linux_dsm_epyc7002/sound/firewire/motu/amdtp-motu.c
Takashi Sakamoto d2d5a6b025 ALSA: firewire-motu: more code refactoring for MOTU data block processing layer
MOTU data block processing layer has some tracepoints events. This
commit is code refactoring to split probing the events from processing
data blocks.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-07-22 16:05:13 +02:00

490 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* amdtp-motu.c - a part of driver for MOTU FireWire series
*
* Copyright (c) 2015-2017 Takashi Sakamoto <o-takashi@sakamocchi.jp>
*/
#include <linux/slab.h>
#include <sound/pcm.h>
#include "motu.h"
#define CREATE_TRACE_POINTS
#include "amdtp-motu-trace.h"
#define CIP_FMT_MOTU 0x02
#define CIP_FMT_MOTU_TX_V3 0x22
#define MOTU_FDF_AM824 0x22
/*
* Nominally 3125 bytes/second, but the MIDI port's clock might be
* 1% too slow, and the bus clock 100 ppm too fast.
*/
#define MIDI_BYTES_PER_SECOND 3093
struct amdtp_motu {
/* For timestamp processing. */
unsigned int quotient_ticks_per_event;
unsigned int remainder_ticks_per_event;
unsigned int next_ticks;
unsigned int next_accumulated;
unsigned int next_cycles;
unsigned int next_seconds;
unsigned int pcm_chunks;
unsigned int pcm_byte_offset;
struct snd_rawmidi_substream *midi;
unsigned int midi_ports;
unsigned int midi_flag_offset;
unsigned int midi_byte_offset;
int midi_db_count;
unsigned int midi_db_interval;
};
int amdtp_motu_set_parameters(struct amdtp_stream *s, unsigned int rate,
unsigned int midi_ports,
struct snd_motu_packet_format *formats)
{
static const struct {
unsigned int quotient_ticks_per_event;
unsigned int remainder_ticks_per_event;
} params[] = {
[CIP_SFC_44100] = { 557, 123 },
[CIP_SFC_48000] = { 512, 0 },
[CIP_SFC_88200] = { 278, 282 },
[CIP_SFC_96000] = { 256, 0 },
[CIP_SFC_176400] = { 139, 141 },
[CIP_SFC_192000] = { 128, 0 },
};
struct amdtp_motu *p = s->protocol;
unsigned int pcm_chunks, data_chunks, data_block_quadlets;
unsigned int delay;
unsigned int mode;
int i, err;
if (amdtp_stream_running(s))
return -EBUSY;
for (i = 0; i < ARRAY_SIZE(snd_motu_clock_rates); ++i) {
if (snd_motu_clock_rates[i] == rate) {
mode = i >> 1;
break;
}
}
if (i == ARRAY_SIZE(snd_motu_clock_rates))
return -EINVAL;
pcm_chunks = formats->fixed_part_pcm_chunks[mode] +
formats->differed_part_pcm_chunks[mode];
data_chunks = formats->msg_chunks + pcm_chunks;
/*
* Each data block includes SPH in its head. Data chunks follow with
* 3 byte alignment. Padding follows with zero to conform to quadlet
* alignment.
*/
data_block_quadlets = 1 + DIV_ROUND_UP(data_chunks * 3, 4);
err = amdtp_stream_set_parameters(s, rate, data_block_quadlets);
if (err < 0)
return err;
p->pcm_chunks = pcm_chunks;
p->pcm_byte_offset = formats->pcm_byte_offset;
p->midi_ports = midi_ports;
p->midi_flag_offset = formats->midi_flag_offset;
p->midi_byte_offset = formats->midi_byte_offset;
p->midi_db_count = 0;
p->midi_db_interval = rate / MIDI_BYTES_PER_SECOND;
/* IEEE 1394 bus requires. */
delay = 0x2e00;
/* For no-data or empty packets to adjust PCM sampling frequency. */
delay += 8000 * 3072 * s->syt_interval / rate;
p->next_seconds = 0;
p->next_cycles = delay / 3072;
p->quotient_ticks_per_event = params[s->sfc].quotient_ticks_per_event;
p->remainder_ticks_per_event = params[s->sfc].remainder_ticks_per_event;
p->next_ticks = delay % 3072;
p->next_accumulated = 0;
return 0;
}
static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int data_blocks,
unsigned int pcm_frames)
{
struct amdtp_motu *p = s->protocol;
unsigned int channels = p->pcm_chunks;
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int pcm_buffer_pointer;
int remaining_frames;
u8 *byte;
u32 *dst;
int i, c;
pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames;
pcm_buffer_pointer %= runtime->buffer_size;
dst = (void *)runtime->dma_area +
frames_to_bytes(runtime, pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - pcm_buffer_pointer;
for (i = 0; i < data_blocks; ++i) {
byte = (u8 *)buffer + p->pcm_byte_offset;
for (c = 0; c < channels; ++c) {
*dst = (byte[0] << 24) |
(byte[1] << 16) |
(byte[2] << 8);
byte += 3;
