mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 12:16:11 +07:00
a4872ba6d0
In the upcoming patches we plan to break the correlation between engine command streamers (a.k.a. rings) and ringbuffers, so it makes sense to refactor the code and make the change obvious. No functional changes. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2117 lines
56 KiB
C
2117 lines
56 KiB
C
/*
|
|
* Copyright © 2010 Daniel Vetter
|
|
* Copyright © 2011-2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
|
|
#include <linux/seq_file.h>
|
|
#include <drm/drmP.h>
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
|
|
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv);
|
|
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv);
|
|
|
|
bool intel_enable_ppgtt(struct drm_device *dev, bool full)
|
|
{
|
|
if (i915.enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev))
|
|
return false;
|
|
|
|
if (i915.enable_ppgtt == 1 && full)
|
|
return false;
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
/* Disable ppgtt on SNB if VT-d is on. */
|
|
if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
|
|
DRM_INFO("Disabling PPGTT because VT-d is on\n");
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/* Full ppgtt disabled by default for now due to issues. */
|
|
if (full)
|
|
return HAS_PPGTT(dev) && (i915.enable_ppgtt == 2);
|
|
else
|
|
return HAS_ALIASING_PPGTT(dev);
|
|
}
|
|
|
|
|
|
static void ppgtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags);
|
|
static void ppgtt_unbind_vma(struct i915_vma *vma);
|
|
static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
|
|
|
|
static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
|
|
pte |= addr;
|
|
|
|
switch (level) {
|
|
case I915_CACHE_NONE:
|
|
pte |= PPAT_UNCACHED_INDEX;
|
|
break;
|
|
case I915_CACHE_WT:
|
|
pte |= PPAT_DISPLAY_ELLC_INDEX;
|
|
break;
|
|
default:
|
|
pte |= PPAT_CACHED_INDEX;
|
|
break;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
|
|
dma_addr_t addr,
|
|
enum i915_cache_level level)
|
|
{
|
|
gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
|
|
pde |= addr;
|
|
if (level != I915_CACHE_NONE)
|
|
pde |= PPAT_CACHED_PDE_INDEX;
|
|
else
|
|
pde |= PPAT_UNCACHED_INDEX;
|
|
return pde;
|
|
}
|
|
|
|
static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_L3_LLC:
|
|
pte |= GEN7_PTE_CACHE_L3_LLC;
|
|
break;
|
|
case I915_CACHE_LLC:
|
|
pte |= GEN6_PTE_CACHE_LLC;
|
|
break;
|
|
case I915_CACHE_NONE:
|
|
pte |= GEN6_PTE_UNCACHED;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= GEN6_PTE_ADDR_ENCODE(addr);
|
|
|
|
/* Mark the page as writeable. Other platforms don't have a
|
|
* setting for read-only/writable, so this matches that behavior.
|
|
*/
|
|
pte |= BYT_PTE_WRITEABLE;
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
if (level != I915_CACHE_NONE)
|
|
pte |= HSW_WB_LLC_AGE3;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
|
|
enum i915_cache_level level,
|
|
bool valid)
|
|
{
|
|
gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
|
|
pte |= HSW_PTE_ADDR_ENCODE(addr);
|
|
|
|
switch (level) {
|
|
case I915_CACHE_NONE:
|
|
break;
|
|
case I915_CACHE_WT:
|
|
pte |= HSW_WT_ELLC_LLC_AGE3;
|
|
break;
|
|
default:
|
|
pte |= HSW_WB_ELLC_LLC_AGE3;
|
|
break;
|
|
}
|
|
|
|
return pte;
|
|
}
|
|
|
|
/* Broadwell Page Directory Pointer Descriptors */
|
|
static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry,
|
|
uint64_t val, bool synchronous)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
int ret;
|
|
|
|
BUG_ON(entry >= 4);
|
|
|
|
if (synchronous) {
|
|
I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
|
|
I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
|
|
return 0;
|
|
}
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
|
|
intel_ring_emit(ring, (u32)(val >> 32));
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
|
|
intel_ring_emit(ring, (u32)(val));
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_engine_cs *ring,
|
|
bool synchronous)
|
|
{
|
|
int i, ret;
|
|
|
|
/* bit of a hack to find the actual last used pd */
|
|
int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
|
|
|
|
for (i = used_pd - 1; i >= 0; i--) {
|
|
dma_addr_t addr = ppgtt->pd_dma_addr[i];
|
|
ret = gen8_write_pdp(ring, i, addr, synchronous);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
|
|
uint64_t start,
|
|
uint64_t length,
|
|
bool use_scratch)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen8_gtt_pte_t *pt_vaddr, scratch_pte;
|
|
unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
|
|
unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
|
|
unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
|
|
unsigned num_entries = length >> PAGE_SHIFT;
|
|
unsigned last_pte, i;
|
|
|
|
scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
|
|
I915_CACHE_LLC, use_scratch);
|
|
|
|
while (num_entries) {
|
|
struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde];
|
|
|
|
last_pte = pte + num_entries;
|
|
if (last_pte > GEN8_PTES_PER_PAGE)
|
|
last_pte = GEN8_PTES_PER_PAGE;
|
|
|
|
pt_vaddr = kmap_atomic(page_table);
|
|
|
|
for (i = pte; i < last_pte; i++) {
|
|
pt_vaddr[i] = scratch_pte;
|
|
num_entries--;
|
|
}
|
|
|
|
if (!HAS_LLC(ppgtt->base.dev))
|
|
drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
|
|
kunmap_atomic(pt_vaddr);
|
|
|
|
pte = 0;
|
|
if (++pde == GEN8_PDES_PER_PAGE) {
|
|
pdpe++;
|
|
pde = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *pages,
|
|
uint64_t start,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen8_gtt_pte_t *pt_vaddr;
|
|
unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK;
|
|
unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK;
|
|
unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
pt_vaddr = NULL;
|
|
|
|
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
