linux_dsm_epyc7002/arch/arm64/kernel/kaslr.c
Jisheng Zhang 5a9e3e156e arm64: apply __ro_after_init to some objects
These objects are set during initialization, thereafter are read only.

Previously I only want to mark vdso_pages, vdso_spec, vectors_page and
cpu_ops as __read_mostly from performance point of view. Then inspired
by Kees's patch[1] to apply more __ro_after_init for arm, I think it's
better to mark them as __ro_after_init. What's more, I find some more
objects are also read only after init. So apply __ro_after_init to all
of them.

This patch also removes global vdso_pagelist and tries to clean up
vdso_spec[] assignment code.

[1] http://www.spinics.net/lists/arm-kernel/msg523188.html

Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
2016-08-22 12:32:29 +01:00

179 lines
5.2 KiB
C

/*
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/cache.h>
#include <linux/crc32.h>
#include <linux/init.h>
#include <linux/libfdt.h>
#include <linux/mm_types.h>
#include <linux/sched.h>
#include <linux/types.h>
#include <asm/fixmap.h>
#include <asm/kernel-pgtable.h>
#include <asm/memory.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/sections.h>
u64 __ro_after_init module_alloc_base;
u16 __initdata memstart_offset_seed;
static __init u64 get_kaslr_seed(void *fdt)
{
int node, len;
u64 *prop;
u64 ret;
node = fdt_path_offset(fdt, "/chosen");
if (node < 0)
return 0;
prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
if (!prop || len != sizeof(u64))
return 0;
ret = fdt64_to_cpu(*prop);
*prop = 0;
return ret;
}
static __init const u8 *get_cmdline(void *fdt)
{
static __initconst const u8 default_cmdline[] = CONFIG_CMDLINE;
if (!IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
int node;
const u8 *prop;
node = fdt_path_offset(fdt, "/chosen");
if (node < 0)
goto out;
prop = fdt_getprop(fdt, node, "bootargs", NULL);
if (!prop)
goto out;
return prop;
}
out:
return default_cmdline;
}
extern void *__init __fixmap_remap_fdt(phys_addr_t dt_phys, int *size,
pgprot_t prot);
/*
* This routine will be executed with the kernel mapped at its default virtual
* address, and if it returns successfully, the kernel will be remapped, and
* start_kernel() will be executed from a randomized virtual offset. The
* relocation will result in all absolute references (e.g., static variables
* containing function pointers) to be reinitialized, and zero-initialized
* .bss variables will be reset to 0.
*/
u64 __init kaslr_early_init(u64 dt_phys, u64 modulo_offset)
{
void *fdt;
u64 seed, offset, mask, module_range;
const u8 *cmdline, *str;
int size;
/*
* Set a reasonable default for module_alloc_base in case
* we end up running with module randomization disabled.
*/
module_alloc_base = (u64)_etext - MODULES_VSIZE;
/*
* Try to map the FDT early. If this fails, we simply bail,
* and proceed with KASLR disabled. We will make another
* attempt at mapping the FDT in setup_machine()
*/
early_fixmap_init();
fdt = __fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
if (!fdt)
return 0;
/*
* Retrieve (and wipe) the seed from the FDT
*/
seed = get_kaslr_seed(fdt);
if (!seed)
return 0;
/*
* Check if 'nokaslr' appears on the command line, and
* return 0 if that is the case.
*/
cmdline = get_cmdline(fdt);
str = strstr(cmdline, "nokaslr");
if (str == cmdline || (str > cmdline && *(str - 1) == ' '))
return 0;
/*
* OK, so we are proceeding with KASLR enabled. Calculate a suitable
* kernel image offset from the seed. Let's place the kernel in the
* lower half of the VMALLOC area (VA_BITS - 2).
* Even if we could randomize at page granularity for 16k and 64k pages,
* let's always round to 2 MB so we don't interfere with the ability to
* map using contiguous PTEs
*/
mask = ((1UL << (VA_BITS - 2)) - 1) & ~(SZ_2M - 1);
offset = seed & mask;
/* use the top 16 bits to randomize the linear region */
memstart_offset_seed = seed >> 48;
/*
* The kernel Image should not extend across a 1GB/32MB/512MB alignment
* boundary (for 4KB/16KB/64KB granule kernels, respectively). If this
* happens, increase the KASLR offset by the size of the kernel image.
*/
if ((((u64)_text + offset + modulo_offset) >> SWAPPER_TABLE_SHIFT) !=
(((u64)_end + offset + modulo_offset) >> SWAPPER_TABLE_SHIFT))
offset = (offset + (u64)(_end - _text)) & mask;
if (IS_ENABLED(CONFIG_KASAN))
/*
* KASAN does not expect the module region to intersect the
* vmalloc region, since shadow memory is allocated for each
* module at load time, whereas the vmalloc region is shadowed
* by KASAN zero pages. So keep modules out of the vmalloc
* region if KASAN is enabled.
*/
return offset;
if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
/*
* Randomize the module region independently from the core
* kernel. This prevents modules from leaking any information
* about the address of the kernel itself, but results in
* branches between modules and the core kernel that are
* resolved via PLTs. (Branches between modules will be
* resolved normally.)
*/
module_range = VMALLOC_END - VMALLOC_START - MODULES_VSIZE;
module_alloc_base = VMALLOC_START;
} else {
/*
* Randomize the module region by setting module_alloc_base to
* a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
* _stext) . This guarantees that the resulting region still
* covers [_stext, _etext], and that all relative branches can
* be resolved without veneers.
*/
module_range = MODULES_VSIZE - (u64)(_etext - _stext);
module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
}
/* use the lower 21 bits to randomize the base of the module region */
module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
module_alloc_base &= PAGE_MASK;
return offset;
}