linux_dsm_epyc7002/arch/x86/crypto/aegis256-aesni-glue.c
Ondrej Mosnacek 877ccce7cb crypto: x86/aegis,morus - Fix and simplify CPUID checks
It turns out I had misunderstood how the x86_match_cpu() function works.
It evaluates a logical OR of the matching conditions, not logical AND.
This caused the CPU feature checks for AEGIS to pass even if only SSE2
(but not AES-NI) was supported (or vice versa), leading to potential
crashes if something tried to use the registered algs.

This patch switches the checks to a simpler method that is used e.g. in
the Camellia x86 code.

The patch also removes the MODULE_DEVICE_TABLE declarations which
actually seem to cause the modules to be auto-loaded at boot, which is
not desired. The crypto API on-demand module loading is sufficient.

Fixes: 1d373d4e8e ("crypto: x86 - Add optimized AEGIS implementations")
Fixes: 6ecc9d9ff9 ("crypto: x86 - Add optimized MORUS implementations")
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Tested-by: Milan Broz <gmazyland@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-08-07 17:51:15 +08:00

404 lines
11 KiB
C

/*
* The AEGIS-256 Authenticated-Encryption Algorithm
* Glue for AES-NI + SSE2 implementation
*
* Copyright (c) 2017-2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (C) 2017-2018 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#include <crypto/cryptd.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/module.h>
#include <asm/fpu/api.h>
#include <asm/cpu_device_id.h>
#define AEGIS256_BLOCK_ALIGN 16
#define AEGIS256_BLOCK_SIZE 16
#define AEGIS256_NONCE_SIZE 32
#define AEGIS256_STATE_BLOCKS 6
#define AEGIS256_KEY_SIZE 32
#define AEGIS256_MIN_AUTH_SIZE 8
#define AEGIS256_MAX_AUTH_SIZE 16
asmlinkage void crypto_aegis256_aesni_init(void *state, void *key, void *iv);
asmlinkage void crypto_aegis256_aesni_ad(
void *state, unsigned int length, const void *data);
asmlinkage void crypto_aegis256_aesni_enc(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis256_aesni_dec(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis256_aesni_enc_tail(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis256_aesni_dec_tail(
void *state, unsigned int length, const void *src, void *dst);
asmlinkage void crypto_aegis256_aesni_final(
void *state, void *tag_xor, unsigned int cryptlen,
unsigned int assoclen);
struct aegis_block {
u8 bytes[AEGIS256_BLOCK_SIZE] __aligned(AEGIS256_BLOCK_ALIGN);
};
struct aegis_state {
struct aegis_block blocks[AEGIS256_STATE_BLOCKS];
};
struct aegis_ctx {
struct aegis_block key[AEGIS256_KEY_SIZE / AEGIS256_BLOCK_SIZE];
};
struct aegis_crypt_ops {
int (*skcipher_walk_init)(struct skcipher_walk *walk,
struct aead_request *req, bool atomic);
void (*crypt_blocks)(void *state, unsigned int length, const void *src,
void *dst);
void (*crypt_tail)(void *state, unsigned int length, const void *src,
void *dst);
};
static void crypto_aegis256_aesni_process_ad(
struct aegis_state *state, struct scatterlist *sg_src,
unsigned int assoclen)
{
struct scatter_walk walk;
struct aegis_block buf;
unsigned int pos = 0;
scatterwalk_start(&walk, sg_src);
while (assoclen != 0) {
unsigned int size = scatterwalk_clamp(&walk, assoclen);
unsigned int left = size;
void *mapped = scatterwalk_map(&walk);
const u8 *src = (const u8 *)mapped;
if (pos + size >= AEGIS256_BLOCK_SIZE) {
if (pos > 0) {
unsigned int fill = AEGIS256_BLOCK_SIZE - pos;
memcpy(buf.bytes + pos, src, fill);
crypto_aegis256_aesni_ad(state,
AEGIS256_BLOCK_SIZE,
buf.bytes);
pos = 0;
left -= fill;
src += fill;
}
crypto_aegis256_aesni_ad(state, left, src);