dst++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
dst = (void *)runtime->dma_area;
}
}
static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
__be32 *buffer, unsigned int data_blocks,
unsigned int pcm_frames)
{
struct amdtp_motu *p = s->protocol;
unsigned int channels = p->pcm_chunks;
struct snd_pcm_runtime *runtime = pcm->runtime;
unsigned int pcm_buffer_pointer;
int remaining_frames;
u8 *byte;
const u32 *src;
int i, c;
pcm_buffer_pointer = s->pcm_buffer_pointer + pcm_frames;
pcm_buffer_pointer %= runtime->buffer_size;
src = (void *)runtime->dma_area +
frames_to_bytes(runtime, pcm_buffer_pointer);
remaining_frames = runtime->buffer_size - pcm_buffer_pointer;
for (i = 0; i < data_blocks; ++i) {
byte = (u8 *)buffer + p->pcm_byte_offset;
for (c = 0; c < channels; ++c) {
byte[0] = (*src >> 24) & 0xff;
byte[1] = (*src >> 16) & 0xff;
byte[2] = (*src >> 8) & 0xff;
byte += 3;
src++;
}
buffer += s->data_block_quadlets;
if (--remaining_frames == 0)
src = (void *)runtime->dma_area;
}
}
static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer,
unsigned int data_blocks)
{
struct amdtp_motu *p = s->protocol;
unsigned int channels, i, c;
u8 *byte;
channels = p->pcm_chunks;
for (i = 0; i < data_blocks; ++i) {
byte = (u8 *)buffer + p->pcm_byte_offset;
for (c = 0; c < channels; ++c) {
byte[0] = 0;
byte[1] = 0;
byte[2] = 0;
byte += 3;
}
buffer += s->data_block_quadlets;
}
}
int amdtp_motu_add_pcm_hw_constraints(struct amdtp_stream *s,
struct snd_pcm_runtime *runtime)
{
int err;
/* TODO: how to set an constraint for exactly 24bit PCM sample? */
err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
if (err < 0)
return err;
return amdtp_stream_add_pcm_hw_constraints(s, runtime);
}
void amdtp_motu_midi_trigger(struct amdtp_stream *s, unsigned int port,
struct snd_rawmidi_substream *midi)
{
struct amdtp_motu *p = s->protocol;
if (port < p->midi_ports)
WRITE_ONCE(p->midi, midi);
}
static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer,
unsigned int data_blocks)
{
struct amdtp_motu *p = s->protocol;
struct snd_rawmidi_substream *midi = READ_ONCE(p->midi);
u8 *b;
int i;
for (i = 0; i < data_blocks; i++) {
b = (u8 *)buffer;
if (midi && p->midi_db_count == 0 &&
snd_rawmidi_transmit(midi, b + p->midi_byte_offset, 1) == 1) {
b[p->midi_flag_offset] = 0x01;
} else {
b[p->midi_byte_offset] = 0x00;
b[p->midi_flag_offset] = 0x00;
}
buffer += s->data_block_quadlets;
if (--p->midi_db_count < 0)
p->midi_db_count = p->midi_db_interval;
}
}
static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer,
unsigned int data_blocks)
{
struct amdtp_motu *p = s->protocol;
struct snd_rawmidi_substream *midi;
u8 *b;
int i;
for (i = 0; i < data_blocks; i++) {
b = (u8 *)buffer;
midi = READ_ONCE(p->midi);
if (midi && (b[p->midi_flag_offset] & 0x01))
snd_rawmidi_receive(midi, b + p->midi_byte_offset, 1);
buffer += s->data_block_quadlets;
}
}
/* For tracepoints. */
static void __maybe_unused copy_sph(u32 *frames, __be32 *buffer,
unsigned int data_blocks,
unsigned int data_block_quadlets)
{
unsigned int i;
for (i = 0; i < data_blocks; ++i) {
*frames = be32_to_cpu(*buffer);
buffer += data_block_quadlets;
frames++;
}
}
/* For tracepoints. */
static void __maybe_unused copy_message(u64 *frames, __be32 *buffer,
unsigned int data_blocks,
unsigned int data_block_quadlets)
{
unsigned int i;
/* This is just for v2/v3 protocol. */
for (i = 0; i < data_blocks; ++i) {
*frames = (be32_to_cpu(buffer[1]) << 16) |
(be32_to_cpu(buffer[2]) >> 16);
buffer += data_block_quadlets;
frames++;
}
}
static void probe_tracepoints_events(struct amdtp_stream *s,
const struct pkt_desc *descs,
unsigned int packets)
{
int i;
for (i = 0; i < packets; ++i) {
const struct pkt_desc *desc = descs + i;
__be32 *buf = desc->ctx_payload;
unsigned int data_blocks = desc->data_blocks;
trace_data_block_sph(s, data_blocks, buf);
trace_data_block_message(s, data_blocks, buf);
}
}
static unsigned int process_ir_ctx_payloads(struct amdtp_stream *s,
const struct pkt_desc *descs,
unsigned int packets,
struct snd_pcm_substream *pcm)
{
struct amdtp_motu *p = s->protocol;
unsigned int pcm_frames = 0;
int i;
// For data block processing.
