeted for v4.4.

   - Similar to the usage of memcpy_to_pmem() + wmb_pmem() in the pmem
     driver, update the VFS DAX implementation and PMEM api to provide
     persistence guarantees for kernel operations on a DAX mapping.

   - Convert the ACPI NFIT 'BLK' driver to map the block apertures as
     cacheable to improve performance.

   - Miscellaneous updates and fixes to libnvdimm including support for
     issuing "address range scrub" commands, clarifying the optimal
     'sector size' of pmem devices, a clarification of the usage of the
     ACPI '_STA' (status) property for DIMM devices, and other minor
     fixes"

* tag 'libnvdimm-for-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (34 commits)
  libnvdimm, pmem: direct map legacy pmem by default
  libnvdimm, pmem: 'struct page' for pmem
  libnvdimm, pfn: 'struct page' provider infrastructure
  x86, pmem: clarify that ARCH_HAS_PMEM_API implies PMEM mapped WB
  add devm_memremap_pages
  mm: ZONE_DEVICE for "device memory"
  mm: move __phys_to_pfn and __pfn_to_phys to asm/generic/memory_model.h
  dax: drop size parameter to ->direct_access()
  nd_blk: change aperture mapping from WC to WB
  nvdimm: change to use generic kvfree()
  pmem, dax: have direct_access use __pmem annotation
  dax: update I/O path to do proper PMEM flushing
  pmem: add copy_from_iter_pmem() and clear_pmem()
  pmem, x86: clean up conditional pmem includes
  pmem: remove layer when calling arch_has_wmb_pmem()
  pmem, x86: move x86 PMEM API to new pmem.h header
  libnvdimm, e820: make CONFIG_X86_PMEM_LEGACY a tristate option
  pmem: switch to devm_ allocations
  devres: add devm_memremap
  libnvdimm, btt: write and validate parent_uuid
  ...
2015-09-08 14:35:59 -07:00

1112 lines
27 KiB
C

/* pci.c: UltraSparc PCI controller support.
*
* Copyright (C) 1997, 1998, 1999 David S. Miller (davem@redhat.com)
* Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1999 Jakub Jelinek (jj@ultra.linux.cz)
*
* OF tree based PCI bus probing taken from the PowerPC port
* with minor modifications, see there for credits.
*/
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/capability.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/msi.h>
#include <linux/irq.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/prom.h>
#include <asm/apb.h>
#include "pci_impl.h"
#include "kernel.h"
/* List of all PCI controllers found in the system. */
struct pci_pbm_info *pci_pbm_root = NULL;
/* Each PBM found gets a unique index. */
int pci_num_pbms = 0;
volatile int pci_poke_in_progress;
volatile int pci_poke_cpu = -1;
volatile int pci_poke_faulted;
static DEFINE_SPINLOCK(pci_poke_lock);
void pci_config_read8(u8 *addr, u8 *ret)
{
unsigned long flags;
u8 byte;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduba [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (byte)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = byte;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_read16(u16 *addr, u16 *ret)
{
unsigned long flags;
u16 word;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduha [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (word)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = word;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_read32(u32 *addr, u32 *ret)
{
unsigned long flags;
u32 dword;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"lduwa [%1] %2, %0\n\t"
"membar #Sync"
: "=r" (dword)
: "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
if (!pci_poke_faulted)
*ret = dword;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write8(u8 *addr, u8 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stba %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write16(u16 *addr, u16 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stha %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