|
|
if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS))
|
|
break;
|
|
|
|
if (pt_vaddr == NULL)
|
|
pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]);
|
|
|
|
pt_vaddr[pte] =
|
|
gen8_pte_encode(sg_page_iter_dma_address(&sg_iter),
|
|
cache_level, true);
|
|
if (++pte == GEN8_PTES_PER_PAGE) {
|
|
if (!HAS_LLC(ppgtt->base.dev))
|
|
drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
|
|
kunmap_atomic(pt_vaddr);
|
|
pt_vaddr = NULL;
|
|
if (++pde == GEN8_PDES_PER_PAGE) {
|
|
pdpe++;
|
|
pde = 0;
|
|
}
|
|
pte = 0;
|
|
}
|
|
}
|
|
if (pt_vaddr) {
|
|
if (!HAS_LLC(ppgtt->base.dev))
|
|
drm_clflush_virt_range(pt_vaddr, PAGE_SIZE);
|
|
kunmap_atomic(pt_vaddr);
|
|
}
|
|
}
|
|
|
|
static void gen8_free_page_tables(struct page **pt_pages)
|
|
{
|
|
int i;
|
|
|
|
if (pt_pages == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < GEN8_PDES_PER_PAGE; i++)
|
|
if (pt_pages[i])
|
|
__free_pages(pt_pages[i], 0);
|
|
}
|
|
|
|
static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ppgtt->num_pd_pages; i++) {
|
|
gen8_free_page_tables(ppgtt->gen8_pt_pages[i]);
|
|
kfree(ppgtt->gen8_pt_pages[i]);
|
|
kfree(ppgtt->gen8_pt_dma_addr[i]);
|
|
}
|
|
|
|
__free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
|
|
}
|
|
|
|
static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct pci_dev *hwdev = ppgtt->base.dev->pdev;
|
|
int i, j;
|
|
|
|
for (i = 0; i < ppgtt->num_pd_pages; i++) {
|
|
/* TODO: In the future we'll support sparse mappings, so this
|
|
* will have to change. */
|
|
if (!ppgtt->pd_dma_addr[i])
|
|
continue;
|
|
|
|
pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
|
|
if (addr)
|
|
pci_unmap_page(hwdev, addr, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
|
|
list_del(&vm->global_link);
|
|
drm_mm_takedown(&vm->mm);
|
|
|
|
gen8_ppgtt_unmap_pages(ppgtt);
|
|
gen8_ppgtt_free(ppgtt);
|
|
}
|
|
|
|
static struct page **__gen8_alloc_page_tables(void)
|
|
{
|
|
struct page **pt_pages;
|
|
int i;
|
|
|
|
pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL);
|
|
if (!pt_pages)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
for (i = 0; i < GEN8_PDES_PER_PAGE; i++) {
|
|
pt_pages[i] = alloc_page(GFP_KERNEL);
|
|
if (!pt_pages[i])
|
|
goto bail;
|
|
}
|
|
|
|
return pt_pages;
|
|
|
|
bail:
|
|
gen8_free_page_tables(pt_pages);
|
|
kfree(pt_pages);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt,
|
|
const int max_pdp)
|
|
{
|
|
struct page **pt_pages[GEN8_LEGACY_PDPS];
|
|
int i, ret;
|
|
|
|
for (i = 0; i < max_pdp; i++) {
|
|
pt_pages[i] = __gen8_alloc_page_tables();
|
|
if (IS_ERR(pt_pages[i])) {
|
|
ret = PTR_ERR(pt_pages[i]);
|
|
goto unwind_out;
|
|
}
|
|
}
|
|
|
|
/* NB: Avoid touching gen8_pt_pages until last to keep the allocation,
|
|
* "atomic" - for cleanup purposes.
|
|
*/
|
|
for (i = 0; i < max_pdp; i++)
|
|
ppgtt->gen8_pt_pages[i] = pt_pages[i];
|
|
|
|
return 0;
|
|
|
|
unwind_out:
|
|
while (i--) {
|
|
gen8_free_page_tables(pt_pages[i]);
|
|
kfree(pt_pages[i]);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ppgtt->num_pd_pages; i++) {
|
|
ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE,
|
|
sizeof(dma_addr_t),
|
|
GFP_KERNEL);
|
|
if (!ppgtt->gen8_pt_dma_addr[i])
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt,
|
|
const int max_pdp)
|
|
{
|
|
ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
|
|
if (!ppgtt->pd_pages)
|
|
return -ENOMEM;
|
|
|
|
ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
|
|
BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt,
|
|
const int max_pdp)
|
|
{
|
|
int ret;
|
|
|
|
ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp);
|
|
if (ret) {
|
|
__free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
|
|
return ret;
|
|
}
|
|
|
|
ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
|
|
|
|
ret = gen8_ppgtt_allocate_dma(ppgtt);
|
|
if (ret)
|
|
gen8_ppgtt_free(ppgtt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt,
|
|
const int pd)
|
|
{
|
|
dma_addr_t pd_addr;
|
|
int ret;
|
|
|
|
pd_addr = pci_map_page(ppgtt->base.dev->pdev,
|
|
&ppgtt->pd_pages[pd], 0,
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
|
|
ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ppgtt->pd_dma_addr[pd] = pd_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt,
|
|
const int pd,
|
|
const int pt)
|
|
{
|
|
dma_addr_t pt_addr;
|
|
struct page *p;
|
|
int ret;
|
|
|
|
p = ppgtt->gen8_pt_pages[pd][pt];
|
|
pt_addr = pci_map_page(ppgtt->base.dev->pdev,
|
|
p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
|
|
* with a net effect resembling a 2-level page table in normal x86 terms. Each
|
|
* PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
|
|
* space.
|
|
*
|
|
* FIXME: split allocation into smaller pieces. For now we only ever do this
|
|
* once, but with full PPGTT, the multiple contiguous allocations will be bad.
|
|
* TODO: Do something with the size parameter
|
|
*/
|
|
static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
|
|
{
|
|
const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
|
|
const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
|
|
int i, j, ret;
|
|
|
|
if (size % (1<<30))
|
|
DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
|
|
|
|
/* 1. Do all our allocations for page directories and page tables. */
|
|
ret = gen8_ppgtt_alloc(ppgtt, max_pdp);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* 2. Create DMA mappings for the page directories and page tables.
|
|
*/
|
|
for (i = 0; i < max_pdp; i++) {
|
|
ret = gen8_ppgtt_setup_page_directories(ppgtt, i);
|
|
if (ret)
|
|
goto bail;
|
|
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j);
|
|
if (ret)
|
|
goto bail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* 3. Map all the page directory entires to point to the page tables
|
|
* we've allocated.