src += left & ~(AEGIS256_BLOCK_SIZE - 1);
left &= AEGIS256_BLOCK_SIZE - 1;
}
memcpy(buf.bytes + pos, src, left);
pos += left;
assoclen -= size;
scatterwalk_unmap(mapped);
scatterwalk_advance(&walk, size);
scatterwalk_done(&walk, 0, assoclen);
}
if (pos > 0) {
memset(buf.bytes + pos, 0, AEGIS256_BLOCK_SIZE - pos);
crypto_aegis256_aesni_ad(state, AEGIS256_BLOCK_SIZE, buf.bytes);
}
}
static void crypto_aegis256_aesni_process_crypt(
struct aegis_state *state, struct aead_request *req,
const struct aegis_crypt_ops *ops)
{
struct skcipher_walk walk;
u8 *src, *dst;
unsigned int chunksize, base;
ops->skcipher_walk_init(&walk, req, false);
while (walk.nbytes) {
src = walk.src.virt.addr;
dst = walk.dst.virt.addr;
chunksize = walk.nbytes;
ops->crypt_blocks(state, chunksize, src, dst);
base = chunksize & ~(AEGIS256_BLOCK_SIZE - 1);
src += base;
dst += base;
chunksize &= AEGIS256_BLOCK_SIZE - 1;
if (chunksize > 0)
ops->crypt_tail(state, chunksize, src, dst);
skcipher_walk_done(&walk, 0);
}
}
static struct aegis_ctx *crypto_aegis256_aesni_ctx(struct crypto_aead *aead)
{
u8 *ctx = crypto_aead_ctx(aead);
ctx = PTR_ALIGN(ctx, __alignof__(struct aegis_ctx));
return (void *)ctx;
}
static int crypto_aegis256_aesni_setkey(struct crypto_aead *aead, const u8 *key,
unsigned int keylen)
{
struct aegis_ctx *ctx = crypto_aegis256_aesni_ctx(aead);
if (keylen != AEGIS256_KEY_SIZE) {
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
memcpy(ctx->key, key, AEGIS256_KEY_SIZE);
return 0;
}
static int crypto_aegis256_aesni_setauthsize(struct crypto_aead *tfm,
unsigned int authsize)
{
if (authsize > AEGIS256_MAX_AUTH_SIZE)
return -EINVAL;
if (authsize < AEGIS256_MIN_AUTH_SIZE)
return -EINVAL;
return 0;
}
static void crypto_aegis256_aesni_crypt(struct aead_request *req,
struct aegis_block *tag_xor,
unsigned int cryptlen,
const struct aegis_crypt_ops *ops)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_ctx *ctx = crypto_aegis256_aesni_ctx(tfm);
struct aegis_state state;
kernel_fpu_begin();
crypto_aegis256_aesni_init(&state, ctx->key, req->iv);
crypto_aegis256_aesni_process_ad(&state, req->src, req->assoclen);
crypto_aegis256_aesni_process_crypt(&state, req, ops);
crypto_aegis256_aesni_final(&state, tag_xor, req->assoclen, cryptlen);
kernel_fpu_end();
}
static int crypto_aegis256_aesni_encrypt(struct aead_request *req)
{
static const struct aegis_crypt_ops OPS = {
.skcipher_walk_init = skcipher_walk_aead_encrypt,
.crypt_blocks = crypto_aegis256_aesni_enc,
.crypt_tail = crypto_aegis256_aesni_enc_tail,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_block tag = {};
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen;
crypto_aegis256_aesni_crypt(req, &tag, cryptlen, &OPS);
scatterwalk_map_and_copy(tag.bytes, req->dst,
req->assoclen + cryptlen, authsize, 1);
return 0;
}
static int crypto_aegis256_aesni_decrypt(struct aead_request *req)
{
static const struct aegis_block zeros = {};
static const struct aegis_crypt_ops OPS = {
.skcipher_walk_init = skcipher_walk_aead_decrypt,
.crypt_blocks = crypto_aegis256_aesni_dec,
.crypt_tail = crypto_aegis256_aesni_dec_tail,
};
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
struct aegis_block tag;
unsigned int authsize = crypto_aead_authsize(tfm);
unsigned int cryptlen = req->cryptlen - authsize;
scatterwalk_map_and_copy(tag.bytes, req->src,
req->assoclen + cryptlen, authsize, 0);
crypto_aegis256_aesni_crypt(req, &tag, cryptlen, &OPS);
return crypto_memneq(tag.bytes, zeros.bytes, authsize) ? -EBADMSG : 0;
}
static int crypto_aegis256_aesni_init_tfm(struct crypto_aead *aead)
{
return 0;
}