void pci_config_write32(u32 *addr, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&pci_poke_lock, flags);
pci_poke_cpu = smp_processor_id();
pci_poke_in_progress = 1;
pci_poke_faulted = 0;
__asm__ __volatile__("membar #Sync\n\t"
"stwa %0, [%1] %2\n\t"
"membar #Sync"
: /* no outputs */
: "r" (val), "r" (addr), "i" (ASI_PHYS_BYPASS_EC_E_L)
: "memory");
pci_poke_in_progress = 0;
pci_poke_cpu = -1;
spin_unlock_irqrestore(&pci_poke_lock, flags);
}
static int ofpci_verbose;
static int __init ofpci_debug(char *str)
{
int val = 0;
get_option(&str, &val);
if (val)
ofpci_verbose = 1;
return 1;
}
__setup("ofpci_debug=", ofpci_debug);
static unsigned long pci_parse_of_flags(u32 addr0)
{
unsigned long flags = 0;
if (addr0 & 0x02000000) {
flags = IORESOURCE_MEM | PCI_BASE_ADDRESS_SPACE_MEMORY;
flags |= (addr0 >> 22) & PCI_BASE_ADDRESS_MEM_TYPE_64;
flags |= (addr0 >> 28) & PCI_BASE_ADDRESS_MEM_TYPE_1M;
if (addr0 & 0x40000000)
flags |= IORESOURCE_PREFETCH
| PCI_BASE_ADDRESS_MEM_PREFETCH;
} else if (addr0 & 0x01000000)
flags = IORESOURCE_IO | PCI_BASE_ADDRESS_SPACE_IO;
return flags;
}
/* The of_device layer has translated all of the assigned-address properties
* into physical address resources, we only have to figure out the register
* mapping.
*/
static void pci_parse_of_addrs(struct platform_device *op,
struct device_node *node,
struct pci_dev *dev)
{
struct resource *op_res;
const u32 *addrs;
int proplen;
addrs = of_get_property(node, "assigned-addresses", &proplen);
if (!addrs)
return;
if (ofpci_verbose)
printk(" parse addresses (%d bytes) @ %p\n",
proplen, addrs);
op_res = &op->resource[0];
for (; proplen >= 20; proplen -= 20, addrs += 5, op_res++) {
struct resource *res;
unsigned long flags;
int i;
flags = pci_parse_of_flags(addrs[0]);
if (!flags)
continue;
i = addrs[0] & 0xff;
if (ofpci_verbose)
printk(" start: %llx, end: %llx, i: %x\n",
op_res->start, op_res->end, i);
if (PCI_BASE_ADDRESS_0 <= i && i <= PCI_BASE_ADDRESS_5) {
res = &dev->resource[(i - PCI_BASE_ADDRESS_0) >> 2];
} else if (i == dev->rom_base_reg) {
res = &dev->resource[PCI_ROM_RESOURCE];
flags |= IORESOURCE_READONLY | IORESOURCE_SIZEALIGN;
} else {
printk(KERN_ERR "PCI: bad cfg reg num 0x%x\n", i);
continue;
}
res->start = op_res->start;
res->end = op_res->end;
res->flags = flags;
res->name = pci_name(dev);
}
}
static struct pci_dev *of_create_pci_dev(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus, int devfn)
{
struct dev_archdata *sd;
struct platform_device *op;
struct pci_dev *dev;
const char *type;
u32 class;
dev = pci_alloc_dev(bus);
if (!dev)
return NULL;
sd = &dev->dev.archdata;
sd->iommu = pbm->iommu;
sd->stc = &pbm->stc;
sd->host_controller = pbm;
sd->op = op = of_find_device_by_node(node);
sd->numa_node = pbm->numa_node;
sd = &op->dev.archdata;
sd->iommu = pbm->iommu;
sd->stc = &pbm->stc;
sd->numa_node = pbm->numa_node;
if (!strcmp(node->name, "ebus"))
of_propagate_archdata(op);
type = of_get_property(node, "device_type", NULL);
if (type == NULL)
type = "";
if (ofpci_verbose)
printk(" create device, devfn: %x, type: %s\n",
devfn, type);
dev->sysdata = node;
dev->dev.parent = bus->bridge;
dev->dev.bus = &pci_bus_type;
dev->dev.of_node = of_node_get(node);
dev->devfn = devfn;
dev->multifunction = 0; /* maybe a lie? */
set_pcie_port_type(dev);
pci_dev_assign_slot(dev);
dev->vendor = of_getintprop_default(node, "vendor-id", 0xffff);
dev->device = of_getintprop_default(node, "device-id", 0xffff);
dev->subsystem_vendor =
of_getintprop_default(node, "subsystem-vendor-id", 0);
dev->subsystem_device =
of_getintprop_default(node, "subsystem-id", 0);
dev->cfg_size = pci_cfg_space_size(dev);
/* We can't actually use the firmware value, we have
* to read what is in the register right now. One
* reason is that in the case of IDE interfaces the
* firmware can sample the value before the the IDE
* interface is programmed into native mode.
