mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 11:30:53 +07:00
a7305e684f
The avs drivers are all SoC specific drivers that doesn't share any code. Instead they are located in a directory, mostly to keep similar functionality together. From a maintenance point of view, it makes better sense to collect SoC specific drivers like these, into the SoC specific directories. Therefore, let's move the qcom-cpr driver to the qcom directory. Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org> Acked-by: Bjorn Andersson <bjorn.andersson@linaro.org> Acked-by: Niklas Cassel <nks@flawful.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
1789 lines
44 KiB
C
1789 lines
44 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2013-2015, The Linux Foundation. All rights reserved.
|
|
* Copyright (c) 2019, Linaro Limited
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/err.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/list.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_domain.h>
|
|
#include <linux/pm_opp.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/regmap.h>
|
|
#include <linux/mfd/syscon.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/nvmem-consumer.h>
|
|
|
|
/* Register Offsets for RB-CPR and Bit Definitions */
|
|
|
|
/* RBCPR Version Register */
|
|
#define REG_RBCPR_VERSION 0
|
|
#define RBCPR_VER_2 0x02
|
|
#define FLAGS_IGNORE_1ST_IRQ_STATUS BIT(0)
|
|
|
|
/* RBCPR Gate Count and Target Registers */
|
|
#define REG_RBCPR_GCNT_TARGET(n) (0x60 + 4 * (n))
|
|
|
|
#define RBCPR_GCNT_TARGET_TARGET_SHIFT 0
|
|
#define RBCPR_GCNT_TARGET_TARGET_MASK GENMASK(11, 0)
|
|
#define RBCPR_GCNT_TARGET_GCNT_SHIFT 12
|
|
#define RBCPR_GCNT_TARGET_GCNT_MASK GENMASK(9, 0)
|
|
|
|
/* RBCPR Timer Control */
|
|
#define REG_RBCPR_TIMER_INTERVAL 0x44
|
|
#define REG_RBIF_TIMER_ADJUST 0x4c
|
|
|
|
#define RBIF_TIMER_ADJ_CONS_UP_MASK GENMASK(3, 0)
|
|
#define RBIF_TIMER_ADJ_CONS_UP_SHIFT 0
|
|
#define RBIF_TIMER_ADJ_CONS_DOWN_MASK GENMASK(3, 0)
|
|
#define RBIF_TIMER_ADJ_CONS_DOWN_SHIFT 4
|
|
#define RBIF_TIMER_ADJ_CLAMP_INT_MASK GENMASK(7, 0)
|
|
#define RBIF_TIMER_ADJ_CLAMP_INT_SHIFT 8
|
|
|
|
/* RBCPR Config Register */
|
|
#define REG_RBIF_LIMIT 0x48
|
|
#define RBIF_LIMIT_CEILING_MASK GENMASK(5, 0)
|
|
#define RBIF_LIMIT_CEILING_SHIFT 6
|
|
#define RBIF_LIMIT_FLOOR_BITS 6
|
|
#define RBIF_LIMIT_FLOOR_MASK GENMASK(5, 0)
|
|
|
|
#define RBIF_LIMIT_CEILING_DEFAULT RBIF_LIMIT_CEILING_MASK
|
|
#define RBIF_LIMIT_FLOOR_DEFAULT 0
|
|
|
|
#define REG_RBIF_SW_VLEVEL 0x94
|
|
#define RBIF_SW_VLEVEL_DEFAULT 0x20
|
|
|
|
#define REG_RBCPR_STEP_QUOT 0x80
|
|
#define RBCPR_STEP_QUOT_STEPQUOT_MASK GENMASK(7, 0)
|
|
#define RBCPR_STEP_QUOT_IDLE_CLK_MASK GENMASK(3, 0)
|
|
#define RBCPR_STEP_QUOT_IDLE_CLK_SHIFT 8
|
|
|
|
/* RBCPR Control Register */
|
|
#define REG_RBCPR_CTL 0x90
|
|
|
|
#define RBCPR_CTL_LOOP_EN BIT(0)
|
|
#define RBCPR_CTL_TIMER_EN BIT(3)
|
|
#define RBCPR_CTL_SW_AUTO_CONT_ACK_EN BIT(5)
|
|
#define RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN BIT(6)
|
|
#define RBCPR_CTL_COUNT_MODE BIT(10)
|
|
#define RBCPR_CTL_UP_THRESHOLD_MASK GENMASK(3, 0)
|
|
#define RBCPR_CTL_UP_THRESHOLD_SHIFT 24
|
|
#define RBCPR_CTL_DN_THRESHOLD_MASK GENMASK(3, 0)
|
|
#define RBCPR_CTL_DN_THRESHOLD_SHIFT 28
|
|
|
|
/* RBCPR Ack/Nack Response */
|
|
#define REG_RBIF_CONT_ACK_CMD 0x98
|
|
#define REG_RBIF_CONT_NACK_CMD 0x9c
|
|
|
|
/* RBCPR Result status Register */
|
|
#define REG_RBCPR_RESULT_0 0xa0
|
|
|
|
#define RBCPR_RESULT0_BUSY_SHIFT 19
|
|
#define RBCPR_RESULT0_BUSY_MASK BIT(RBCPR_RESULT0_BUSY_SHIFT)
|
|
#define RBCPR_RESULT0_ERROR_LT0_SHIFT 18
|
|
#define RBCPR_RESULT0_ERROR_SHIFT 6
|
|
#define RBCPR_RESULT0_ERROR_MASK GENMASK(11, 0)
|
|
#define RBCPR_RESULT0_ERROR_STEPS_SHIFT 2
|
|
#define RBCPR_RESULT0_ERROR_STEPS_MASK GENMASK(3, 0)
|
|
#define RBCPR_RESULT0_STEP_UP_SHIFT 1
|
|
|
|
/* RBCPR Interrupt Control Register */
|
|
#define REG_RBIF_IRQ_EN(n) (0x100 + 4 * (n))
|
|
#define REG_RBIF_IRQ_CLEAR 0x110
|
|
#define REG_RBIF_IRQ_STATUS 0x114
|
|
|
|
#define CPR_INT_DONE BIT(0)
|
|
#define CPR_INT_MIN BIT(1)
|
|
#define CPR_INT_DOWN BIT(2)
|
|
#define CPR_INT_MID BIT(3)
|
|
#define CPR_INT_UP BIT(4)
|
|
#define CPR_INT_MAX BIT(5)
|
|
#define CPR_INT_CLAMP BIT(6)
|
|
#define CPR_INT_ALL (CPR_INT_DONE | CPR_INT_MIN | CPR_INT_DOWN | \
|
|
CPR_INT_MID | CPR_INT_UP | CPR_INT_MAX | CPR_INT_CLAMP)
|
|
#define CPR_INT_DEFAULT (CPR_INT_UP | CPR_INT_DOWN)
|
|
|
|
#define CPR_NUM_RING_OSC 8
|
|
|
|
/* CPR eFuse parameters */
|
|
#define CPR_FUSE_TARGET_QUOT_BITS_MASK GENMASK(11, 0)
|
|
|
|
#define CPR_FUSE_MIN_QUOT_DIFF 50
|
|
|
|
#define FUSE_REVISION_UNKNOWN (-1)
|
|
|
|
enum voltage_change_dir {
|
|
NO_CHANGE,
|
|
DOWN,
|
|
UP,
|
|
};
|
|
|
|
struct cpr_fuse {
|
|
char *ring_osc;
|
|
char *init_voltage;
|
|
char *quotient;
|
|
char *quotient_offset;
|
|
};
|
|
|
|
struct fuse_corner_data {
|
|
int ref_uV;
|
|
int max_uV;
|
|
int min_uV;
|
|
int max_volt_scale;
|
|
int max_quot_scale;
|
|
/* fuse quot */
|
|
int quot_offset;
|
|
int quot_scale;
|
|
int quot_adjust;
|
|
/* fuse quot_offset */
|
|
int quot_offset_scale;
|
|
int quot_offset_adjust;
|
|
};
|
|
|
|
struct cpr_fuses {
|
|
int init_voltage_step;
|
|
int init_voltage_width;
|
|
struct fuse_corner_data *fuse_corner_data;
|
|
};
|
|
|
|
struct corner_data {
|
|
unsigned int fuse_corner;
|
|
unsigned long freq;
|
|
};
|
|
|
|
struct cpr_desc {
|
|
unsigned int num_fuse_corners;
|
|
int min_diff_quot;
|
|
int *step_quot;
|
|
|
|
unsigned int timer_delay_us;
|
|
unsigned int timer_cons_up;
|
|
unsigned int timer_cons_down;
|
|
unsigned int up_threshold;
|
|
unsigned int down_threshold;
|
|
unsigned int idle_clocks;
|
|
unsigned int gcnt_us;
|
|
unsigned int vdd_apc_step_up_limit;
|
|
unsigned int vdd_apc_step_down_limit;
|
|
unsigned int clamp_timer_interval;
|
|
|
|
struct cpr_fuses cpr_fuses;
|
|
bool reduce_to_fuse_uV;
|
|
bool reduce_to_corner_uV;
|
|
};
|
|
|
|
struct acc_desc {
|
|
unsigned int enable_reg;
|
|
u32 enable_mask;
|
|
|
|
struct reg_sequence *config;
|
|
struct reg_sequence *settings;
|
|
int num_regs_per_fuse;
|
|
};
|
|
|
|
struct cpr_acc_desc {
|
|
const struct cpr_desc *cpr_desc;
|
|
const struct acc_desc *acc_desc;
|
|
};
|
|
|
|
struct fuse_corner {
|
|
int min_uV;
|
|
int max_uV;
|
|
int uV;
|
|
int quot;
|
|
int step_quot;
|
|
const struct reg_sequence *accs;
