mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 06:06:24 +07:00
4f92e2586b
The fragmentation index may indicate that a failure is due to external fragmentation but after a compaction run completes, it is still possible for an allocation to fail. There are two obvious reasons as to why o Page migration cannot move all pages so fragmentation remains o A suitable page may exist but watermarks are not met In the event of compaction followed by an allocation failure, this patch defers further compaction in the zone (1 << compact_defer_shift) times. If the next compaction attempt also fails, compact_defer_shift is increased up to a maximum of 6. If compaction succeeds, the defer counters are reset again. The zone that is deferred is the first zone in the zonelist - i.e. the preferred zone. To defer compaction in the other zones, the information would need to be stored in the zonelist or implemented similar to the zonelist_cache. This would impact the fast-paths and is not justified at this time. Signed-off-by: Mel Gorman <mel@csn.ul.ie> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
90 lines
2.6 KiB
C
90 lines
2.6 KiB
C
#ifndef _LINUX_COMPACTION_H
|
|
#define _LINUX_COMPACTION_H
|
|
|
|
/* Return values for compact_zone() and try_to_compact_pages() */
|
|
/* compaction didn't start as it was not possible or direct reclaim was more suitable */
|
|
#define COMPACT_SKIPPED 0
|
|
/* compaction should continue to another pageblock */
|
|
#define COMPACT_CONTINUE 1
|
|
/* direct compaction partially compacted a zone and there are suitable pages */
|
|
#define COMPACT_PARTIAL 2
|
|
/* The full zone was compacted */
|
|
#define COMPACT_COMPLETE 3
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
extern int sysctl_compact_memory;
|
|
extern int sysctl_compaction_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos);
|
|
extern int sysctl_extfrag_threshold;
|
|
extern int sysctl_extfrag_handler(struct ctl_table *table, int write,
|
|
void __user *buffer, size_t *length, loff_t *ppos);
|
|
|
|
extern int fragmentation_index(struct zone *zone, unsigned int order);
|
|
extern unsigned long try_to_compact_pages(struct zonelist *zonelist,
|
|
int order, gfp_t gfp_mask, nodemask_t *mask);
|
|
|
|
/* Do not skip compaction more than 64 times */
|
|
#define COMPACT_MAX_DEFER_SHIFT 6
|
|
|
|
/*
|
|
* Compaction is deferred when compaction fails to result in a page
|
|
* allocation success. 1 << compact_defer_limit compactions are skipped up
|
|
* to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
|
|
*/
|
|
static inline void defer_compaction(struct zone *zone)
|
|
{
|
|
zone->compact_considered = 0;
|
|
zone->compact_defer_shift++;
|
|
|
|
if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
|
|
zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
|
|
}
|
|
|
|
/* Returns true if compaction should be skipped this time */
|
|
static inline bool compaction_deferred(struct zone *zone)
|
|
{
|
|
unsigned long defer_limit = 1UL << zone->compact_defer_shift;
|
|
|
|
/* Avoid possible overflow */
|
|
if (++zone->compact_considered > defer_limit)
|
|
zone->compact_considered = defer_limit;
|
|
|
|
return zone->compact_considered < (1UL << zone->compact_defer_shift);
|
|
}
|
|
|
|
#else
|
|
static inline unsigned long try_to_compact_pages(struct zonelist *zonelist,
|
|
int order, gfp_t gfp_mask, nodemask_t *nodemask)
|
|
{
|
|
return COMPACT_CONTINUE;
|
|
}
|
|
|
|
static inline void defer_compaction(struct zone *zone)
|
|
{
|
|
}
|
|
|
|
static inline bool compaction_deferred(struct zone *zone)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
#endif /* CONFIG_COMPACTION */
|
|
|
|
#if defined(CONFIG_COMPACTION) && defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
|
|
extern int compaction_register_node(struct node *node);
|
|
extern void compaction_unregister_node(struct node *node);
|
|
|
|
#else
|
|
|
|
static inline int compaction_register_node(struct node *node)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void compaction_unregister_node(struct node *node)
|
|
{
|
|
}
|
|
#endif /* CONFIG_COMPACTION && CONFIG_SYSFS && CONFIG_NUMA */
|
|
|
|
#endif /* _LINUX_COMPACTION_H */
|