|
|
*
|
|
* For now, the PPGTT helper functions all require that the PDEs are
|
|
* plugged in correctly. So we do that now/here. For aliasing PPGTT, we
|
|
* will never need to touch the PDEs again.
|
|
*/
|
|
for (i = 0; i < max_pdp; i++) {
|
|
gen8_ppgtt_pde_t *pd_vaddr;
|
|
pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
|
|
for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
|
|
dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
|
|
pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
|
|
I915_CACHE_LLC);
|
|
}
|
|
if (!HAS_LLC(ppgtt->base.dev))
|
|
drm_clflush_virt_range(pd_vaddr, PAGE_SIZE);
|
|
kunmap_atomic(pd_vaddr);
|
|
}
|
|
|
|
ppgtt->enable = gen8_ppgtt_enable;
|
|
ppgtt->switch_mm = gen8_mm_switch;
|
|
ppgtt->base.clear_range = gen8_ppgtt_clear_range;
|
|
ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
|
|
ppgtt->base.cleanup = gen8_ppgtt_cleanup;
|
|
ppgtt->base.start = 0;
|
|
ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE;
|
|
|
|
ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
|
|
|
|
DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
|
|
ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
|
|
DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
|
|
ppgtt->num_pd_entries,
|
|
(ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30));
|
|
return 0;
|
|
|
|
bail:
|
|
gen8_ppgtt_unmap_pages(ppgtt);
|
|
gen8_ppgtt_free(ppgtt);
|
|
return ret;
|
|
}
|
|
|
|
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
|
|
{
|
|
struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
|
|
struct i915_address_space *vm = &ppgtt->base;
|
|
gen6_gtt_pte_t __iomem *pd_addr;
|
|
gen6_gtt_pte_t scratch_pte;
|
|
uint32_t pd_entry;
|
|
int pte, pde;
|
|
|
|
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
|
|
|
|
pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm +
|
|
ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
|
|
|
|
seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm,
|
|
ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries);
|
|
for (pde = 0; pde < ppgtt->num_pd_entries; pde++) {
|
|
u32 expected;
|
|
gen6_gtt_pte_t *pt_vaddr;
|
|
dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde];
|
|
pd_entry = readl(pd_addr + pde);
|
|
expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
|
|
|
|
if (pd_entry != expected)
|
|
seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
|
|
pde,
|
|
pd_entry,
|
|
expected);
|
|
seq_printf(m, "\tPDE: %x\n", pd_entry);
|
|
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]);
|
|
for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) {
|
|
unsigned long va =
|
|
(pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) +
|
|
(pte * PAGE_SIZE);
|
|
int i;
|
|
bool found = false;
|
|
for (i = 0; i < 4; i++)
|
|
if (pt_vaddr[pte + i] != scratch_pte)
|
|
found = true;
|
|
if (!found)
|
|
continue;
|
|
|
|
seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
|
|
for (i = 0; i < 4; i++) {
|
|
if (pt_vaddr[pte + i] != scratch_pte)
|
|
seq_printf(m, " %08x", pt_vaddr[pte + i]);
|
|
else
|
|
seq_puts(m, " SCRATCH ");
|
|
}
|
|
seq_puts(m, "\n");
|
|
}
|
|
kunmap_atomic(pt_vaddr);
|
|
}
|
|
}
|
|
|
|
static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
|
|
gen6_gtt_pte_t __iomem *pd_addr;
|
|
uint32_t pd_entry;
|
|
int i;
|
|
|
|
WARN_ON(ppgtt->pd_offset & 0x3f);
|
|
pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
|
|
ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
dma_addr_t pt_addr;
|
|
|
|
pt_addr = ppgtt->pt_dma_addr[i];
|
|
pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
|
|
pd_entry |= GEN6_PDE_VALID;
|
|
|
|
writel(pd_entry, pd_addr + i);
|
|
}
|
|
readl(pd_addr);
|
|
}
|
|
|
|
static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
BUG_ON(ppgtt->pd_offset & 0x3f);
|
|
|
|
return (ppgtt->pd_offset / 64) << 16;
|
|
}
|
|
|
|
static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_engine_cs *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/* If we're in reset, we can assume the GPU is sufficiently idle to
|
|
* manually frob these bits. Ideally we could use the ring functions,
|
|
* except our error handling makes it quite difficult (can't use
|
|
* intel_ring_begin, ring->flush, or intel_ring_advance)
|
|
*
|
|
* FIXME: We should try not to special case reset
|
|
*/
|
|
if (synchronous ||
|
|
i915_reset_in_progress(&dev_priv->gpu_error)) {
|
|
WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
POSTING_READ(RING_PP_DIR_BASE(ring));
|
|
return 0;
|
|
}
|
|
|
|
/* NB: TLBs must be flushed and invalidated before a switch */
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
|
|
intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
|
|
intel_ring_emit(ring, PP_DIR_DCLV_2G);
|
|
intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
|
|
intel_ring_emit(ring, get_pd_offset(ppgtt));
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_engine_cs *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
/* If we're in reset, we can assume the GPU is sufficiently idle to
|
|
* manually frob these bits. Ideally we could use the ring functions,
|
|
* except our error handling makes it quite difficult (can't use
|
|
* intel_ring_begin, ring->flush, or intel_ring_advance)
|
|
*
|
|
* FIXME: We should try not to special case reset
|
|
*/
|
|
if (synchronous ||
|
|
i915_reset_in_progress(&dev_priv->gpu_error)) {
|
|
WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
POSTING_READ(RING_PP_DIR_BASE(ring));
|
|
return 0;
|
|
}
|
|
|
|
/* NB: TLBs must be flushed and invalidated before a switch */
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
|
|
intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
|
|