|
|
int num_accs;
|
|
unsigned long max_freq;
|
|
u8 ring_osc_idx;
|
|
};
|
|
|
|
struct corner {
|
|
int min_uV;
|
|
int max_uV;
|
|
int uV;
|
|
int last_uV;
|
|
int quot_adjust;
|
|
u32 save_ctl;
|
|
u32 save_irq;
|
|
unsigned long freq;
|
|
struct fuse_corner *fuse_corner;
|
|
};
|
|
|
|
struct cpr_drv {
|
|
unsigned int num_corners;
|
|
unsigned int ref_clk_khz;
|
|
|
|
struct generic_pm_domain pd;
|
|
struct device *dev;
|
|
struct device *attached_cpu_dev;
|
|
struct mutex lock;
|
|
void __iomem *base;
|
|
struct corner *corner;
|
|
struct regulator *vdd_apc;
|
|
struct clk *cpu_clk;
|
|
struct regmap *tcsr;
|
|
bool loop_disabled;
|
|
u32 gcnt;
|
|
unsigned long flags;
|
|
|
|
struct fuse_corner *fuse_corners;
|
|
struct corner *corners;
|
|
|
|
const struct cpr_desc *desc;
|
|
const struct acc_desc *acc_desc;
|
|
const struct cpr_fuse *cpr_fuses;
|
|
|
|
struct dentry *debugfs;
|
|
};
|
|
|
|
static bool cpr_is_allowed(struct cpr_drv *drv)
|
|
{
|
|
return !drv->loop_disabled;
|
|
}
|
|
|
|
static void cpr_write(struct cpr_drv *drv, u32 offset, u32 value)
|
|
{
|
|
writel_relaxed(value, drv->base + offset);
|
|
}
|
|
|
|
static u32 cpr_read(struct cpr_drv *drv, u32 offset)
|
|
{
|
|
return readl_relaxed(drv->base + offset);
|
|
}
|
|
|
|
static void
|
|
cpr_masked_write(struct cpr_drv *drv, u32 offset, u32 mask, u32 value)
|
|
{
|
|
u32 val;
|
|
|
|
val = readl_relaxed(drv->base + offset);
|
|
val &= ~mask;
|
|
val |= value & mask;
|
|
writel_relaxed(val, drv->base + offset);
|
|
}
|
|
|
|
static void cpr_irq_clr(struct cpr_drv *drv)
|
|
{
|
|
cpr_write(drv, REG_RBIF_IRQ_CLEAR, CPR_INT_ALL);
|
|
}
|
|
|
|
static void cpr_irq_clr_nack(struct cpr_drv *drv)
|
|
{
|
|
cpr_irq_clr(drv);
|
|
cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
|
|
}
|
|
|
|
static void cpr_irq_clr_ack(struct cpr_drv *drv)
|
|
{
|
|
cpr_irq_clr(drv);
|
|
cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
|
|
}
|
|
|
|
static void cpr_irq_set(struct cpr_drv *drv, u32 int_bits)
|
|
{
|
|
cpr_write(drv, REG_RBIF_IRQ_EN(0), int_bits);
|
|
}
|
|
|
|
static void cpr_ctl_modify(struct cpr_drv *drv, u32 mask, u32 value)
|
|
{
|
|
cpr_masked_write(drv, REG_RBCPR_CTL, mask, value);
|
|
}
|
|
|
|
static void cpr_ctl_enable(struct cpr_drv *drv, struct corner *corner)
|
|
{
|
|
u32 val, mask;
|
|
const struct cpr_desc *desc = drv->desc;
|
|
|
|
/* Program Consecutive Up & Down */
|
|
val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
|
|
val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
|
|
mask = RBIF_TIMER_ADJ_CONS_UP_MASK | RBIF_TIMER_ADJ_CONS_DOWN_MASK;
|
|
cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST, mask, val);
|
|
cpr_masked_write(drv, REG_RBCPR_CTL,
|
|
RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
|
|
RBCPR_CTL_SW_AUTO_CONT_ACK_EN,
|
|
corner->save_ctl);
|
|
cpr_irq_set(drv, corner->save_irq);
|
|
|
|
if (cpr_is_allowed(drv) && corner->max_uV > corner->min_uV)
|
|
val = RBCPR_CTL_LOOP_EN;
|
|
else
|
|
val = 0;
|
|
cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, val);
|
|
}
|
|
|
|
static void cpr_ctl_disable(struct cpr_drv *drv)
|
|
{
|
|
cpr_irq_set(drv, 0);
|
|
cpr_ctl_modify(drv, RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN |
|
|
RBCPR_CTL_SW_AUTO_CONT_ACK_EN, 0);
|
|
cpr_masked_write(drv, REG_RBIF_TIMER_ADJUST,
|
|
RBIF_TIMER_ADJ_CONS_UP_MASK |
|
|
RBIF_TIMER_ADJ_CONS_DOWN_MASK, 0);
|
|
cpr_irq_clr(drv);
|
|
cpr_write(drv, REG_RBIF_CONT_ACK_CMD, 1);
|
|
cpr_write(drv, REG_RBIF_CONT_NACK_CMD, 1);
|
|
cpr_ctl_modify(drv, RBCPR_CTL_LOOP_EN, 0);
|
|
}
|
|
|
|
static bool cpr_ctl_is_enabled(struct cpr_drv *drv)
|
|
{
|
|
u32 reg_val;
|
|
|
|
reg_val = cpr_read(drv, REG_RBCPR_CTL);
|
|
return reg_val & RBCPR_CTL_LOOP_EN;
|
|
}
|
|
|
|
static bool cpr_ctl_is_busy(struct cpr_drv *drv)
|
|
{
|
|
u32 reg_val;
|
|
|
|
reg_val = cpr_read(drv, REG_RBCPR_RESULT_0);
|
|
return reg_val & RBCPR_RESULT0_BUSY_MASK;
|
|
}
|
|
|
|
static void cpr_corner_save(struct cpr_drv *drv, struct corner *corner)
|
|
{
|
|
corner->save_ctl = cpr_read(drv, REG_RBCPR_CTL);
|
|
corner->save_irq = cpr_read(drv, REG_RBIF_IRQ_EN(0));
|
|
}
|
|
|
|
static void cpr_corner_restore(struct cpr_drv *drv, struct corner *corner)
|
|
{
|
|
u32 gcnt, ctl, irq, ro_sel, step_quot;
|
|
struct fuse_corner *fuse = corner->fuse_corner;
|
|
const struct cpr_desc *desc = drv->desc;
|
|
int i;
|
|
|
|
ro_sel = fuse->ring_osc_idx;
|
|
gcnt = drv->gcnt;
|
|
gcnt |= fuse->quot - corner->quot_adjust;
|
|
|
|
/* Program the step quotient and idle clocks */
|
|
step_quot = desc->idle_clocks << RBCPR_STEP_QUOT_IDLE_CLK_SHIFT;
|
|
step_quot |= fuse->step_quot & RBCPR_STEP_QUOT_STEPQUOT_MASK;
|
|
cpr_write(drv, REG_RBCPR_STEP_QUOT, step_quot);
|
|
|
|
/* Clear the target quotient value and gate count of all ROs */
|
|
for (i = 0; i < CPR_NUM_RING_OSC; i++)
|
|
cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
|
|
|
|
cpr_write(drv, REG_RBCPR_GCNT_TARGET(ro_sel), gcnt);
|
|
ctl = corner->save_ctl;
|
|
cpr_write(drv, REG_RBCPR_CTL, ctl);
|
|
irq = corner->save_irq;
|
|
cpr_irq_set(drv, irq);
|
|
dev_dbg(drv->dev, "gcnt = %#08x, ctl = %#08x, irq = %#08x\n", gcnt,
|
|
ctl, irq);
|
|
}
|
|
|
|
static void cpr_set_acc(struct regmap *tcsr, struct fuse_corner *f,
|
|
struct fuse_corner *end)
|
|
{
|
|
if (f == end)
|
|
return;
|
|
|
|
if (f < end) {
|
|
for (f += 1; f <= end; f++)
|
|
regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
|
|
} else {
|
|
for (f -= 1; f >= end; f--)
|
|
regmap_multi_reg_write(tcsr, f->accs, f->num_accs);
|
|
}
|
|
}
|
|
|
|
static int cpr_pre_voltage(struct cpr_drv *drv,
|
|
struct fuse_corner *fuse_corner,
|
|
enum voltage_change_dir dir)
|
|
{
|
|
struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
|
|
|
|
if (drv->tcsr && dir == DOWN)
|
|
cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpr_post_voltage(struct cpr_drv *drv,
|
|
struct fuse_corner *fuse_corner,
|
|
enum voltage_change_dir dir)
|
|
{
|
|
struct fuse_corner *prev_fuse_corner = drv->corner->fuse_corner;
|
|
|
|
if (drv->tcsr && dir == UP)
|
|
cpr_set_acc(drv->tcsr, prev_fuse_corner, fuse_corner);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpr_scale_voltage(struct cpr_drv *drv, struct corner *corner,
|
|
int new_uV, enum voltage_change_dir dir)
|
|
{
|
|
int ret;
|
|
struct fuse_corner *fuse_corner = corner->fuse_corner;
|
|
|
|