*/
pci_read_config_dword(dev, PCI_CLASS_REVISION, &class);
dev->class = class >> 8;
dev->revision = class & 0xff;
dev_set_name(&dev->dev, "%04x:%02x:%02x.%d", pci_domain_nr(bus),
dev->bus->number, PCI_SLOT(devfn), PCI_FUNC(devfn));
if (ofpci_verbose)
printk(" class: 0x%x device name: %s\n",
dev->class, pci_name(dev));
/* I have seen IDE devices which will not respond to
* the bmdma simplex check reads if bus mastering is
* disabled.
*/
if ((dev->class >> 8) == PCI_CLASS_STORAGE_IDE)
pci_set_master(dev);
dev->current_state = PCI_UNKNOWN; /* unknown power state */
dev->error_state = pci_channel_io_normal;
dev->dma_mask = 0xffffffff;
if (!strcmp(node->name, "pci")) {
/* a PCI-PCI bridge */
dev->hdr_type = PCI_HEADER_TYPE_BRIDGE;
dev->rom_base_reg = PCI_ROM_ADDRESS1;
} else if (!strcmp(type, "cardbus")) {
dev->hdr_type = PCI_HEADER_TYPE_CARDBUS;
} else {
dev->hdr_type = PCI_HEADER_TYPE_NORMAL;
dev->rom_base_reg = PCI_ROM_ADDRESS;
dev->irq = sd->op->archdata.irqs[0];
if (dev->irq == 0xffffffff)
dev->irq = PCI_IRQ_NONE;
}
pci_parse_of_addrs(sd->op, node, dev);
if (ofpci_verbose)
printk(" adding to system ...\n");
pci_device_add(dev, bus);
return dev;
}
static void apb_calc_first_last(u8 map, u32 *first_p, u32 *last_p)
{
u32 idx, first, last;
first = 8;
last = 0;
for (idx = 0; idx < 8; idx++) {
if ((map & (1 << idx)) != 0) {
if (first > idx)
first = idx;
if (last < idx)
last = idx;
}
}
*first_p = first;
*last_p = last;
}
/* Cook up fake bus resources for SUNW,simba PCI bridges which lack
* a proper 'ranges' property.