intel_ring_emit(ring, PP_DIR_DCLV_2G);
|
|
intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
|
|
intel_ring_emit(ring, get_pd_offset(ppgtt));
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
/* XXX: RCS is the only one to auto invalidate the TLBs? */
|
|
if (ring->id != RCS) {
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
|
|
struct intel_engine_cs *ring,
|
|
bool synchronous)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (!synchronous)
|
|
return 0;
|
|
|
|
I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
|
|
I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
|
|
|
|
POSTING_READ(RING_PP_DIR_DCLV(ring));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
int j, ret;
|
|
|
|
for_each_ring(ring, dev_priv, j) {
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
|
|
/* We promise to do a switch later with FULL PPGTT. If this is
|
|
* aliasing, this is the one and only switch we'll do */
|
|
if (USES_FULL_PPGTT(dev))
|
|
continue;
|
|
|
|
ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
goto err_out;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
for_each_ring(ring, dev_priv, j)
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
|
|
return ret;
|
|
}
|
|
|
|
static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
uint32_t ecochk, ecobits;
|
|
int i;
|
|
|
|
ecobits = I915_READ(GAC_ECO_BITS);
|
|
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
|
|
|
|
ecochk = I915_READ(GAM_ECOCHK);
|
|
if (IS_HASWELL(dev)) {
|
|
ecochk |= ECOCHK_PPGTT_WB_HSW;
|
|
} else {
|
|
ecochk |= ECOCHK_PPGTT_LLC_IVB;
|
|
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
|
|
}
|
|
I915_WRITE(GAM_ECOCHK, ecochk);
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
int ret;
|
|
/* GFX_MODE is per-ring on gen7+ */
|
|
I915_WRITE(RING_MODE_GEN7(ring),
|
|
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
|
|
/* We promise to do a switch later with FULL PPGTT. If this is
|
|
* aliasing, this is the one and only switch we'll do */
|
|
if (USES_FULL_PPGTT(dev))
|
|
continue;
|
|
|
|
ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
uint32_t ecochk, gab_ctl, ecobits;
|
|
int i;
|
|
|
|
ecobits = I915_READ(GAC_ECO_BITS);
|
|
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
|
|
ECOBITS_PPGTT_CACHE64B);
|
|
|
|
gab_ctl = I915_READ(GAB_CTL);
|
|
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
|
|
|
|
ecochk = I915_READ(GAM_ECOCHK);
|
|
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
|
|
|
|
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
int ret = ppgtt->switch_mm(ppgtt, ring, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* PPGTT support for Sandybdrige/Gen6 and later */
|
|
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
|
|
uint64_t start,
|
|
uint64_t length,
|
|
bool use_scratch)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen6_gtt_pte_t *pt_vaddr, scratch_pte;
|
|
unsigned first_entry = start >> PAGE_SHIFT;
|
|
unsigned num_entries = length >> PAGE_SHIFT;
|
|
unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
|
|
unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
|
|
unsigned last_pte, i;
|
|
|
|
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
|
|
|
|
while (num_entries) {
|
|
last_pte = first_pte + num_entries;
|
|
if (last_pte > I915_PPGTT_PT_ENTRIES)
|
|
last_pte = I915_PPGTT_PT_ENTRIES;
|
|
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
|
|
|
|
for (i = first_pte; i < last_pte; i++)
|
|
pt_vaddr[i] = scratch_pte;
|
|
|
|
kunmap_atomic(pt_vaddr);
|
|
|
|
num_entries -= last_pte - first_pte;
|
|
first_pte = 0;
|
|
act_pt++;
|
|
}
|
|
}
|
|
|
|
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *pages,
|
|
uint64_t start,
|
|
enum i915_cache_level cache_level)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
gen6_gtt_pte_t *pt_vaddr;
|
|
unsigned first_entry = start >> PAGE_SHIFT;
|
|
unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
|
|
unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
|
|
struct sg_page_iter sg_iter;
|
|
|
|
pt_vaddr = NULL;
|
|
for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
|
|
if (pt_vaddr == NULL)
|
|
pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
|
|
|
|
pt_vaddr[act_pte] =
|
|
vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
|
|
cache_level, true);
|
|
if (++act_pte == I915_PPGTT_PT_ENTRIES) {
|
|
kunmap_atomic(pt_vaddr);
|
|
pt_vaddr = NULL;
|
|
act_pt++;
|
|
act_pte = 0;
|
|
}
|
|
}
|
|
if (pt_vaddr)
|
|
kunmap_atomic(pt_vaddr);
|
|
}
|
|
|
|
static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
int i;
|
|
|
|
if (ppgtt->pt_dma_addr) {
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++)
|
|
pci_unmap_page(ppgtt->base.dev->pdev,
|
|
ppgtt->pt_dma_addr[i],
|
|
4096, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
}
|
|
|
|
static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
int i;
|
|
|
|
kfree(ppgtt->pt_dma_addr);
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++)
|
|
__free_page(ppgtt->pt_pages[i]);
|
|
kfree(ppgtt->pt_pages);
|
|
}
|
|
|
|
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
|
|
{
|
|
struct i915_hw_ppgtt *ppgtt =
|
|
container_of(vm, struct i915_hw_ppgtt, base);
|
|
|
|
list_del(&vm->global_link);
|
|
drm_mm_takedown(&ppgtt->base.mm);
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
|
|
gen6_ppgtt_unmap_pages(ppgtt);
|
|
gen6_ppgtt_free(ppgtt);
|
|
}
|
|
|
|
static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool retried = false;
|
|
int ret;
|
|
|
|
/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
|
|
* allocator works in address space sizes, so it's multiplied by page
|
|
* size. We allocate at the top of the GTT to avoid fragmentation.