ret = cpr_pre_voltage(drv, fuse_corner, dir);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = regulator_set_voltage(drv->vdd_apc, new_uV, new_uV);
|
|
if (ret) {
|
|
dev_err_ratelimited(drv->dev, "failed to set apc voltage %d\n",
|
|
new_uV);
|
|
return ret;
|
|
}
|
|
|
|
ret = cpr_post_voltage(drv, fuse_corner, dir);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int cpr_get_cur_perf_state(struct cpr_drv *drv)
|
|
{
|
|
return drv->corner ? drv->corner - drv->corners + 1 : 0;
|
|
}
|
|
|
|
static int cpr_scale(struct cpr_drv *drv, enum voltage_change_dir dir)
|
|
{
|
|
u32 val, error_steps, reg_mask;
|
|
int last_uV, new_uV, step_uV, ret;
|
|
struct corner *corner;
|
|
const struct cpr_desc *desc = drv->desc;
|
|
|
|
if (dir != UP && dir != DOWN)
|
|
return 0;
|
|
|
|
step_uV = regulator_get_linear_step(drv->vdd_apc);
|
|
if (!step_uV)
|
|
return -EINVAL;
|
|
|
|
corner = drv->corner;
|
|
|
|
val = cpr_read(drv, REG_RBCPR_RESULT_0);
|
|
|
|
error_steps = val >> RBCPR_RESULT0_ERROR_STEPS_SHIFT;
|
|
error_steps &= RBCPR_RESULT0_ERROR_STEPS_MASK;
|
|
last_uV = corner->last_uV;
|
|
|
|
if (dir == UP) {
|
|
if (desc->clamp_timer_interval &&
|
|
error_steps < desc->up_threshold) {
|
|
/*
|
|
* Handle the case where another measurement started
|
|
* after the interrupt was triggered due to a core
|
|
* exiting from power collapse.
|
|
*/
|
|
error_steps = max(desc->up_threshold,
|
|
desc->vdd_apc_step_up_limit);
|
|
}
|
|
|
|
if (last_uV >= corner->max_uV) {
|
|
cpr_irq_clr_nack(drv);
|
|
|
|
/* Maximize the UP threshold */
|
|
reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
|
|
reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
|
|
val = reg_mask;
|
|
cpr_ctl_modify(drv, reg_mask, val);
|
|
|
|
/* Disable UP interrupt */
|
|
cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_UP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (error_steps > desc->vdd_apc_step_up_limit)
|
|
error_steps = desc->vdd_apc_step_up_limit;
|
|
|
|
/* Calculate new voltage */
|
|
new_uV = last_uV + error_steps * step_uV;
|
|
new_uV = min(new_uV, corner->max_uV);
|
|
|
|
dev_dbg(drv->dev,
|
|
"UP: -> new_uV: %d last_uV: %d perf state: %u\n",
|
|
new_uV, last_uV, cpr_get_cur_perf_state(drv));
|
|
} else {
|
|
if (desc->clamp_timer_interval &&
|
|
error_steps < desc->down_threshold) {
|
|
/*
|
|
* Handle the case where another measurement started
|
|
* after the interrupt was triggered due to a core
|
|
* exiting from power collapse.
|
|
*/
|
|
error_steps = max(desc->down_threshold,
|
|
desc->vdd_apc_step_down_limit);
|
|
}
|
|
|
|
if (last_uV <= corner->min_uV) {
|
|
cpr_irq_clr_nack(drv);
|
|
|
|
/* Enable auto nack down */
|
|
reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
|
|
val = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
|
|
|
|
cpr_ctl_modify(drv, reg_mask, val);
|
|
|
|
/* Disable DOWN interrupt */
|
|
cpr_irq_set(drv, CPR_INT_DEFAULT & ~CPR_INT_DOWN);
|
|
|
|
return 0;
|
|
}
|
|
|
|
if (error_steps > desc->vdd_apc_step_down_limit)
|
|
error_steps = desc->vdd_apc_step_down_limit;
|
|
|
|
/* Calculate new voltage */
|
|
new_uV = last_uV - error_steps * step_uV;
|
|
new_uV = max(new_uV, corner->min_uV);
|
|
|
|
dev_dbg(drv->dev,
|
|
"DOWN: -> new_uV: %d last_uV: %d perf state: %u\n",
|
|
new_uV, last_uV, cpr_get_cur_perf_state(drv));
|
|
}
|
|
|
|
ret = cpr_scale_voltage(drv, corner, new_uV, dir);
|
|
if (ret) {
|
|
cpr_irq_clr_nack(drv);
|
|
return ret;
|
|
}
|
|
drv->corner->last_uV = new_uV;
|
|
|
|
if (dir == UP) {
|
|
/* Disable auto nack down */
|
|
reg_mask = RBCPR_CTL_SW_AUTO_CONT_NACK_DN_EN;
|
|
val = 0;
|
|
} else {
|
|
/* Restore default threshold for UP */
|
|
reg_mask = RBCPR_CTL_UP_THRESHOLD_MASK;
|
|
reg_mask <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
|
|
val = desc->up_threshold;
|
|
val <<= RBCPR_CTL_UP_THRESHOLD_SHIFT;
|
|
}
|
|
|
|
cpr_ctl_modify(drv, reg_mask, val);
|
|
|
|
/* Re-enable default interrupts */
|
|
cpr_irq_set(drv, CPR_INT_DEFAULT);
|
|
|
|
/* Ack */
|
|
cpr_irq_clr_ack(drv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t cpr_irq_handler(int irq, void *dev)
|
|
{
|
|
struct cpr_drv *drv = dev;
|
|
const struct cpr_desc *desc = drv->desc;
|
|
irqreturn_t ret = IRQ_HANDLED;
|
|
u32 val;
|
|
|
|
mutex_lock(&drv->lock);
|
|
|
|
val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
|
|
if (drv->flags & FLAGS_IGNORE_1ST_IRQ_STATUS)
|
|
val = cpr_read(drv, REG_RBIF_IRQ_STATUS);
|
|
|
|
dev_dbg(drv->dev, "IRQ_STATUS = %#02x\n", val);
|
|
|
|
if (!cpr_ctl_is_enabled(drv)) {
|
|
dev_dbg(drv->dev, "CPR is disabled\n");
|
|
ret = IRQ_NONE;
|
|
} else if (cpr_ctl_is_busy(drv) && !desc->clamp_timer_interval) {
|
|
dev_dbg(drv->dev, "CPR measurement is not ready\n");
|
|
} else if (!cpr_is_allowed(drv)) {
|
|
val = cpr_read(drv, REG_RBCPR_CTL);
|
|
dev_err_ratelimited(drv->dev,
|
|
"Interrupt broken? RBCPR_CTL = %#02x\n",
|
|
val);
|
|
ret = IRQ_NONE;
|
|
} else {
|
|
/*
|
|
* Following sequence of handling is as per each IRQ's
|
|
* priority
|
|
*/
|
|
if (val & CPR_INT_UP) {
|
|
cpr_scale(drv, UP);
|
|
} else if (val & CPR_INT_DOWN) {
|
|
cpr_scale(drv, DOWN);
|
|
} else if (val & CPR_INT_MIN) {
|
|
cpr_irq_clr_nack(drv);
|
|
} else if (val & CPR_INT_MAX) {
|
|
cpr_irq_clr_nack(drv);
|
|
} else if (val & CPR_INT_MID) {
|
|
/* RBCPR_CTL_SW_AUTO_CONT_ACK_EN is enabled */
|
|
dev_dbg(drv->dev, "IRQ occurred for Mid Flag\n");
|
|
} else {
|
|
dev_dbg(drv->dev,
|
|
"IRQ occurred for unknown flag (%#08x)\n", val);
|
|
}
|
|
|
|
/* Save register values for the corner */
|
|
cpr_corner_save(drv, drv->corner);
|
|
}
|
|
|
|
mutex_unlock(&drv->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cpr_enable(struct cpr_drv *drv)
|
|
{
|
|
int ret;
|
|
|
|
ret = regulator_enable(drv->vdd_apc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&drv->lock);
|
|
|
|
if (cpr_is_allowed(drv) && drv->corner) {
|
|
cpr_irq_clr(drv);
|
|
cpr_corner_restore(drv, drv->corner);
|
|
cpr_ctl_enable(drv, drv->corner);
|
|
}
|
|
|
|
mutex_unlock(&drv->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpr_disable(struct cpr_drv *drv)
|
|
{
|
|
mutex_lock(&drv->lock);
|
|
|
|
if (cpr_is_allowed(drv)) {
|
|
cpr_ctl_disable(drv);
|
|
cpr_irq_clr(drv);
|
|
}
|
|
|
|
mutex_unlock(&drv->lock);
|
|
|
|
return regulator_disable(drv->vdd_apc);
|
|
}
|
|
|
|
static int cpr_config(struct cpr_drv *drv)
|
|
{
|
|
int i;
|
|
u32 val, gcnt;