for (i = 0; i < packets; ++i) {
const struct pkt_desc *desc = descs + i;
__be32 *buf = desc->ctx_payload;
unsigned int data_blocks = desc->data_blocks;
if (pcm) {
read_pcm_s32(s, pcm, buf, data_blocks, pcm_frames);
pcm_frames += data_blocks;
}
if (p->midi_ports)
read_midi_messages(s, buf, data_blocks);
}
// For tracepoints.
if (trace_data_block_sph_enabled() ||
trace_data_block_message_enabled())
probe_tracepoints_events(s, descs, packets);
return pcm_frames;
}
static inline void compute_next_elapse_from_start(struct amdtp_motu *p)
{
p->next_accumulated += p->remainder_ticks_per_event;
if (p->next_accumulated >= 441) {
p->next_accumulated -= 441;
p->next_ticks++;
}
p->next_ticks += p->quotient_ticks_per_event;
if (p->next_ticks >= 3072) {
p->next_ticks -= 3072;
p->next_cycles++;
}
if (p->next_cycles >= 8000) {
p->next_cycles -= 8000;
p->next_seconds++;
}
if (p->next_seconds >= 128)
p->next_seconds -= 128;
}
static void write_sph(struct amdtp_stream *s, __be32 *buffer,
unsigned int data_blocks)
{
struct amdtp_motu *p = s->protocol;
unsigned int next_cycles;
unsigned int i;
u32 sph;
for (i = 0; i < data_blocks; i++) {
next_cycles = (s->start_cycle + p->next_cycles) % 8000;
sph = ((next_cycles << 12) | p->next_ticks) & 0x01ffffff;
*buffer = cpu_to_be32(sph);
compute_next_elapse_from_start(p);
buffer += s->data_block_quadlets;
}
}
static unsigned int process_it_ctx_payloads(struct amdtp_stream *s,
const struct pkt_desc *descs,
unsigned int packets,
struct snd_pcm_substream *pcm)
{
struct amdtp_motu *p = s->protocol;
unsigned int pcm_frames = 0;
int i;
// For data block processing.
for (i = 0; i < packets; ++i) {
const struct pkt_desc *desc = descs + i;
__be32 *buf = desc->ctx_payload;
unsigned int data_blocks = desc->data_blocks;
if (pcm) {
write_pcm_s32(s, pcm, buf, data_blocks, pcm_frames);
pcm_frames += data_blocks;
} else {
write_pcm_silence(s, buf, data_blocks);
}
if (p->midi_ports)
write_midi_messages(s, buf, data_blocks);
// TODO: how to interact control messages between userspace?
write_sph(s, buf, data_blocks);
}
// For tracepoints.
if (trace_data_block_sph_enabled() ||
trace_data_block_message_enabled())
probe_tracepoints_events(s, descs, packets);
return pcm_frames;
}
int amdtp_motu_init(struct amdtp_stream *s, struct fw_unit *unit,
enum amdtp_stream_direction dir,
const struct snd_motu_protocol *const protocol)
{
amdtp_stream_process_ctx_payloads_t process_ctx_payloads;
int fmt = CIP_FMT_MOTU;
int flags = CIP_BLOCKING;
int err;
if (dir == AMDTP_IN_STREAM) {
process_ctx_payloads = process_ir_ctx_payloads;
/*
* Units of version 3 transmits packets with invalid CIP header
* against IEC 61883-1.
*/
if (protocol == &snd_motu_protocol_v3) {
flags |= CIP_WRONG_DBS |
CIP_SKIP_DBC_ZERO_CHECK |
CIP_HEADER_WITHOUT_EOH;
fmt = CIP_FMT_MOTU_TX_V3;
}
if (protocol == &snd_motu_protocol_v2) {
// 8pre has some quirks.
flags |= CIP_WRONG_DBS |
CIP_SKIP_DBC_ZERO_CHECK;
}
} else {
process_ctx_payloads = process_it_ctx_payloads;
flags |= CIP_DBC_IS_END_EVENT;
}
err = amdtp_stream_init(s, unit, dir, flags, fmt, process_ctx_payloads,
sizeof(struct amdtp_motu));
if (err < 0)
return err;
s->sph = 1;
if (dir == AMDTP_OUT_STREAM) {
// Use fixed value for FDF field.
s->ctx_data.rx.fdf = MOTU_FDF_AM824;
// Not used.
s->ctx_data.rx.syt_override = 0xffff;
}
return 0;
}