|
|
*/
|
|
BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
|
|
alloc:
|
|
ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
|
|
&ppgtt->node, GEN6_PD_SIZE,
|
|
GEN6_PD_ALIGN, 0,
|
|
0, dev_priv->gtt.base.total,
|
|
DRM_MM_TOPDOWN);
|
|
if (ret == -ENOSPC && !retried) {
|
|
ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
|
|
GEN6_PD_SIZE, GEN6_PD_ALIGN,
|
|
I915_CACHE_NONE, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
retried = true;
|
|
goto alloc;
|
|
}
|
|
|
|
if (ppgtt->node.start < dev_priv->gtt.mappable_end)
|
|
DRM_DEBUG("Forced to use aperture for PDEs\n");
|
|
|
|
ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
|
|
return ret;
|
|
}
|
|
|
|
static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
int i;
|
|
|
|
ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
|
|
if (!ppgtt->pt_pages)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
|
|
if (!ppgtt->pt_pages[i]) {
|
|
gen6_ppgtt_free(ppgtt);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
int ret;
|
|
|
|
ret = gen6_ppgtt_allocate_page_directories(ppgtt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = gen6_ppgtt_allocate_page_tables(ppgtt);
|
|
if (ret) {
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
return ret;
|
|
}
|
|
|
|
ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
|
|
GFP_KERNEL);
|
|
if (!ppgtt->pt_dma_addr) {
|
|
drm_mm_remove_node(&ppgtt->node);
|
|
gen6_ppgtt_free(ppgtt);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
int i;
|
|
|
|
for (i = 0; i < ppgtt->num_pd_entries; i++) {
|
|
dma_addr_t pt_addr;
|
|
|
|
pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
|
|
gen6_ppgtt_unmap_pages(ppgtt);
|
|
return -EIO;
|
|
}
|
|
|
|
ppgtt->pt_dma_addr[i] = pt_addr;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_device *dev = ppgtt->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
|
|
if (IS_GEN6(dev)) {
|
|
ppgtt->enable = gen6_ppgtt_enable;
|
|
ppgtt->switch_mm = gen6_mm_switch;
|
|
} else if (IS_HASWELL(dev)) {
|
|
ppgtt->enable = gen7_ppgtt_enable;
|
|
ppgtt->switch_mm = hsw_mm_switch;
|
|
} else if (IS_GEN7(dev)) {
|
|
ppgtt->enable = gen7_ppgtt_enable;
|
|
ppgtt->switch_mm = gen7_mm_switch;
|
|
} else
|
|
BUG();
|
|
|
|
ret = gen6_ppgtt_alloc(ppgtt);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = gen6_ppgtt_setup_page_tables(ppgtt);
|
|
if (ret) {
|
|
gen6_ppgtt_free(ppgtt);
|
|
return ret;
|
|
}
|
|
|
|
ppgtt->base.clear_range = gen6_ppgtt_clear_range;
|
|
ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
|
|
ppgtt->base.cleanup = gen6_ppgtt_cleanup;
|
|
ppgtt->base.start = 0;
|
|
ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
|
|
ppgtt->debug_dump = gen6_dump_ppgtt;
|
|
|
|
ppgtt->pd_offset =
|
|
ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
|
|
|
|
ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true);
|
|
|
|
DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
|
|
ppgtt->node.size >> 20,
|
|
ppgtt->node.start / PAGE_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret = 0;
|
|
|
|
ppgtt->base.dev = dev;
|
|
ppgtt->base.scratch = dev_priv->gtt.base.scratch;
|
|
|
|
if (INTEL_INFO(dev)->gen < 8)
|
|
ret = gen6_ppgtt_init(ppgtt);
|
|
else if (IS_GEN8(dev))
|
|
ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
|
|
else
|
|
BUG();
|
|
|
|
if (!ret) {
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
kref_init(&ppgtt->ref);
|
|
drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
|
|
ppgtt->base.total);
|
|
i915_init_vm(dev_priv, &ppgtt->base);
|
|
if (INTEL_INFO(dev)->gen < 8) {
|
|
gen6_write_pdes(ppgtt);
|
|
DRM_DEBUG("Adding PPGTT at offset %x\n",
|
|
ppgtt->pd_offset << 10);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
ppgtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
|
|
cache_level);
|
|
}
|
|
|
|
static void ppgtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
vma->vm->clear_range(vma->vm,
|
|
vma->node.start,
|
|
vma->obj->base.size,
|
|
true);
|
|
}
|
|
|
|
extern int intel_iommu_gfx_mapped;
|
|
/* Certain Gen5 chipsets require require idling the GPU before
|
|
* unmapping anything from the GTT when VT-d is enabled.
|
|
*/
|
|
static inline bool needs_idle_maps(struct drm_device *dev)
|
|
{
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
/* Query intel_iommu to see if we need the workaround. Presumably that
|
|
* was loaded first.
|
|
*/
|
|
if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
|
|
return true;
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
static bool do_idling(struct drm_i915_private *dev_priv)
|
|
{
|
|
bool ret = dev_priv->mm.interruptible;
|
|
|
|
if (unlikely(dev_priv->gtt.do_idle_maps)) {
|
|
dev_priv->mm.interruptible = false;
|
|
if (i915_gpu_idle(dev_priv->dev)) {
|
|
DRM_ERROR("Couldn't idle GPU\n");
|
|
/* Wait a bit, in hopes it avoids the hang */
|
|
udelay(10);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
|
|
{
|
|
if (unlikely(dev_priv->gtt.do_idle_maps))
|
|
dev_priv->mm.interruptible = interruptible;
|
|
}
|
|
|
|
void i915_check_and_clear_faults(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring;
|
|
int i;
|
|
|
|
if (INTEL_INFO(dev)->gen < 6)
|
|
return;
|
|
|
|
for_each_ring(ring, dev_priv, i) {
|
|
u32 fault_reg;
|
|
fault_reg = I915_READ(RING_FAULT_REG(ring));
|
|
if (fault_reg & RING_FAULT_VALID) {
|
|
DRM_DEBUG_DRIVER("Unexpected fault\n"
|
|
"\tAddr: 0x%08lx\\n"
|
|
"\tAddress space: %s\n"
|
|
"\tSource ID: %d\n"
|
|
"\tType: %d\n",
|
|
fault_reg & PAGE_MASK,
|
|
fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
|
|
RING_FAULT_SRCID(fault_reg),
|
|
RING_FAULT_FAULT_TYPE(fault_reg));
|
|
I915_WRITE(RING_FAULT_REG(ring),
|
|
fault_reg & ~RING_FAULT_VALID);
|
|
}
|
|
}
|
|
POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
|
|
}
|
|
|
|
void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* Don't bother messing with faults pre GEN6 as we have little
|
|
* documentation supporting that it's a good idea.