*/
static void apb_fake_ranges(struct pci_dev *dev,
struct pci_bus *bus,
struct pci_pbm_info *pbm)
{
struct pci_bus_region region;
struct resource *res;
u32 first, last;
u8 map;
pci_read_config_byte(dev, APB_IO_ADDRESS_MAP, &map);
apb_calc_first_last(map, &first, &last);
res = bus->resource[0];
res->flags = IORESOURCE_IO;
region.start = (first << 21);
region.end = (last << 21) + ((1 << 21) - 1);
pcibios_bus_to_resource(dev->bus, res, &region);
pci_read_config_byte(dev, APB_MEM_ADDRESS_MAP, &map);
apb_calc_first_last(map, &first, &last);
res = bus->resource[1];
res->flags = IORESOURCE_MEM;
region.start = (first << 29);
region.end = (last << 29) + ((1 << 29) - 1);
pcibios_bus_to_resource(dev->bus, res, &region);
}
static void pci_of_scan_bus(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus);
#define GET_64BIT(prop, i) ((((u64) (prop)[(i)]) << 32) | (prop)[(i)+1])
static void of_scan_pci_bridge(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_dev *dev)
{
struct pci_bus *bus;
const u32 *busrange, *ranges;
int len, i, simba;
struct pci_bus_region region;
struct resource *res;
unsigned int flags;
u64 size;
if (ofpci_verbose)
printk("of_scan_pci_bridge(%s)\n", node->full_name);
/* parse bus-range property */
busrange = of_get_property(node, "bus-range", &len);
if (busrange == NULL || len != 8) {
printk(KERN_DEBUG "Can't get bus-range for PCI-PCI bridge %s\n",
node->full_name);
return;
}
if (ofpci_verbose)
printk(" Bridge bus range [%u --> %u]\n",
busrange[0], busrange[1]);
ranges = of_get_property(node, "ranges", &len);
simba = 0;
if (ranges == NULL) {
const char *model = of_get_property(node, "model", NULL);
if (model && !strcmp(model, "SUNW,simba"))
simba = 1;
}
bus = pci_add_new_bus(dev->bus, dev, busrange[0]);
if (!bus) {
printk(KERN_ERR "Failed to create pci bus for %s\n",
node->full_name);
return;
}
bus->primary = dev->bus->number;
pci_bus_insert_busn_res(bus, busrange[0], busrange[1]);
bus->bridge_ctl = 0;
if (ofpci_verbose)
printk(" Bridge ranges[%p] simba[%d]\n",
ranges, simba);
/* parse ranges property, or cook one up by hand for Simba */
/* PCI #address-cells == 3 and #size-cells == 2 always */
res = &dev->resource[PCI_BRIDGE_RESOURCES];
for (i = 0; i < PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES; ++i) {
res->flags = 0;
bus->resource[i] = res;
++res;
}
if (simba) {
apb_fake_ranges(dev, bus, pbm);
goto after_ranges;
} else if (ranges == NULL) {
pci_read_bridge_bases(bus);
goto after_ranges;
}
i = 1;
for (; len >= 32; len -= 32, ranges += 8) {
u64 start;
if (ofpci_verbose)
printk(" RAW Range[%08x:%08x:%08x:%08x:%08x:%08x:"
"%08x:%08x]\n",
ranges[0], ranges[1], ranges[2], ranges[3],
ranges[4], ranges[5], ranges[6], ranges[7]);
flags = pci_parse_of_flags(ranges[0]);
size = GET_64BIT(ranges, 6);
if (flags == 0 || size == 0)
continue;
/* On PCI-Express systems, PCI bridges that have no devices downstream
* have a bogus size value where the first 32-bit cell is 0xffffffff.
* This results in a bogus range where start + size overflows.
*
* Just skip these otherwise the kernel will complain when the resource
* tries to be claimed.
*/
if (size >> 32 == 0xffffffff)
continue;
if (flags & IORESOURCE_IO) {
res = bus->resource[0];
if (res->flags) {
printk(KERN_ERR "PCI: ignoring extra I/O range"
" for bridge %s\n", node->full_name);
continue;
}
} else {
if (i >= PCI_NUM_RESOURCES - PCI_BRIDGE_RESOURCES) {
printk(KERN_ERR "PCI: too many memory ranges"
" for bridge %s\n", node->full_name);
continue;
}
res = bus->resource[i];
++i;
}
res->flags = flags;
region.start = start = GET_64BIT(ranges, 1);
region.end = region.start + size - 1;
if (ofpci_verbose)
printk(" Using flags[%08x] start[%016llx] size[%016llx]\n",
flags, start, size);
pcibios_bus_to_resource(dev->bus, res, &region);
}
after_ranges:
sprintf(bus->name, "PCI Bus %04x:%02x", pci_domain_nr(bus),
bus->number);
if (ofpci_verbose)
printk(" bus name: %s\n", bus->name);
pci_of_scan_bus(pbm, node, bus);
}
static void pci_of_scan_bus(struct pci_pbm_info *pbm,
struct device_node *node,
struct pci_bus *bus)
{
struct device_node *child;
const u32 *reg;
int reglen, devfn, prev_devfn;
struct pci_dev *dev;
if (ofpci_verbose)
printk("PCI: scan_bus[%s] bus no %d\n",
node->full_name, bus->number);
child = NULL;
prev_devfn = -1;
while ((child = of_get_next_child(node, child)) != NULL) {
if (ofpci_verbose)
printk(" * %s\n", child->full_name);
reg = of_get_property(child, "reg", &reglen);
if (reg == NULL || reglen < 20)
continue;
devfn = (reg[0] >> 8) & 0xff;
/* This is a workaround for some device trees
* which list PCI devices twice. On the V100
* for example, device number 3 is listed twice.