|
|
struct corner *corner;
|
|
const struct cpr_desc *desc = drv->desc;
|
|
|
|
/* Disable interrupt and CPR */
|
|
cpr_write(drv, REG_RBIF_IRQ_EN(0), 0);
|
|
cpr_write(drv, REG_RBCPR_CTL, 0);
|
|
|
|
/* Program the default HW ceiling, floor and vlevel */
|
|
val = (RBIF_LIMIT_CEILING_DEFAULT & RBIF_LIMIT_CEILING_MASK)
|
|
<< RBIF_LIMIT_CEILING_SHIFT;
|
|
val |= RBIF_LIMIT_FLOOR_DEFAULT & RBIF_LIMIT_FLOOR_MASK;
|
|
cpr_write(drv, REG_RBIF_LIMIT, val);
|
|
cpr_write(drv, REG_RBIF_SW_VLEVEL, RBIF_SW_VLEVEL_DEFAULT);
|
|
|
|
/*
|
|
* Clear the target quotient value and gate count of all
|
|
* ring oscillators
|
|
*/
|
|
for (i = 0; i < CPR_NUM_RING_OSC; i++)
|
|
cpr_write(drv, REG_RBCPR_GCNT_TARGET(i), 0);
|
|
|
|
/* Init and save gcnt */
|
|
gcnt = (drv->ref_clk_khz * desc->gcnt_us) / 1000;
|
|
gcnt = gcnt & RBCPR_GCNT_TARGET_GCNT_MASK;
|
|
gcnt <<= RBCPR_GCNT_TARGET_GCNT_SHIFT;
|
|
drv->gcnt = gcnt;
|
|
|
|
/* Program the delay count for the timer */
|
|
val = (drv->ref_clk_khz * desc->timer_delay_us) / 1000;
|
|
cpr_write(drv, REG_RBCPR_TIMER_INTERVAL, val);
|
|
dev_dbg(drv->dev, "Timer count: %#0x (for %d us)\n", val,
|
|
desc->timer_delay_us);
|
|
|
|
/* Program Consecutive Up & Down */
|
|
val = desc->timer_cons_down << RBIF_TIMER_ADJ_CONS_DOWN_SHIFT;
|
|
val |= desc->timer_cons_up << RBIF_TIMER_ADJ_CONS_UP_SHIFT;
|
|
val |= desc->clamp_timer_interval << RBIF_TIMER_ADJ_CLAMP_INT_SHIFT;
|
|
cpr_write(drv, REG_RBIF_TIMER_ADJUST, val);
|
|
|
|
/* Program the control register */
|
|
val = desc->up_threshold << RBCPR_CTL_UP_THRESHOLD_SHIFT;
|
|
val |= desc->down_threshold << RBCPR_CTL_DN_THRESHOLD_SHIFT;
|
|
val |= RBCPR_CTL_TIMER_EN | RBCPR_CTL_COUNT_MODE;
|
|
val |= RBCPR_CTL_SW_AUTO_CONT_ACK_EN;
|
|
cpr_write(drv, REG_RBCPR_CTL, val);
|
|
|
|
for (i = 0; i < drv->num_corners; i++) {
|
|
corner = &drv->corners[i];
|
|
corner->save_ctl = val;
|
|
corner->save_irq = CPR_INT_DEFAULT;
|
|
}
|
|
|
|
cpr_irq_set(drv, CPR_INT_DEFAULT);
|
|
|
|
val = cpr_read(drv, REG_RBCPR_VERSION);
|
|
if (val <= RBCPR_VER_2)
|
|
drv->flags |= FLAGS_IGNORE_1ST_IRQ_STATUS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpr_set_performance_state(struct generic_pm_domain *domain,
|
|
unsigned int state)
|
|
{
|
|
struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
|
|
struct corner *corner, *end;
|
|
enum voltage_change_dir dir;
|
|
int ret = 0, new_uV;
|
|
|
|
mutex_lock(&drv->lock);
|
|
|
|
dev_dbg(drv->dev, "%s: setting perf state: %u (prev state: %u)\n",
|
|
__func__, state, cpr_get_cur_perf_state(drv));
|
|
|
|
/*
|
|
* Determine new corner we're going to.
|
|
* Remove one since lowest performance state is 1.
|
|
*/
|
|
corner = drv->corners + state - 1;
|
|
end = &drv->corners[drv->num_corners - 1];
|
|
if (corner > end || corner < drv->corners) {
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
/* Determine direction */
|
|
if (drv->corner > corner)
|
|
dir = DOWN;
|
|
else if (drv->corner < corner)
|
|
dir = UP;
|
|
else
|
|
dir = NO_CHANGE;
|
|
|
|
if (cpr_is_allowed(drv))
|
|
new_uV = corner->last_uV;
|
|
else
|
|
new_uV = corner->uV;
|
|
|
|
if (cpr_is_allowed(drv))
|
|
cpr_ctl_disable(drv);
|
|
|
|
ret = cpr_scale_voltage(drv, corner, new_uV, dir);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
if (cpr_is_allowed(drv)) {
|
|
cpr_irq_clr(drv);
|
|
if (drv->corner != corner)
|
|
cpr_corner_restore(drv, corner);
|
|
cpr_ctl_enable(drv, corner);
|
|
}
|
|
|
|
drv->corner = corner;
|
|
|
|
unlock:
|
|
mutex_unlock(&drv->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cpr_read_efuse(struct device *dev, const char *cname, u32 *data)
|
|
{
|
|
struct nvmem_cell *cell;
|
|
ssize_t len;
|
|
char *ret;
|
|
int i;
|
|
|
|
*data = 0;
|
|
|
|
cell = nvmem_cell_get(dev, cname);
|
|
if (IS_ERR(cell)) {
|
|
if (PTR_ERR(cell) != -EPROBE_DEFER)
|
|
dev_err(dev, "undefined cell %s\n", cname);
|
|
return PTR_ERR(cell);
|
|
}
|
|
|
|
ret = nvmem_cell_read(cell, &len);
|
|
nvmem_cell_put(cell);
|
|
if (IS_ERR(ret)) {
|
|
dev_err(dev, "can't read cell %s\n", cname);
|
|
return PTR_ERR(ret);
|
|
}
|
|
|
|
for (i = 0; i < len; i++)
|
|
*data |= ret[i] << (8 * i);
|
|
|
|
kfree(ret);
|
|
dev_dbg(dev, "efuse read(%s) = %x, bytes %zd\n", cname, *data, len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cpr_populate_ring_osc_idx(struct cpr_drv *drv)
|
|
{
|
|
struct fuse_corner *fuse = drv->fuse_corners;
|
|
struct fuse_corner *end = fuse + drv->desc->num_fuse_corners;
|
|
const struct cpr_fuse *fuses = drv->cpr_fuses;
|
|
u32 data;
|
|
int ret;
|
|
|
|
for (; fuse < end; fuse++, fuses++) {
|
|
ret = cpr_read_efuse(drv->dev, fuses->ring_osc,
|
|
&data);
|
|
if (ret)
|
|
return ret;
|
|
fuse->ring_osc_idx = data;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpr_read_fuse_uV(const struct cpr_desc *desc,
|
|
const struct fuse_corner_data *fdata,
|
|
const char *init_v_efuse,
|
|
int step_volt,
|
|
struct cpr_drv *drv)
|
|
{
|
|
int step_size_uV, steps, uV;
|
|
u32 bits = 0;
|
|
int ret;
|
|
|
|
ret = cpr_read_efuse(drv->dev, init_v_efuse, &bits);
|
|
if (ret)
|
|
return ret;
|
|
|
|
steps = bits & ~BIT(desc->cpr_fuses.init_voltage_width - 1);
|
|
/* Not two's complement.. instead highest bit is sign bit */
|
|
if (bits & BIT(desc->cpr_fuses.init_voltage_width - 1))
|
|
steps = -steps;
|
|
|
|
step_size_uV = desc->cpr_fuses.init_voltage_step;
|
|
|
|
uV = fdata->ref_uV + steps * step_size_uV;
|
|
return DIV_ROUND_UP(uV, step_volt) * step_volt;
|
|
}
|
|
|
|
static int cpr_fuse_corner_init(struct cpr_drv *drv)
|
|
{
|
|
const struct cpr_desc *desc = drv->desc;
|
|
const struct cpr_fuse *fuses = drv->cpr_fuses;
|
|
const struct acc_desc *acc_desc = drv->acc_desc;
|
|
int i;
|
|
unsigned int step_volt;
|
|
struct fuse_corner_data *fdata;
|
|
struct fuse_corner *fuse, *end;
|
|
int uV;
|
|
const struct reg_sequence *accs;
|
|
int ret;
|
|
|
|
accs = acc_desc->settings;
|
|
|
|
step_volt = regulator_get_linear_step(drv->vdd_apc);
|
|
if (!step_volt)
|
|
return -EINVAL;
|
|
|
|
/* Populate fuse_corner members */
|
|
fuse = drv->fuse_corners;
|
|
end = &fuse[desc->num_fuse_corners - 1];
|
|
fdata = desc->cpr_fuses.fuse_corner_data;
|
|
|
|
for (i = 0; fuse <= end; fuse++, fuses++, i++, fdata++) {
|
|
/*
|
|
* Update SoC voltages: platforms might choose a different
|
|
* regulators than the one used to characterize the algorithms
|
|
* (ie, init_voltage_step).