|
|
*/
|
|
if (INTEL_INFO(dev)->gen < 6)
|
|
return;
|
|
|
|
i915_check_and_clear_faults(dev);
|
|
|
|
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
|
|
dev_priv->gtt.base.start,
|
|
dev_priv->gtt.base.total,
|
|
true);
|
|
}
|
|
|
|
void i915_gem_restore_gtt_mappings(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj;
|
|
struct i915_address_space *vm;
|
|
|
|
i915_check_and_clear_faults(dev);
|
|
|
|
/* First fill our portion of the GTT with scratch pages */
|
|
dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
|
|
dev_priv->gtt.base.start,
|
|
dev_priv->gtt.base.total,
|
|
true);
|
|
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
struct i915_vma *vma = i915_gem_obj_to_vma(obj,
|
|
&dev_priv->gtt.base);
|
|
if (!vma)
|
|
continue;
|
|
|
|
i915_gem_clflush_object(obj, obj->pin_display);
|
|
/* The bind_vma code tries to be smart about tracking mappings.
|
|
* Unfortunately above, we've just wiped out the mappings
|
|
* without telling our object about it. So we need to fake it.
|
|
*/
|
|
obj->has_global_gtt_mapping = 0;
|
|
vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
|
|
}
|
|
|
|
|
|
if (INTEL_INFO(dev)->gen >= 8) {
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_setup_private_ppat(dev_priv);
|
|
else
|
|
bdw_setup_private_ppat(dev_priv);
|
|
|
|
return;
|
|
}
|
|
|
|
list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
|
|
/* TODO: Perhaps it shouldn't be gen6 specific */
|
|
if (i915_is_ggtt(vm)) {
|
|
if (dev_priv->mm.aliasing_ppgtt)
|
|
gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
|
|
continue;
|
|
}
|
|
|
|
gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
|
|
}
|
|
|
|
i915_gem_chipset_flush(dev);
|
|
}
|
|
|
|
int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
|
|
{
|
|
if (obj->has_dma_mapping)
|
|
return 0;
|
|
|
|
if (!dma_map_sg(&obj->base.dev->pdev->dev,
|
|
obj->pages->sgl, obj->pages->nents,
|
|
PCI_DMA_BIDIRECTIONAL))
|
|
return -ENOSPC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
|
|
{
|
|
#ifdef writeq
|
|
writeq(pte, addr);
|
|
#else
|
|
iowrite32((u32)pte, addr);
|
|
iowrite32(pte >> 32, addr + 4);
|
|
#endif
|
|
}
|
|
|
|
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *st,
|
|
uint64_t start,
|
|
enum i915_cache_level level)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
unsigned first_entry = start >> PAGE_SHIFT;
|
|
gen8_gtt_pte_t __iomem *gtt_entries =
|
|
(gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
|
|
int i = 0;
|
|
struct sg_page_iter sg_iter;
|
|
dma_addr_t addr = 0;
|
|
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
|
|
addr = sg_dma_address(sg_iter.sg) +
|
|
(sg_iter.sg_pgoffset << PAGE_SHIFT);
|
|
gen8_set_pte(>t_entries[i],
|
|
gen8_pte_encode(addr, level, true));
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* XXX: This serves as a posting read to make sure that the PTE has
|
|
* actually been updated. There is some concern that even though
|
|
* registers and PTEs are within the same BAR that they are potentially
|
|
* of NUMA access patterns. Therefore, even with the way we assume
|
|
* hardware should work, we must keep this posting read for paranoia.
|
|
*/
|
|
if (i != 0)
|
|
WARN_ON(readq(>t_entries[i-1])
|
|
!= gen8_pte_encode(addr, level, true));
|
|
|
|
/* This next bit makes the above posting read even more important. We
|
|
* want to flush the TLBs only after we're certain all the PTE updates
|
|
* have finished.
|
|
*/
|
|
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
|
|
POSTING_READ(GFX_FLSH_CNTL_GEN6);
|
|
}
|
|
|
|
/*
|
|
* Binds an object into the global gtt with the specified cache level. The object
|
|
* will be accessible to the GPU via commands whose operands reference offsets
|
|
* within the global GTT as well as accessible by the GPU through the GMADR
|
|
* mapped BAR (dev_priv->mm.gtt->gtt).
|
|
*/
|
|
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
|
|
struct sg_table *st,
|
|
uint64_t start,
|
|
enum i915_cache_level level)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
unsigned first_entry = start >> PAGE_SHIFT;
|
|
gen6_gtt_pte_t __iomem *gtt_entries =
|
|
(gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
|
|
int i = 0;
|
|
struct sg_page_iter sg_iter;
|
|
dma_addr_t addr;
|
|
|
|
for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
|
|
addr = sg_page_iter_dma_address(&sg_iter);
|
|
iowrite32(vm->pte_encode(addr, level, true), >t_entries[i]);
|
|
i++;
|
|
}
|
|
|
|
/* XXX: This serves as a posting read to make sure that the PTE has
|
|
* actually been updated. There is some concern that even though
|
|
* registers and PTEs are within the same BAR that they are potentially
|
|
* of NUMA access patterns. Therefore, even with the way we assume
|
|
* hardware should work, we must keep this posting read for paranoia.
|
|
*/
|
|
if (i != 0)
|
|
WARN_ON(readl(>t_entries[i-1]) !=
|
|
vm->pte_encode(addr, level, true));
|
|
|
|
/* This next bit makes the above posting read even more important. We
|
|
* want to flush the TLBs only after we're certain all the PTE updates
|
|
* have finished.