* Once as "pm" and once again as "lomp".
*/
if (devfn == prev_devfn)
continue;
prev_devfn = devfn;
/* create a new pci_dev for this device */
dev = of_create_pci_dev(pbm, child, bus, devfn);
if (!dev)
continue;
if (ofpci_verbose)
printk("PCI: dev header type: %x\n",
dev->hdr_type);
if (pci_is_bridge(dev))
of_scan_pci_bridge(pbm, child, dev);
}
}
static ssize_t
show_pciobppath_attr(struct device * dev, struct device_attribute * attr, char * buf)
{
struct pci_dev *pdev;
struct device_node *dp;
pdev = to_pci_dev(dev);
dp = pdev->dev.of_node;
return snprintf (buf, PAGE_SIZE, "%s\n", dp->full_name);
}
static DEVICE_ATTR(obppath, S_IRUSR | S_IRGRP | S_IROTH, show_pciobppath_attr, NULL);
static void pci_bus_register_of_sysfs(struct pci_bus *bus)
{
struct pci_dev *dev;
struct pci_bus *child_bus;
int err;
list_for_each_entry(dev, &bus->devices, bus_list) {
/* we don't really care if we can create this file or
* not, but we need to assign the result of the call
* or the world will fall under alien invasion and
* everybody will be frozen on a spaceship ready to be
* eaten on alpha centauri by some green and jelly
* humanoid.
*/
err = sysfs_create_file(&dev->dev.kobj, &dev_attr_obppath.attr);
(void) err;
}
list_for_each_entry(child_bus, &bus->children, node)
pci_bus_register_of_sysfs(child_bus);
}
static void pci_claim_bus_resources(struct pci_bus *bus)
{
struct pci_bus *child_bus;
struct pci_dev *dev;
list_for_each_entry(dev, &bus->devices, bus_list) {
int i;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
struct resource *r = &dev->resource[i];
if (r->parent || !r->start || !r->flags)
continue;
if (ofpci_verbose)
printk("PCI: Claiming %s: "
"Resource %d: %016llx..%016llx [%x]\n",
pci_name(dev), i,
(unsigned long long)r->start,
(unsigned long long)r->end,
(unsigned int)r->flags);
pci_claim_resource(dev, i);
}
}
list_for_each_entry(child_bus, &bus->children, node)
pci_claim_bus_resources(child_bus);
}
struct pci_bus *pci_scan_one_pbm(struct pci_pbm_info *pbm,
struct device *parent)
{
LIST_HEAD(resources);
struct device_node *node = pbm->op->dev.of_node;
struct pci_bus *bus;
printk("PCI: Scanning PBM %s\n", node->full_name);
pci_add_resource_offset(&resources, &pbm->io_space,
pbm->io_space.start);
pci_add_resource_offset(&resources, &pbm->mem_space,
pbm->mem_space.start);
pbm->busn.start = pbm->pci_first_busno;
pbm->busn.end = pbm->pci_last_busno;
pbm->busn.flags = IORESOURCE_BUS;
pci_add_resource(&resources, &pbm->busn);
bus = pci_create_root_bus(parent, pbm->pci_first_busno, pbm->pci_ops,
pbm, &resources);
if (!bus) {
printk(KERN_ERR "Failed to create bus for %s\n",
node->full_name);
pci_free_resource_list(&resources);
return NULL;
}
pci_of_scan_bus(pbm, node, bus);
pci_bus_register_of_sysfs(bus);
pci_claim_bus_resources(bus);
pci_bus_add_devices(bus);
return bus;
}
void pcibios_fixup_bus(struct pci_bus *pbus)
{
}