|
|
*/
|
|
fdata->min_uV = roundup(fdata->min_uV, step_volt);
|
|
fdata->max_uV = roundup(fdata->max_uV, step_volt);
|
|
|
|
/* Populate uV */
|
|
uV = cpr_read_fuse_uV(desc, fdata, fuses->init_voltage,
|
|
step_volt, drv);
|
|
if (uV < 0)
|
|
return uV;
|
|
|
|
fuse->min_uV = fdata->min_uV;
|
|
fuse->max_uV = fdata->max_uV;
|
|
fuse->uV = clamp(uV, fuse->min_uV, fuse->max_uV);
|
|
|
|
if (fuse == end) {
|
|
/*
|
|
* Allow the highest fuse corner's PVS voltage to
|
|
* define the ceiling voltage for that corner in order
|
|
* to support SoC's in which variable ceiling values
|
|
* are required.
|
|
*/
|
|
end->max_uV = max(end->max_uV, end->uV);
|
|
}
|
|
|
|
/* Populate target quotient by scaling */
|
|
ret = cpr_read_efuse(drv->dev, fuses->quotient, &fuse->quot);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fuse->quot *= fdata->quot_scale;
|
|
fuse->quot += fdata->quot_offset;
|
|
fuse->quot += fdata->quot_adjust;
|
|
fuse->step_quot = desc->step_quot[fuse->ring_osc_idx];
|
|
|
|
/* Populate acc settings */
|
|
fuse->accs = accs;
|
|
fuse->num_accs = acc_desc->num_regs_per_fuse;
|
|
accs += acc_desc->num_regs_per_fuse;
|
|
}
|
|
|
|
/*
|
|
* Restrict all fuse corner PVS voltages based upon per corner
|
|
* ceiling and floor voltages.
|
|
*/
|
|
for (fuse = drv->fuse_corners, i = 0; fuse <= end; fuse++, i++) {
|
|
if (fuse->uV > fuse->max_uV)
|
|
fuse->uV = fuse->max_uV;
|
|
else if (fuse->uV < fuse->min_uV)
|
|
fuse->uV = fuse->min_uV;
|
|
|
|
ret = regulator_is_supported_voltage(drv->vdd_apc,
|
|
fuse->min_uV,
|
|
fuse->min_uV);
|
|
if (!ret) {
|
|
dev_err(drv->dev,
|
|
"min uV: %d (fuse corner: %d) not supported by regulator\n",
|
|
fuse->min_uV, i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = regulator_is_supported_voltage(drv->vdd_apc,
|
|
fuse->max_uV,
|
|
fuse->max_uV);
|
|
if (!ret) {
|
|
dev_err(drv->dev,
|
|
"max uV: %d (fuse corner: %d) not supported by regulator\n",
|
|
fuse->max_uV, i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(drv->dev,
|
|
"fuse corner %d: [%d %d %d] RO%hhu quot %d squot %d\n",
|
|
i, fuse->min_uV, fuse->uV, fuse->max_uV,
|
|
fuse->ring_osc_idx, fuse->quot, fuse->step_quot);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpr_calculate_scaling(const char *quot_offset,
|
|
struct cpr_drv *drv,
|
|
const struct fuse_corner_data *fdata,
|
|
const struct corner *corner)
|
|
{
|
|
u32 quot_diff = 0;
|
|
unsigned long freq_diff;
|
|
int scaling;
|
|
const struct fuse_corner *fuse, *prev_fuse;
|
|
int ret;
|
|
|
|
fuse = corner->fuse_corner;
|
|
prev_fuse = fuse - 1;
|
|
|
|
if (quot_offset) {
|
|
ret = cpr_read_efuse(drv->dev, quot_offset, "_diff);
|
|
if (ret)
|
|
return ret;
|
|
|
|
quot_diff *= fdata->quot_offset_scale;
|
|
quot_diff += fdata->quot_offset_adjust;
|
|
} else {
|
|
quot_diff = fuse->quot - prev_fuse->quot;
|
|
}
|
|
|
|
freq_diff = fuse->max_freq - prev_fuse->max_freq;
|
|
freq_diff /= 1000000; /* Convert to MHz */
|
|
scaling = 1000 * quot_diff / freq_diff;
|
|
return min(scaling, fdata->max_quot_scale);
|
|
}
|
|
|
|
static int cpr_interpolate(const struct corner *corner, int step_volt,
|
|
const struct fuse_corner_data *fdata)
|
|
{
|
|
unsigned long f_high, f_low, f_diff;
|
|
int uV_high, uV_low, uV;
|
|
u64 temp, temp_limit;
|
|
const struct fuse_corner *fuse, *prev_fuse;
|
|
|
|
fuse = corner->fuse_corner;
|
|
prev_fuse = fuse - 1;
|
|
|
|
f_high = fuse->max_freq;
|
|
f_low = prev_fuse->max_freq;
|
|
uV_high = fuse->uV;
|
|
uV_low = prev_fuse->uV;
|
|
f_diff = fuse->max_freq - corner->freq;
|
|
|
|
/*
|
|
* Don't interpolate in the wrong direction. This could happen
|
|
* if the adjusted fuse voltage overlaps with the previous fuse's
|
|
* adjusted voltage.
|
|
*/
|
|
if (f_high <= f_low || uV_high <= uV_low || f_high <= corner->freq)
|
|
return corner->uV;
|
|
|
|
temp = f_diff * (uV_high - uV_low);
|
|
do_div(temp, f_high - f_low);
|
|
|
|
/*
|
|
* max_volt_scale has units of uV/MHz while freq values
|
|
* have units of Hz. Divide by 1000000 to convert to.