static void crypto_aegis256_aesni_exit_tfm(struct crypto_aead *aead)
{
}
static int cryptd_aegis256_aesni_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setkey(&cryptd_tfm->base, key, keylen);
}
static int cryptd_aegis256_aesni_setauthsize(struct crypto_aead *aead,
unsigned int authsize)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
return crypto_aead_setauthsize(&cryptd_tfm->base, authsize);
}
static int cryptd_aegis256_aesni_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
aead = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
aead = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, aead);
return crypto_aead_encrypt(req);
}
static int cryptd_aegis256_aesni_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
struct cryptd_aead *cryptd_tfm = *ctx;
aead = &cryptd_tfm->base;
if (irq_fpu_usable() && (!in_atomic() ||
!cryptd_aead_queued(cryptd_tfm)))
aead = cryptd_aead_child(cryptd_tfm);
aead_request_set_tfm(req, aead);
return crypto_aead_decrypt(req);
}
static int cryptd_aegis256_aesni_init_tfm(struct crypto_aead *aead)
{
struct cryptd_aead *cryptd_tfm;
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_tfm = cryptd_alloc_aead("__aegis256-aesni", CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(cryptd_tfm))
return PTR_ERR(cryptd_tfm);
*ctx = cryptd_tfm;
crypto_aead_set_reqsize(aead, crypto_aead_reqsize(&cryptd_tfm->base));
return 0;
}
static void cryptd_aegis256_aesni_exit_tfm(struct crypto_aead *aead)
{
struct cryptd_aead **ctx = crypto_aead_ctx(aead);
cryptd_free_aead(*ctx);
}
static struct aead_alg crypto_aegis256_aesni_alg[] = {
{
.setkey = crypto_aegis256_aesni_setkey,
.setauthsize = crypto_aegis256_aesni_setauthsize,
.encrypt = crypto_aegis256_aesni_encrypt,
.decrypt = crypto_aegis256_aesni_decrypt,
.init = crypto_aegis256_aesni_init_tfm,
.exit = crypto_aegis256_aesni_exit_tfm,
.ivsize = AEGIS256_NONCE_SIZE,
.maxauthsize = AEGIS256_MAX_AUTH_SIZE,
.chunksize = AEGIS256_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_INTERNAL,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct aegis_ctx) +
__alignof__(struct aegis_ctx),
.cra_alignmask = 0,
.cra_name = "__aegis256",
.cra_driver_name = "__aegis256-aesni",
.cra_module = THIS_MODULE,
}
}, {
.setkey = cryptd_aegis256_aesni_setkey,
.setauthsize = cryptd_aegis256_aesni_setauthsize,
.encrypt = cryptd_aegis256_aesni_encrypt,
.decrypt = cryptd_aegis256_aesni_decrypt,
.init = cryptd_aegis256_aesni_init_tfm,
.exit = cryptd_aegis256_aesni_exit_tfm,
.ivsize = AEGIS256_NONCE_SIZE,
.maxauthsize = AEGIS256_MAX_AUTH_SIZE,
.chunksize = AEGIS256_BLOCK_SIZE,
.base = {
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct cryptd_aead *),
.cra_alignmask = 0,
.cra_priority = 400,
.cra_name = "aegis256",
.cra_driver_name = "aegis256-aesni",
.cra_module = THIS_MODULE,
}
}
};
static int __init crypto_aegis256_aesni_module_init(void)
{
if (!boot_cpu_has(X86_FEATURE_XMM2) ||
!boot_cpu_has(X86_FEATURE_AES) ||
!boot_cpu_has(X86_FEATURE_OSXSAVE) ||
!cpu_has_xfeatures(XFEATURE_MASK_SSE, NULL))
return -ENODEV;
return crypto_register_aeads(crypto_aegis256_aesni_alg,
ARRAY_SIZE(crypto_aegis256_aesni_alg));
}
static void __exit crypto_aegis256_aesni_module_exit(void)
{
crypto_unregister_aeads(crypto_aegis256_aesni_alg,
ARRAY_SIZE(crypto_aegis256_aesni_alg));
}
module_init(crypto_aegis256_aesni_module_init);
module_exit(crypto_aegis256_aesni_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Ondrej Mosnacek <omosnacek@gmail.com>");
MODULE_DESCRIPTION("AEGIS-256 AEAD algorithm -- AESNI+SSE2 implementation");
MODULE_ALIAS_CRYPTO("aegis256");
MODULE_ALIAS_CRYPTO("aegis256-aesni");