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
resource_size_t size, resource_size_t align)
{
return res->start;
}
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
u16 cmd, oldcmd;
int i;
pci_read_config_word(dev, PCI_COMMAND, &cmd);
oldcmd = cmd;
for (i = 0; i < PCI_NUM_RESOURCES; i++) {
struct resource *res = &dev->resource[i];
/* Only set up the requested stuff */
if (!(mask & (1<<i)))
continue;
if (res->flags & IORESOURCE_IO)
cmd |= PCI_COMMAND_IO;
if (res->flags & IORESOURCE_MEM)
cmd |= PCI_COMMAND_MEMORY;
}
if (cmd != oldcmd) {
printk(KERN_DEBUG "PCI: Enabling device: (%s), cmd %x\n",
pci_name(dev), cmd);
/* Enable the appropriate bits in the PCI command register. */
pci_write_config_word(dev, PCI_COMMAND, cmd);
}
return 0;
}
/* Platform support for /proc/bus/pci/X/Y mmap()s. */
/* If the user uses a host-bridge as the PCI device, he may use
* this to perform a raw mmap() of the I/O or MEM space behind
* that controller.
*
* This can be useful for execution of x86 PCI bios initialization code
* on a PCI card, like the xfree86 int10 stuff does.
*/
static int __pci_mmap_make_offset_bus(struct pci_dev *pdev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
unsigned long space_size, user_offset, user_size;
if (mmap_state == pci_mmap_io) {
space_size = resource_size(&pbm->io_space);
} else {
space_size = resource_size(&pbm->mem_space);
}
/* Make sure the request is in range. */
user_offset = vma->vm_pgoff << PAGE_SHIFT;
user_size = vma->vm_end - vma->vm_start;
if (user_offset >= space_size ||
(user_offset + user_size) > space_size)
return -EINVAL;
if (mmap_state == pci_mmap_io) {
vma->vm_pgoff = (pbm->io_space.start +
user_offset) >> PAGE_SHIFT;
} else {
vma->vm_pgoff = (pbm->mem_space.start +
user_offset) >> PAGE_SHIFT;
}
return 0;
}
/* Adjust vm_pgoff of VMA such that it is the physical page offset
* corresponding to the 32-bit pci bus offset for DEV requested by the user.
*
* Basically, the user finds the base address for his device which he wishes
* to mmap. They read the 32-bit value from the config space base register,
* add whatever PAGE_SIZE multiple offset they wish, and feed this into the
* offset parameter of mmap on /proc/bus/pci/XXX for that device.
*
* Returns negative error code on failure, zero on success.
*/
static int __pci_mmap_make_offset(struct pci_dev *pdev,
struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
unsigned long user_paddr, user_size;
int i, err;
/* First compute the physical address in vma->vm_pgoff,
* making sure the user offset is within range in the
* appropriate PCI space.
*/
err = __pci_mmap_make_offset_bus(pdev, vma, mmap_state);
if (err)
return err;
/* If this is a mapping on a host bridge, any address
* is OK.
*/
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_HOST)
return err;
/* Otherwise make sure it's in the range for one of the
* device's resources.