|
|
*/
|
|
temp_limit = f_diff * fdata->max_volt_scale;
|
|
do_div(temp_limit, 1000000);
|
|
|
|
uV = uV_high - min(temp, temp_limit);
|
|
return roundup(uV, step_volt);
|
|
}
|
|
|
|
static unsigned int cpr_get_fuse_corner(struct dev_pm_opp *opp)
|
|
{
|
|
struct device_node *np;
|
|
unsigned int fuse_corner = 0;
|
|
|
|
np = dev_pm_opp_get_of_node(opp);
|
|
if (of_property_read_u32(np, "qcom,opp-fuse-level", &fuse_corner))
|
|
pr_err("%s: missing 'qcom,opp-fuse-level' property\n",
|
|
__func__);
|
|
|
|
of_node_put(np);
|
|
|
|
return fuse_corner;
|
|
}
|
|
|
|
static unsigned long cpr_get_opp_hz_for_req(struct dev_pm_opp *ref,
|
|
struct device *cpu_dev)
|
|
{
|
|
u64 rate = 0;
|
|
struct device_node *ref_np;
|
|
struct device_node *desc_np;
|
|
struct device_node *child_np = NULL;
|
|
struct device_node *child_req_np = NULL;
|
|
|
|
desc_np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
|
|
if (!desc_np)
|
|
return 0;
|
|
|
|
ref_np = dev_pm_opp_get_of_node(ref);
|
|
if (!ref_np)
|
|
goto out_ref;
|
|
|
|
do {
|
|
of_node_put(child_req_np);
|
|
child_np = of_get_next_available_child(desc_np, child_np);
|
|
child_req_np = of_parse_phandle(child_np, "required-opps", 0);
|
|
} while (child_np && child_req_np != ref_np);
|
|
|
|
if (child_np && child_req_np == ref_np)
|
|
of_property_read_u64(child_np, "opp-hz", &rate);
|
|
|
|
of_node_put(child_req_np);
|
|
of_node_put(child_np);
|
|
of_node_put(ref_np);
|
|
out_ref:
|
|
of_node_put(desc_np);
|
|
|
|
return (unsigned long) rate;
|
|
}
|
|
|
|
static int cpr_corner_init(struct cpr_drv *drv)
|
|
{
|
|
const struct cpr_desc *desc = drv->desc;
|
|
const struct cpr_fuse *fuses = drv->cpr_fuses;
|
|
int i, level, scaling = 0;
|
|
unsigned int fnum, fc;
|
|
const char *quot_offset;
|
|
struct fuse_corner *fuse, *prev_fuse;
|
|
struct corner *corner, *end;
|
|
struct corner_data *cdata;
|
|
const struct fuse_corner_data *fdata;
|
|
bool apply_scaling;
|
|
unsigned long freq_diff, freq_diff_mhz;
|
|
unsigned long freq;
|
|
int step_volt = regulator_get_linear_step(drv->vdd_apc);
|
|
struct dev_pm_opp *opp;
|
|
|
|
if (!step_volt)
|
|
return -EINVAL;
|
|
|
|
corner = drv->corners;
|
|
end = &corner[drv->num_corners - 1];
|
|
|
|
cdata = devm_kcalloc(drv->dev, drv->num_corners,
|
|
sizeof(struct corner_data),
|
|
GFP_KERNEL);
|
|
if (!cdata)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Store maximum frequency for each fuse corner based on the frequency
|
|
* plan
|
|
*/
|
|
for (level = 1; level <= drv->num_corners; level++) {
|
|
opp = dev_pm_opp_find_level_exact(&drv->pd.dev, level);
|
|
if (IS_ERR(opp))
|
|
return -EINVAL;
|
|
fc = cpr_get_fuse_corner(opp);
|
|
if (!fc) {
|
|
dev_pm_opp_put(opp);
|
|
return -EINVAL;
|
|
}
|
|
fnum = fc - 1;
|
|
freq = cpr_get_opp_hz_for_req(opp, drv->attached_cpu_dev);
|
|
if (!freq) {
|
|
dev_pm_opp_put(opp);
|
|
return -EINVAL;
|
|
}
|
|
cdata[level - 1].fuse_corner = fnum;
|
|
cdata[level - 1].freq = freq;
|
|
|
|
fuse = &drv->fuse_corners[fnum];
|
|
dev_dbg(drv->dev, "freq: %lu level: %u fuse level: %u\n",
|
|
freq, dev_pm_opp_get_level(opp) - 1, fnum);
|
|
if (freq > fuse->max_freq)
|
|
fuse->max_freq = freq;
|
|
dev_pm_opp_put(opp);
|
|
}
|
|
|
|
/*
|
|
* Get the quotient adjustment scaling factor, according to:
|
|
*
|
|
* scaling = min(1000 * (QUOT(corner_N) - QUOT(corner_N-1))
|
|
* / (freq(corner_N) - freq(corner_N-1)), max_factor)
|
|
*
|
|
* QUOT(corner_N): quotient read from fuse for fuse corner N
|
|
* QUOT(corner_N-1): quotient read from fuse for fuse corner (N - 1)
|
|
* freq(corner_N): max frequency in MHz supported by fuse corner N
|
|
* freq(corner_N-1): max frequency in MHz supported by fuse corner
|
|
* (N - 1)
|
|
*
|
|
* Then walk through the corners mapped to each fuse corner
|
|
* and calculate the quotient adjustment for each one using the
|
|
* following formula:
|
|
*
|
|
* quot_adjust = (freq_max - freq_corner) * scaling / 1000
|
|
*
|
|
* freq_max: max frequency in MHz supported by the fuse corner
|
|
* freq_corner: frequency in MHz corresponding to the corner
|
|
* scaling: calculated from above equation
|
|
*
|
|
*
|
|
* + +
|
|
* | v |
|
|
* q | f c o | f c
|
|
* u | c l | c
|
|
* o | f t | f
|
|
* t | c a | c
|
|
* | c f g | c f
|
|
* | e |
|
|
* +--------------- +----------------
|
|
* 0 1 2 3 4 5 6 0 1 2 3 4 5 6
|
|
* corner corner
|
|
*
|
|
* c = corner
|
|
* f = fuse corner
|
|
*
|
|
*/
|
|
for (apply_scaling = false, i = 0; corner <= end; corner++, i++) {
|
|
fnum = cdata[i].fuse_corner;
|
|
fdata = &desc->cpr_fuses.fuse_corner_data[fnum];
|
|
quot_offset = fuses[fnum].quotient_offset;
|
|
fuse = &drv->fuse_corners[fnum];
|
|
if (fnum)
|
|
prev_fuse = &drv->fuse_corners[fnum - 1];
|
|
else
|
|
prev_fuse = NULL;
|
|
|
|
corner->fuse_corner = fuse;
|
|
corner->freq = cdata[i].freq;
|
|
corner->uV = fuse->uV;
|
|
|
|
if (prev_fuse && cdata[i - 1].freq == prev_fuse->max_freq) {
|
|
scaling = cpr_calculate_scaling(quot_offset, drv,
|
|
fdata, corner);
|
|
if (scaling < 0)
|
|
return scaling;
|
|
|
|
apply_scaling = true;
|
|
} else if (corner->freq == fuse->max_freq) {
|
|
/* This is a fuse corner; don't scale anything */
|
|
apply_scaling = false;
|
|
}
|
|
|
|
if (apply_scaling) {
|
|
freq_diff = fuse->max_freq - corner->freq;
|
|
freq_diff_mhz = freq_diff / 1000000;
|
|
corner->quot_adjust = scaling * freq_diff_mhz / 1000;
|
|
|
|
corner->uV = cpr_interpolate(corner, step_volt, fdata);
|
|
}
|
|
|
|
corner->max_uV = fuse->max_uV;
|
|
corner->min_uV = fuse->min_uV;
|
|
corner->uV = clamp(corner->uV, corner->min_uV, corner->max_uV);
|
|
corner->last_uV = corner->uV;
|
|
|
|
/* Reduce the ceiling voltage if needed */
|
|
if (desc->reduce_to_corner_uV && corner->uV < corner->max_uV)
|
|
corner->max_uV = corner->uV;
|
|
else if (desc->reduce_to_fuse_uV && fuse->uV < corner->max_uV)
|
|
corner->max_uV = max(corner->min_uV, fuse->uV);
|
|
|
|
dev_dbg(drv->dev, "corner %d: [%d %d %d] quot %d\n", i,
|
|
corner->min_uV, corner->uV, corner->max_uV,
|
|
fuse->quot - corner->quot_adjust);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct cpr_fuse *cpr_get_fuses(struct cpr_drv *drv)
|
|
{
|
|
const struct cpr_desc *desc = drv->desc;
|
|
struct cpr_fuse *fuses;
|
|
int i;
|
|
|
|
fuses = devm_kcalloc(drv->dev, desc->num_fuse_corners,
|
|
sizeof(struct cpr_fuse),
|
|
GFP_KERNEL);
|
|
if (!fuses)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (i = 0; i < desc->num_fuse_corners; i++) {
|
|
char tbuf[32];
|
|
|
|
snprintf(tbuf, 32, "cpr_ring_osc%d", i + 1);
|
|
fuses[i].ring_osc = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
|
|
if (!fuses[i].ring_osc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
snprintf(tbuf, 32, "cpr_init_voltage%d", i + 1);
|
|
fuses[i].init_voltage = devm_kstrdup(drv->dev, tbuf,
|
|
GFP_KERNEL);
|
|
if (!fuses[i].init_voltage)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
snprintf(tbuf, 32, "cpr_quotient%d", i + 1);
|
|
fuses[i].quotient = devm_kstrdup(drv->dev, tbuf, GFP_KERNEL);
|
|
if (!fuses[i].quotient)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
snprintf(tbuf, 32, "cpr_quotient_offset%d", i + 1);
|
|
fuses[i].quotient_offset = devm_kstrdup(drv->dev, tbuf,
|
|
GFP_KERNEL);
|
|
if (!fuses[i].quotient_offset)
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return fuses;
|
|
}
|
|
|
|
static void cpr_set_loop_allowed(struct cpr_drv *drv)
|
|
{
|
|
drv->loop_disabled = false;
|
|
}
|
|
|
|
static int cpr_init_parameters(struct cpr_drv *drv)
|
|
{
|
|
const struct cpr_desc *desc = drv->desc;
|
|
struct clk *clk;
|
|
|
|
clk = clk_get(drv->dev, "ref");
|
|
if (IS_ERR(clk))
|
|
return PTR_ERR(clk);
|
|
|
|
drv->ref_clk_khz = clk_get_rate(clk) / 1000;
|
|
clk_put(clk);
|
|
|
|
if (desc->timer_cons_up > RBIF_TIMER_ADJ_CONS_UP_MASK ||
|
|
desc->timer_cons_down > RBIF_TIMER_ADJ_CONS_DOWN_MASK ||
|
|
desc->up_threshold > RBCPR_CTL_UP_THRESHOLD_MASK ||
|
|
desc->down_threshold > RBCPR_CTL_DN_THRESHOLD_MASK ||
|
|
desc->idle_clocks > RBCPR_STEP_QUOT_IDLE_CLK_MASK ||
|
|
desc->clamp_timer_interval > RBIF_TIMER_ADJ_CLAMP_INT_MASK)
|
|
return -EINVAL;
|
|
|
|
dev_dbg(drv->dev, "up threshold = %u, down threshold = %u\n",
|
|
desc->up_threshold, desc->down_threshold);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpr_find_initial_corner(struct cpr_drv *drv)
|
|
{
|
|
unsigned long rate;
|
|
const struct corner *end;
|
|
struct corner *iter;
|
|
unsigned int i = 0;
|
|
|
|
if (!drv->cpu_clk) {
|
|
dev_err(drv->dev, "cannot get rate from NULL clk\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
end = &drv->corners[drv->num_corners - 1];
|
|
rate = clk_get_rate(drv->cpu_clk);
|
|
|
|
/*
|
|
* Some bootloaders set a CPU clock frequency that is not defined
|
|
* in the OPP table. When running at an unlisted frequency,
|
|
* cpufreq_online() will change to the OPP which has the lowest
|
|
* frequency, at or above the unlisted frequency.