|
|
*/
|
|
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
|
|
POSTING_READ(GFX_FLSH_CNTL_GEN6);
|
|
}
|
|
|
|
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
|
|
uint64_t start,
|
|
uint64_t length,
|
|
bool use_scratch)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
unsigned first_entry = start >> PAGE_SHIFT;
|
|
unsigned num_entries = length >> PAGE_SHIFT;
|
|
gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
|
|
(gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
|
|
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
scratch_pte = gen8_pte_encode(vm->scratch.addr,
|
|
I915_CACHE_LLC,
|
|
use_scratch);
|
|
for (i = 0; i < num_entries; i++)
|
|
gen8_set_pte(>t_base[i], scratch_pte);
|
|
readl(gtt_base);
|
|
}
|
|
|
|
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
|
|
uint64_t start,
|
|
uint64_t length,
|
|
bool use_scratch)
|
|
{
|
|
struct drm_i915_private *dev_priv = vm->dev->dev_private;
|
|
unsigned first_entry = start >> PAGE_SHIFT;
|
|
unsigned num_entries = length >> PAGE_SHIFT;
|
|
gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
|
|
(gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
|
|
const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
|
|
int i;
|
|
|
|
if (WARN(num_entries > max_entries,
|
|
"First entry = %d; Num entries = %d (max=%d)\n",
|
|
first_entry, num_entries, max_entries))
|
|
num_entries = max_entries;
|
|
|
|
scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
|
|
|
|
for (i = 0; i < num_entries; i++)
|
|
iowrite32(scratch_pte, >t_base[i]);
|
|
readl(gtt_base);
|
|
}
|
|
|
|
|
|
static void i915_ggtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 unused)
|
|
{
|
|
const unsigned long entry = vma->node.start >> PAGE_SHIFT;
|
|
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
|
|
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
|
|
|
|
BUG_ON(!i915_is_ggtt(vma->vm));
|
|
intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
|
|
vma->obj->has_global_gtt_mapping = 1;
|
|
}
|
|
|
|
static void i915_ggtt_clear_range(struct i915_address_space *vm,
|
|
uint64_t start,
|
|
uint64_t length,
|
|
bool unused)
|
|
{
|
|
unsigned first_entry = start >> PAGE_SHIFT;
|
|
unsigned num_entries = length >> PAGE_SHIFT;
|
|
intel_gtt_clear_range(first_entry, num_entries);
|
|
}
|
|
|
|
static void i915_ggtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
const unsigned int first = vma->node.start >> PAGE_SHIFT;
|
|
const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
|
|
|
|
BUG_ON(!i915_is_ggtt(vma->vm));
|
|
vma->obj->has_global_gtt_mapping = 0;
|
|
intel_gtt_clear_range(first, size);
|
|
}
|
|
|
|
static void ggtt_bind_vma(struct i915_vma *vma,
|
|
enum i915_cache_level cache_level,
|
|
u32 flags)
|
|
{
|
|
struct drm_device *dev = vma->vm->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
/* If there is no aliasing PPGTT, or the caller needs a global mapping,
|
|
* or we have a global mapping already but the cacheability flags have
|
|
* changed, set the global PTEs.
|
|
*
|
|
* If there is an aliasing PPGTT it is anecdotally faster, so use that
|
|
* instead if none of the above hold true.
|
|
*
|
|
* NB: A global mapping should only be needed for special regions like
|
|
* "gtt mappable", SNB errata, or if specified via special execbuf
|
|
* flags. At all other times, the GPU will use the aliasing PPGTT.
|
|
*/
|
|
if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
|
|
if (!obj->has_global_gtt_mapping ||
|
|
(cache_level != obj->cache_level)) {
|
|
vma->vm->insert_entries(vma->vm, obj->pages,
|
|
vma->node.start,
|
|
cache_level);
|
|
obj->has_global_gtt_mapping = 1;
|
|
}
|
|
}
|
|
|
|
if (dev_priv->mm.aliasing_ppgtt &&
|
|
(!obj->has_aliasing_ppgtt_mapping ||
|
|
(cache_level != obj->cache_level))) {
|
|
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
|
|
appgtt->base.insert_entries(&appgtt->base,
|
|
vma->obj->pages,
|
|
vma->node.start,
|
|
cache_level);
|
|
vma->obj->has_aliasing_ppgtt_mapping = 1;
|
|
}
|
|
}
|
|
|
|
static void ggtt_unbind_vma(struct i915_vma *vma)
|
|
{
|
|
struct drm_device *dev = vma->vm->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct drm_i915_gem_object *obj = vma->obj;
|
|
|
|
if (obj->has_global_gtt_mapping) {
|
|
vma->vm->clear_range(vma->vm,
|
|
vma->node.start,
|
|
obj->base.size,
|
|
true);
|
|
obj->has_global_gtt_mapping = 0;
|
|
}
|
|
|
|
if (obj->has_aliasing_ppgtt_mapping) {
|
|
struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
|
|
appgtt->base.clear_range(&appgtt->base,
|
|
vma->node.start,
|
|
obj->base.size,
|
|
true);
|
|
obj->has_aliasing_ppgtt_mapping = 0;
|
|
}
|
|
}
|
|
|
|
void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
|
|
{
|
|
struct drm_device *dev = obj->base.dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
bool interruptible;
|
|
|
|
interruptible = do_idling(dev_priv);
|
|
|
|
if (!obj->has_dma_mapping)
|
|
dma_unmap_sg(&dev->pdev->dev,
|
|
obj->pages->sgl, obj->pages->nents,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
|
|
undo_idling(dev_priv, interruptible);
|
|
}
|
|
|
|
static void i915_gtt_color_adjust(struct drm_mm_node *node,
|
|
unsigned long color,
|
|
unsigned long *start,
|
|
unsigned long *end)
|
|
{
|
|
if (node->color != color)
|
|
*start += 4096;
|
|
|
|
if (!list_empty(&node->node_list)) {
|
|
node = list_entry(node->node_list.next,
|
|
struct drm_mm_node,
|
|
node_list);
|
|
if (node->allocated && node->color != color)
|
|
*end -= 4096;
|
|
}
|
|
}
|
|
|
|
void i915_gem_setup_global_gtt(struct drm_device *dev,
|
|
unsigned long start,
|
|
unsigned long mappable_end,
|
|
unsigned long end)
|
|
{
|
|
/* Let GEM Manage all of the aperture.
|
|
*
|
|
* However, leave one page at the end still bound to the scratch page.
|
|
* There are a number of places where the hardware apparently prefetches
|
|
* past the end of the object, and we've seen multiple hangs with the
|
|
* GPU head pointer stuck in a batchbuffer bound at the last page of the
|
|
* aperture. One page should be enough to keep any prefetching inside
|
|
* of the aperture.