*/
user_paddr = vma->vm_pgoff << PAGE_SHIFT;
user_size = vma->vm_end - vma->vm_start;
for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
struct resource *rp = &pdev->resource[i];
resource_size_t aligned_end;
/* Active? */
if (!rp->flags)
continue;
/* Same type? */
if (i == PCI_ROM_RESOURCE) {
if (mmap_state != pci_mmap_mem)
continue;
} else {
if ((mmap_state == pci_mmap_io &&
(rp->flags & IORESOURCE_IO) == 0) ||
(mmap_state == pci_mmap_mem &&
(rp->flags & IORESOURCE_MEM) == 0))
continue;
}
/* Align the resource end to the next page address.
* PAGE_SIZE intentionally added instead of (PAGE_SIZE - 1),
* because actually we need the address of the next byte
* after rp->end.
*/
aligned_end = (rp->end + PAGE_SIZE) & PAGE_MASK;
if ((rp->start <= user_paddr) &&
(user_paddr + user_size) <= aligned_end)
break;
}
if (i > PCI_ROM_RESOURCE)
return -EINVAL;
return 0;
}
/* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
* device mapping.
*/
static void __pci_mmap_set_pgprot(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
/* Our io_remap_pfn_range takes care of this, do nothing. */
}
/* Perform the actual remap of the pages for a PCI device mapping, as appropriate
* for this architecture. The region in the process to map is described by vm_start
* and vm_end members of VMA, the base physical address is found in vm_pgoff.
* The pci device structure is provided so that architectures may make mapping
* decisions on a per-device or per-bus basis.
*
* Returns a negative error code on failure, zero on success.
*/
int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state,
int write_combine)
{
int ret;
ret = __pci_mmap_make_offset(dev, vma, mmap_state);
if (ret < 0)
return ret;
__pci_mmap_set_pgprot(dev, vma, mmap_state);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
ret = io_remap_pfn_range(vma, vma->vm_start,
vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot);
if (ret)
return ret;
return 0;
}
#ifdef CONFIG_NUMA
int pcibus_to_node(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
return pbm->numa_node;
}
EXPORT_SYMBOL(pcibus_to_node);
#endif
/* Return the domain number for this pci bus */
int pci_domain_nr(struct pci_bus *pbus)
{
struct pci_pbm_info *pbm = pbus->sysdata;
int ret;
if (!pbm) {
ret = -ENXIO;
} else {
ret = pbm->index;
}
return ret;
}
EXPORT_SYMBOL(pci_domain_nr);
#ifdef CONFIG_PCI_MSI
int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
unsigned int irq;
if (!pbm->setup_msi_irq)
return -EINVAL;
return pbm->setup_msi_irq(&irq, pdev, desc);
}
void arch_teardown_msi_irq(unsigned int irq)
{
struct msi_desc *entry = irq_get_msi_desc(irq);
struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
if (pbm->teardown_msi_irq)
pbm->teardown_msi_irq(irq, pdev);
}
#endif /* !(CONFIG_PCI_MSI) */
static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit)
{
struct pci_dev *ali_isa_bridge;
u8 val;
/* ALI sound chips generate 31-bits of DMA, a special register
* determines what bit 31 is emitted as.