|
|
* Since cpufreq_online() always "rounds up" in the case of an
|
|
* unlisted frequency, this function always "rounds down" in case
|
|
* of an unlisted frequency. That way, when cpufreq_online()
|
|
* triggers the first ever call to cpr_set_performance_state(),
|
|
* it will correctly determine the direction as UP.
|
|
*/
|
|
for (iter = drv->corners; iter <= end; iter++) {
|
|
if (iter->freq > rate)
|
|
break;
|
|
i++;
|
|
if (iter->freq == rate) {
|
|
drv->corner = iter;
|
|
break;
|
|
}
|
|
if (iter->freq < rate)
|
|
drv->corner = iter;
|
|
}
|
|
|
|
if (!drv->corner) {
|
|
dev_err(drv->dev, "boot up corner not found\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev_dbg(drv->dev, "boot up perf state: %u\n", i);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct cpr_desc qcs404_cpr_desc = {
|
|
.num_fuse_corners = 3,
|
|
.min_diff_quot = CPR_FUSE_MIN_QUOT_DIFF,
|
|
.step_quot = (int []){ 25, 25, 25, },
|
|
.timer_delay_us = 5000,
|
|
.timer_cons_up = 0,
|
|
.timer_cons_down = 2,
|
|
.up_threshold = 1,
|
|
.down_threshold = 3,
|
|
.idle_clocks = 15,
|
|
.gcnt_us = 1,
|
|
.vdd_apc_step_up_limit = 1,
|
|
.vdd_apc_step_down_limit = 1,
|
|
.cpr_fuses = {
|
|
.init_voltage_step = 8000,
|
|
.init_voltage_width = 6,
|
|
.fuse_corner_data = (struct fuse_corner_data[]){
|
|
/* fuse corner 0 */
|
|
{
|
|
.ref_uV = 1224000,
|
|
.max_uV = 1224000,
|
|
.min_uV = 1048000,
|
|
.max_volt_scale = 0,
|
|
.max_quot_scale = 0,
|
|
.quot_offset = 0,
|
|
.quot_scale = 1,
|
|
.quot_adjust = 0,
|
|
.quot_offset_scale = 5,
|
|
.quot_offset_adjust = 0,
|
|
},
|
|
/* fuse corner 1 */
|
|
{
|
|
.ref_uV = 1288000,
|
|
.max_uV = 1288000,
|
|
.min_uV = 1048000,
|
|
.max_volt_scale = 2000,
|
|
.max_quot_scale = 1400,
|
|
.quot_offset = 0,
|
|
.quot_scale = 1,
|
|
.quot_adjust = -20,
|
|
.quot_offset_scale = 5,
|
|
.quot_offset_adjust = 0,
|
|
},
|
|
/* fuse corner 2 */
|
|
{
|
|
.ref_uV = 1352000,
|
|
.max_uV = 1384000,
|
|
.min_uV = 1088000,
|
|
.max_volt_scale = 2000,
|
|
.max_quot_scale = 1400,
|
|
.quot_offset = 0,
|
|
.quot_scale = 1,
|
|
.quot_adjust = 0,
|
|
.quot_offset_scale = 5,
|
|
.quot_offset_adjust = 0,
|
|
},
|
|
},
|
|
},
|
|
};
|
|
|
|
static const struct acc_desc qcs404_acc_desc = {
|
|
.settings = (struct reg_sequence[]){
|
|
{ 0xb120, 0x1041040 },
|
|
{ 0xb124, 0x41 },
|
|
{ 0xb120, 0x0 },
|
|
{ 0xb124, 0x0 },
|
|
{ 0xb120, 0x0 },
|
|
{ 0xb124, 0x0 },
|
|
},
|
|
.config = (struct reg_sequence[]){
|
|
{ 0xb138, 0xff },
|
|
{ 0xb130, 0x5555 },
|
|
},
|
|
.num_regs_per_fuse = 2,
|
|
};
|
|
|
|
static const struct cpr_acc_desc qcs404_cpr_acc_desc = {
|
|
.cpr_desc = &qcs404_cpr_desc,
|
|
.acc_desc = &qcs404_acc_desc,
|
|
};
|
|
|
|
static unsigned int cpr_get_performance_state(struct generic_pm_domain *genpd,
|
|
struct dev_pm_opp *opp)
|
|
{
|
|
return dev_pm_opp_get_level(opp);
|
|
}
|
|
|
|
static int cpr_power_off(struct generic_pm_domain *domain)
|
|
{
|
|
struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
|
|
|
|
return cpr_disable(drv);
|
|
}
|
|
|
|
static int cpr_power_on(struct generic_pm_domain *domain)
|
|
{
|
|
struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
|
|
|
|
return cpr_enable(drv);
|
|
}
|
|
|
|
static int cpr_pd_attach_dev(struct generic_pm_domain *domain,
|
|
struct device *dev)
|
|
{
|
|
struct cpr_drv *drv = container_of(domain, struct cpr_drv, pd);
|
|
const struct acc_desc *acc_desc = drv->acc_desc;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&drv->lock);
|
|
|
|
dev_dbg(drv->dev, "attach callback for: %s\n", dev_name(dev));
|
|
|
|
/*
|
|
* This driver only supports scaling voltage for a CPU cluster
|
|
* where all CPUs in the cluster share a single regulator.
|
|
* Therefore, save the struct device pointer only for the first
|
|
* CPU device that gets attached. There is no need to do any
|
|
* additional initialization when further CPUs get attached.
|
|
*/
|
|
if (drv->attached_cpu_dev)
|
|
goto unlock;
|
|
|
|
/*
|
|
* cpr_scale_voltage() requires the direction (if we are changing
|
|
* to a higher or lower OPP). The first time
|
|
* cpr_set_performance_state() is called, there is no previous
|
|
* performance state defined. Therefore, we call
|
|
* cpr_find_initial_corner() that gets the CPU clock frequency
|
|
* set by the bootloader, so that we can determine the direction
|
|
* the first time cpr_set_performance_state() is called.
|
|
*/
|
|
drv->cpu_clk = devm_clk_get(dev, NULL);
|
|
if (IS_ERR(drv->cpu_clk)) {
|
|
ret = PTR_ERR(drv->cpu_clk);
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(drv->dev, "could not get cpu clk: %d\n", ret);
|
|
goto unlock;
|
|
}
|
|
drv->attached_cpu_dev = dev;
|
|
|
|
dev_dbg(drv->dev, "using cpu clk from: %s\n",
|
|
dev_name(drv->attached_cpu_dev));
|
|
|
|
/*
|
|
* Everything related to (virtual) corners has to be initialized
|
|
* here, when attaching to the power domain, since we need to know
|
|
* the maximum frequency for each fuse corner, and this is only
|
|
* available after the cpufreq driver has attached to us.
|
|
* The reason for this is that we need to know the highest
|
|
* frequency associated with each fuse corner.
