mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
cd9139220b
Using privcmd_call() for a singleton multicall seems to be wrong, as privcmd_call() is using stac()/clac() to enable hypervisor access to Linux user space. Even if currently not a problem (pv domains can't use SMAP while HVM and PVH domains can't use multicalls) things might change when PVH dom0 support is added to the kernel. Reported-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
210 lines
4.8 KiB
C
210 lines
4.8 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Xen hypercall batching.
|
|
*
|
|
* Xen allows multiple hypercalls to be issued at once, using the
|
|
* multicall interface. This allows the cost of trapping into the
|
|
* hypervisor to be amortized over several calls.
|
|
*
|
|
* This file implements a simple interface for multicalls. There's a
|
|
* per-cpu buffer of outstanding multicalls. When you want to queue a
|
|
* multicall for issuing, you can allocate a multicall slot for the
|
|
* call and its arguments, along with storage for space which is
|
|
* pointed to by the arguments (for passing pointers to structures,
|
|
* etc). When the multicall is actually issued, all the space for the
|
|
* commands and allocated memory is freed for reuse.
|
|
*
|
|
* Multicalls are flushed whenever any of the buffers get full, or
|
|
* when explicitly requested. There's no way to get per-multicall
|
|
* return results back. It will BUG if any of the multicalls fail.
|
|
*
|
|
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
|
|
*/
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <asm/xen/hypercall.h>
|
|
|
|
#include "multicalls.h"
|
|
#include "debugfs.h"
|
|
|
|
#define MC_BATCH 32
|
|
|
|
#define MC_DEBUG 0
|
|
|
|
#define MC_ARGS (MC_BATCH * 16)
|
|
|
|
|
|
struct mc_buffer {
|
|
unsigned mcidx, argidx, cbidx;
|
|
struct multicall_entry entries[MC_BATCH];
|
|
#if MC_DEBUG
|
|
struct multicall_entry debug[MC_BATCH];
|
|
void *caller[MC_BATCH];
|
|
#endif
|
|
unsigned char args[MC_ARGS];
|
|
struct callback {
|
|
void (*fn)(void *);
|
|
void *data;
|
|
} callbacks[MC_BATCH];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct mc_buffer, mc_buffer);
|
|
DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags);
|
|
|
|
void xen_mc_flush(void)
|
|
{
|
|
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
|
|
struct multicall_entry *mc;
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
BUG_ON(preemptible());
|
|
|
|
/* Disable interrupts in case someone comes in and queues
|
|
something in the middle */
|
|
local_irq_save(flags);
|
|
|
|
trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx);
|
|
|
|
switch (b->mcidx) {
|
|
case 0:
|
|
/* no-op */
|
|
BUG_ON(b->argidx != 0);
|
|
break;
|
|
|
|
case 1:
|
|
/* Singleton multicall - bypass multicall machinery
|
|
and just do the call directly. */
|
|
mc = &b->entries[0];
|
|
|
|
mc->result = xen_single_call(mc->op, mc->args[0], mc->args[1],
|
|
mc->args[2], mc->args[3],
|
|
mc->args[4]);
|
|
ret = mc->result < 0;
|
|
break;
|
|
|
|
default:
|
|
#if MC_DEBUG
|
|
memcpy(b->debug, b->entries,
|
|
b->mcidx * sizeof(struct multicall_entry));
|
|
#endif
|
|
|
|
if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0)
|
|
BUG();
|
|
for (i = 0; i < b->mcidx; i++)
|
|
if (b->entries[i].result < 0)
|
|
ret++;
|
|
|
|
#if MC_DEBUG
|
|
if (ret) {
|
|
printk(KERN_ERR "%d multicall(s) failed: cpu %d\n",
|
|
ret, smp_processor_id());
|
|
dump_stack();
|
|
for (i = 0; i < b->mcidx; i++) {
|
|
printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n",
|
|
i+1, b->mcidx,
|
|
b->debug[i].op,
|
|
b->debug[i].args[0],
|
|
b->entries[i].result,
|
|
b->caller[i]);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
b->mcidx = 0;
|
|
b->argidx = 0;
|
|
|
|
for (i = 0; i < b->cbidx; i++) {
|
|
struct callback *cb = &b->callbacks[i];
|
|
|
|
(*cb->fn)(cb->data);
|
|
}
|
|
b->cbidx = 0;
|
|
|
|
local_irq_restore(flags);
|
|
|
|
WARN_ON(ret);
|
|
}
|
|
|
|
struct multicall_space __xen_mc_entry(size_t args)
|
|
{
|
|
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
|
|
struct multicall_space ret;
|
|
unsigned argidx = roundup(b->argidx, sizeof(u64));
|
|
|
|
trace_xen_mc_entry_alloc(args);
|
|
|
|
BUG_ON(preemptible());
|
|
BUG_ON(b->argidx >= MC_ARGS);
|
|
|
|
if (unlikely(b->mcidx == MC_BATCH ||
|
|
(argidx + args) >= MC_ARGS)) {
|
|
trace_xen_mc_flush_reason((b->mcidx == MC_BATCH) ?
|
|
XEN_MC_FL_BATCH : XEN_MC_FL_ARGS);
|
|
xen_mc_flush();
|
|
argidx = roundup(b->argidx, sizeof(u64));
|
|
}
|
|
|
|
ret.mc = &b->entries[b->mcidx];
|
|
#if MC_DEBUG
|
|
b->caller[b->mcidx] = __builtin_return_address(0);
|
|
#endif
|
|
b->mcidx++;
|
|
ret.args = &b->args[argidx];
|
|
b->argidx = argidx + args;
|
|
|
|
BUG_ON(b->argidx >= MC_ARGS);
|
|
return ret;
|
|
}
|
|
|
|
struct multicall_space xen_mc_extend_args(unsigned long op, size_t size)
|
|
{
|
|
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
|
|
struct multicall_space ret = { NULL, NULL };
|
|
|
|
BUG_ON(preemptible());
|
|
BUG_ON(b->argidx >= MC_ARGS);
|
|
|
|
if (unlikely(b->mcidx == 0 ||
|
|
b->entries[b->mcidx - 1].op != op)) {
|
|
trace_xen_mc_extend_args(op, size, XEN_MC_XE_BAD_OP);
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely((b->argidx + size) >= MC_ARGS)) {
|
|
trace_xen_mc_extend_args(op, size, XEN_MC_XE_NO_SPACE);
|
|
goto out;
|
|
}
|
|
|
|
ret.mc = &b->entries[b->mcidx - 1];
|
|
ret.args = &b->args[b->argidx];
|
|
b->argidx += size;
|
|
|
|
BUG_ON(b->argidx >= MC_ARGS);
|
|
|
|
trace_xen_mc_extend_args(op, size, XEN_MC_XE_OK);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void xen_mc_callback(void (*fn)(void *), void *data)
|
|
{
|
|
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
|
|
struct callback *cb;
|
|
|
|
if (b->cbidx == MC_BATCH) {
|
|
trace_xen_mc_flush_reason(XEN_MC_FL_CALLBACK);
|
|
xen_mc_flush();
|
|
}
|
|
|
|
trace_xen_mc_callback(fn, data);
|
|
|
|
cb = &b->callbacks[b->cbidx++];
|
|
cb->fn = fn;
|
|
cb->data = data;
|
|
}
|