*/
ali_isa_bridge = pci_get_device(PCI_VENDOR_ID_AL,
PCI_DEVICE_ID_AL_M1533,
NULL);
pci_read_config_byte(ali_isa_bridge, 0x7e, &val);
if (set_bit)
val |= 0x01;
else
val &= ~0x01;
pci_write_config_byte(ali_isa_bridge, 0x7e, val);
pci_dev_put(ali_isa_bridge);
}
int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask)
{
u64 dma_addr_mask;
if (pdev == NULL) {
dma_addr_mask = 0xffffffff;
} else {
struct iommu *iommu = pdev->dev.archdata.iommu;
dma_addr_mask = iommu->dma_addr_mask;
if (pdev->vendor == PCI_VENDOR_ID_AL &&
pdev->device == PCI_DEVICE_ID_AL_M5451 &&
device_mask == 0x7fffffff) {
ali_sound_dma_hack(pdev,
(dma_addr_mask & 0x80000000) != 0);
return 1;
}
}
if (device_mask >= (1UL << 32UL))
return 0;
return (device_mask & dma_addr_mask) == dma_addr_mask;
}
void pci_resource_to_user(const struct pci_dev *pdev, int bar,
const struct resource *rp, resource_size_t *start,
resource_size_t *end)
{
struct pci_pbm_info *pbm = pdev->dev.archdata.host_controller;
unsigned long offset;
if (rp->flags & IORESOURCE_IO)
offset = pbm->io_space.start;
else
offset = pbm->mem_space.start;
*start = rp->start - offset;
*end = rp->end - offset;
}
void pcibios_set_master(struct pci_dev *dev)
{
/* No special bus mastering setup handling */
}
static int __init pcibios_init(void)
{
pci_dfl_cache_line_size = 64 >> 2;
return 0;
}
subsys_initcall(pcibios_init);
#ifdef CONFIG_SYSFS
#define SLOT_NAME_SIZE 11 /* Max decimal digits + null in u32 */
static void pcie_bus_slot_names(struct pci_bus *pbus)
{
struct pci_dev *pdev;
struct pci_bus *bus;
list_for_each_entry(pdev, &pbus->devices, bus_list) {
char name[SLOT_NAME_SIZE];
struct pci_slot *pci_slot;
const u32 *slot_num;
int len;
slot_num = of_get_property(pdev->dev.of_node,
"physical-slot#", &len);
if (slot_num == NULL || len != 4)
continue;
snprintf(name, sizeof(name), "%u", slot_num[0]);
pci_slot = pci_create_slot(pbus, slot_num[0], name, NULL);
if (IS_ERR(pci_slot))
pr_err("PCI: pci_create_slot returned %ld.\n",
PTR_ERR(pci_slot));
}
list_for_each_entry(bus, &pbus->children, node)
pcie_bus_slot_names(bus);
}
static void pci_bus_slot_names(struct device_node *node, struct pci_bus *bus)
{
const struct pci_slot_names {
u32 slot_mask;
char names[0];
} *prop;
const char *sp;
int len, i;
u32 mask;
prop = of_get_property(node, "slot-names", &len);
if (!prop)
return;
mask = prop->slot_mask;
sp = prop->names;
if (ofpci_verbose)
printk("PCI: Making slots for [%s] mask[0x%02x]\n",
node->full_name, mask);
i = 0;
while (mask) {
struct pci_slot *pci_slot;
u32 this_bit = 1 << i;
if (!(mask & this_bit)) {
i++;
continue;
}
if (ofpci_verbose)
printk("PCI: Making slot [%s]\n", sp);
pci_slot = pci_create_slot(bus, i, sp, NULL);
if (IS_ERR(pci_slot))
printk(KERN_ERR "PCI: pci_create_slot returned %ld\n",
PTR_ERR(pci_slot));
sp += strlen(sp) + 1;
mask &= ~this_bit;
i++;
}
}
static int __init of_pci_slot_init(void)
{
struct pci_bus *pbus = NULL;
while ((pbus = pci_find_next_bus(pbus)) != NULL) {
struct device_node *node;
struct pci_dev *pdev;
pdev = list_first_entry(&pbus->devices, struct pci_dev,
bus_list);
if (pdev && pci_is_pcie(pdev)) {
pcie_bus_slot_names(pbus);
} else {
if (pbus->self) {
/* PCI->PCI bridge */
node = pbus->self->dev.of_node;
} else {
struct pci_pbm_info *pbm = pbus->sysdata;
/* Host PCI controller */
node = pbm->op->dev.of_node;
}
pci_bus_slot_names(node, pbus);
}
}
return 0;
}
device_initcall(of_pci_slot_init);
#endif