|
|
*/
|
|
ret = dev_pm_opp_get_opp_count(&drv->pd.dev);
|
|
if (ret < 0) {
|
|
dev_err(drv->dev, "could not get OPP count\n");
|
|
goto unlock;
|
|
}
|
|
drv->num_corners = ret;
|
|
|
|
if (drv->num_corners < 2) {
|
|
dev_err(drv->dev, "need at least 2 OPPs to use CPR\n");
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
drv->corners = devm_kcalloc(drv->dev, drv->num_corners,
|
|
sizeof(*drv->corners),
|
|
GFP_KERNEL);
|
|
if (!drv->corners) {
|
|
ret = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = cpr_corner_init(drv);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
cpr_set_loop_allowed(drv);
|
|
|
|
ret = cpr_init_parameters(drv);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
/* Configure CPR HW but keep it disabled */
|
|
ret = cpr_config(drv);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
ret = cpr_find_initial_corner(drv);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
if (acc_desc->config)
|
|
regmap_multi_reg_write(drv->tcsr, acc_desc->config,
|
|
acc_desc->num_regs_per_fuse);
|
|
|
|
/* Enable ACC if required */
|
|
if (acc_desc->enable_mask)
|
|
regmap_update_bits(drv->tcsr, acc_desc->enable_reg,
|
|
acc_desc->enable_mask,
|
|
acc_desc->enable_mask);
|
|
|
|
dev_info(drv->dev, "driver initialized with %u OPPs\n",
|
|
drv->num_corners);
|
|
|
|
unlock:
|
|
mutex_unlock(&drv->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cpr_debug_info_show(struct seq_file *s, void *unused)
|
|
{
|
|
u32 gcnt, ro_sel, ctl, irq_status, reg, error_steps;
|
|
u32 step_dn, step_up, error, error_lt0, busy;
|
|
struct cpr_drv *drv = s->private;
|
|
struct fuse_corner *fuse_corner;
|
|
struct corner *corner;
|
|
|
|
corner = drv->corner;
|
|
fuse_corner = corner->fuse_corner;
|
|
|
|
seq_printf(s, "corner, current_volt = %d uV\n",
|
|
corner->last_uV);
|
|
|
|
ro_sel = fuse_corner->ring_osc_idx;
|
|
gcnt = cpr_read(drv, REG_RBCPR_GCNT_TARGET(ro_sel));
|
|
seq_printf(s, "rbcpr_gcnt_target (%u) = %#02X\n", ro_sel, gcnt);
|
|
|
|
ctl = cpr_read(drv, REG_RBCPR_CTL);
|
|
seq_printf(s, "rbcpr_ctl = %#02X\n", ctl);
|
|
|
|
irq_status = cpr_read(drv, REG_RBIF_IRQ_STATUS);
|
|
seq_printf(s, "rbcpr_irq_status = %#02X\n", irq_status);
|
|
|
|
reg = cpr_read(drv, REG_RBCPR_RESULT_0);
|
|
seq_printf(s, "rbcpr_result_0 = %#02X\n", reg);
|
|
|
|
step_dn = reg & 0x01;
|
|
step_up = (reg >> RBCPR_RESULT0_STEP_UP_SHIFT) & 0x01;
|
|
seq_printf(s, " [step_dn = %u", step_dn);
|
|
|
|
seq_printf(s, ", step_up = %u", step_up);
|
|
|
|
error_steps = (reg >> RBCPR_RESULT0_ERROR_STEPS_SHIFT)
|
|
& RBCPR_RESULT0_ERROR_STEPS_MASK;
|
|
seq_printf(s, ", error_steps = %u", error_steps);
|
|
|
|
error = (reg >> RBCPR_RESULT0_ERROR_SHIFT) & RBCPR_RESULT0_ERROR_MASK;
|
|
seq_printf(s, ", error = %u", error);
|
|
|
|
error_lt0 = (reg >> RBCPR_RESULT0_ERROR_LT0_SHIFT) & 0x01;
|
|
seq_printf(s, ", error_lt_0 = %u", error_lt0);
|
|
|
|
busy = (reg >> RBCPR_RESULT0_BUSY_SHIFT) & 0x01;
|
|
seq_printf(s, ", busy = %u]\n", busy);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SHOW_ATTRIBUTE(cpr_debug_info);
|
|
|
|
static void cpr_debugfs_init(struct cpr_drv *drv)
|
|
{
|
|
drv->debugfs = debugfs_create_dir("qcom_cpr", NULL);
|
|
|
|
debugfs_create_file("debug_info", 0444, drv->debugfs,
|
|
drv, &cpr_debug_info_fops);
|
|
}
|
|
|
|
static int cpr_probe(struct platform_device *pdev)
|
|
{
|
|
struct resource *res;
|
|
struct device *dev = &pdev->dev;
|
|
struct cpr_drv *drv;
|
|
int irq, ret;
|
|
const struct cpr_acc_desc *data;
|
|
struct device_node *np;
|
|
u32 cpr_rev = FUSE_REVISION_UNKNOWN;
|
|
|
|
data = of_device_get_match_data(dev);
|
|
if (!data || !data->cpr_desc || !data->acc_desc)
|
|
return -EINVAL;
|
|
|
|
drv = devm_kzalloc(dev, sizeof(*drv), GFP_KERNEL);
|
|
if (!drv)
|
|
return -ENOMEM;
|
|
drv->dev = dev;
|
|
drv->desc = data->cpr_desc;
|
|
drv->acc_desc = data->acc_desc;
|
|
|
|
drv->fuse_corners = devm_kcalloc(dev, drv->desc->num_fuse_corners,
|
|
sizeof(*drv->fuse_corners),
|
|
GFP_KERNEL);
|
|
if (!drv->fuse_corners)
|
|
return -ENOMEM;
|
|
|
|
np = of_parse_phandle(dev->of_node, "acc-syscon", 0);
|
|
if (!np)
|
|
return -ENODEV;
|
|
|
|
drv->tcsr = syscon_node_to_regmap(np);
|
|
of_node_put(np);
|
|
if (IS_ERR(drv->tcsr))
|
|
return PTR_ERR(drv->tcsr);
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
drv->base = devm_ioremap_resource(dev, res);
|
|
if (IS_ERR(drv->base))
|
|
return PTR_ERR(drv->base);
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0)
|
|
return -EINVAL;
|
|
|
|
drv->vdd_apc = devm_regulator_get(dev, "vdd-apc");
|
|
if (IS_ERR(drv->vdd_apc))
|
|
return PTR_ERR(drv->vdd_apc);
|
|
|
|
/*
|
|
* Initialize fuse corners, since it simply depends
|
|
* on data in efuses.
|
|
* Everything related to (virtual) corners has to be
|
|
* initialized after attaching to the power domain,
|
|
* since it depends on the CPU's OPP table.
|
|
*/
|
|
ret = cpr_read_efuse(dev, "cpr_fuse_revision", &cpr_rev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
drv->cpr_fuses = cpr_get_fuses(drv);
|
|
if (IS_ERR(drv->cpr_fuses))
|
|
return PTR_ERR(drv->cpr_fuses);
|
|
|
|
ret = cpr_populate_ring_osc_idx(drv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = cpr_fuse_corner_init(drv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_init(&drv->lock);
|
|
|
|
ret = devm_request_threaded_irq(dev, irq, NULL,
|
|
cpr_irq_handler,
|
|
IRQF_ONESHOT | IRQF_TRIGGER_RISING,
|
|
"cpr", drv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
drv->pd.name = devm_kstrdup_const(dev, dev->of_node->full_name,
|
|
GFP_KERNEL);
|
|
if (!drv->pd.name)
|
|
return -EINVAL;
|
|
|
|
drv->pd.power_off = cpr_power_off;
|
|
drv->pd.power_on = cpr_power_on;
|
|
drv->pd.set_performance_state = cpr_set_performance_state;
|
|
drv->pd.opp_to_performance_state = cpr_get_performance_state;
|
|
drv->pd.attach_dev = cpr_pd_attach_dev;
|
|
|
|
ret = pm_genpd_init(&drv->pd, NULL, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = of_genpd_add_provider_simple(dev->of_node, &drv->pd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
platform_set_drvdata(pdev, drv);
|
|
cpr_debugfs_init(drv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpr_remove(struct platform_device *pdev)
|
|
{
|
|
struct cpr_drv *drv = platform_get_drvdata(pdev);
|
|
|
|
if (cpr_is_allowed(drv)) {
|
|
cpr_ctl_disable(drv);
|
|
cpr_irq_set(drv, 0);
|
|
}
|
|
|
|
of_genpd_del_provider(pdev->dev.of_node);
|
|
pm_genpd_remove(&drv->pd);
|
|
|
|
debugfs_remove_recursive(drv->debugfs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id cpr_match_table[] = {
|
|
{ .compatible = "qcom,qcs404-cpr", .data = &qcs404_cpr_acc_desc },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, cpr_match_table);
|
|
|
|
static struct platform_driver cpr_driver = {
|
|
.probe = cpr_probe,
|
|
.remove = cpr_remove,
|
|
.driver = {
|
|
.name = "qcom-cpr",
|
|
.of_match_table = cpr_match_table,
|
|
},
|
|
};
|
|
module_platform_driver(cpr_driver);
|
|
|
|
MODULE_DESCRIPTION("Core Power Reduction (CPR) driver");
|
|
MODULE_LICENSE("GPL v2");
|