|
|
*/
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
|
|
struct drm_mm_node *entry;
|
|
struct drm_i915_gem_object *obj;
|
|
unsigned long hole_start, hole_end;
|
|
|
|
BUG_ON(mappable_end > end);
|
|
|
|
/* Subtract the guard page ... */
|
|
drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
|
|
if (!HAS_LLC(dev))
|
|
dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
|
|
|
|
/* Mark any preallocated objects as occupied */
|
|
list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
|
|
struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
|
|
int ret;
|
|
DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
|
|
i915_gem_obj_ggtt_offset(obj), obj->base.size);
|
|
|
|
WARN_ON(i915_gem_obj_ggtt_bound(obj));
|
|
ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
|
|
if (ret)
|
|
DRM_DEBUG_KMS("Reservation failed\n");
|
|
obj->has_global_gtt_mapping = 1;
|
|
}
|
|
|
|
dev_priv->gtt.base.start = start;
|
|
dev_priv->gtt.base.total = end - start;
|
|
|
|
/* Clear any non-preallocated blocks */
|
|
drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
|
|
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
|
|
hole_start, hole_end);
|
|
ggtt_vm->clear_range(ggtt_vm, hole_start,
|
|
hole_end - hole_start, true);
|
|
}
|
|
|
|
/* And finally clear the reserved guard page */
|
|
ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
|
|
}
|
|
|
|
void i915_gem_init_global_gtt(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long gtt_size, mappable_size;
|
|
|
|
gtt_size = dev_priv->gtt.base.total;
|
|
mappable_size = dev_priv->gtt.mappable_end;
|
|
|
|
i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
|
|
}
|
|
|
|
static int setup_scratch_page(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct page *page;
|
|
dma_addr_t dma_addr;
|
|
|
|
page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
|
|
if (page == NULL)
|
|
return -ENOMEM;
|
|
get_page(page);
|
|
set_pages_uc(page, 1);
|
|
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
|
|
PCI_DMA_BIDIRECTIONAL);
|
|
if (pci_dma_mapping_error(dev->pdev, dma_addr))
|
|
return -EINVAL;
|
|
#else
|
|
dma_addr = page_to_phys(page);
|
|
#endif
|
|
dev_priv->gtt.base.scratch.page = page;
|
|
dev_priv->gtt.base.scratch.addr = dma_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void teardown_scratch_page(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct page *page = dev_priv->gtt.base.scratch.page;
|
|
|
|
set_pages_wb(page, 1);
|
|
pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
|
|
PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
|
|
put_page(page);
|
|
__free_page(page);
|
|
}
|
|
|
|
static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
|
|
{
|
|
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
|
|
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
|
|
return snb_gmch_ctl << 20;
|
|
}
|
|
|
|
static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
|
|
{
|
|
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
|
|
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
|
|
if (bdw_gmch_ctl)
|
|
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
|
|
return bdw_gmch_ctl << 20;
|
|
}
|
|
|
|
static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
|
|
{
|
|
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
|
|
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
|
|
|
|
if (gmch_ctrl)
|
|
return 1 << (20 + gmch_ctrl);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
|
|
{
|
|
snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
|
|
snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
|
|
return snb_gmch_ctl << 25; /* 32 MB units */
|
|
}
|
|
|
|
static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
|
|
{
|
|
bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
|
|
bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
|
|
return bdw_gmch_ctl << 25; /* 32 MB units */
|
|
}
|
|
|
|
static size_t chv_get_stolen_size(u16 gmch_ctrl)
|
|
{
|
|
gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
|
|
gmch_ctrl &= SNB_GMCH_GMS_MASK;
|
|
|
|
/*
|
|
* 0x0 to 0x10: 32MB increments starting at 0MB
|
|
* 0x11 to 0x16: 4MB increments starting at 8MB
|
|
* 0x17 to 0x1d: 4MB increments start at 36MB
|
|
*/
|
|
if (gmch_ctrl < 0x11)
|
|
return gmch_ctrl << 25;
|
|
else if (gmch_ctrl < 0x17)
|
|
return (gmch_ctrl - 0x11 + 2) << 22;
|
|
else
|
|
return (gmch_ctrl - 0x17 + 9) << 22;
|
|
}
|
|
|
|
static int ggtt_probe_common(struct drm_device *dev,
|
|
size_t gtt_size)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
phys_addr_t gtt_phys_addr;
|
|
int ret;
|
|
|
|
/* For Modern GENs the PTEs and register space are split in the BAR */
|
|
gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
|
|
(pci_resource_len(dev->pdev, 0) / 2);
|
|
|
|
dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
|
|
if (!dev_priv->gtt.gsm) {
|
|
DRM_ERROR("Failed to map the gtt page table\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = setup_scratch_page(dev);
|
|
if (ret) {
|
|
DRM_ERROR("Scratch setup failed\n");
|
|
/* iounmap will also get called at remove, but meh */
|
|
iounmap(dev_priv->gtt.gsm);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
|
|
* bits. When using advanced contexts each context stores its own PAT, but
|
|
* writing this data shouldn't be harmful even in those cases. */
|
|
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint64_t pat;
|
|
|
|
pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */
|
|
GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
|
|
GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
|
|
GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */
|
|
GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
|
|
GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
|
|
GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
|
|
GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
|
|
|
|
/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
|
|
* write would work. */
|
|
I915_WRITE(GEN8_PRIVATE_PAT, pat);
|
|
I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
|
|
}
|
|
|
|
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
|
|
{
|
|
uint64_t pat;
|
|
|
|
/*
|
|
* Map WB on BDW to snooped on CHV.
|
|
*
|
|
* Only the snoop bit has meaning for CHV, the rest is
|
|
* ignored.
|
|
*
|
|
* Note that the harware enforces snooping for all page
|
|
* table accesses. The snoop bit is actually ignored for
|
|
* PDEs.
|
|
*/
|
|
pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(1, 0) |
|
|
GEN8_PPAT(2, 0) |
|
|
GEN8_PPAT(3, 0) |
|
|
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(7, CHV_PPAT_SNOOP);
|
|
|
|
I915_WRITE(GEN8_PRIVATE_PAT, pat);
|
|
I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
|
|
}
|
|
|
|
static int gen8_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned int gtt_size;
|
|
u16 snb_gmch_ctl;
|
|
int ret;
|
|
|
|
/* TODO: We're not aware of mappable constraints on gen8 yet */
|
|
*mappable_base = pci_resource_start(dev->pdev, 2);
|
|
*mappable_end = pci_resource_len(dev->pdev, 2);
|
|
|
|
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
|
|
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
|
|
|
|
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
|
|
if (IS_CHERRYVIEW(dev)) {
|
|
*stolen = chv_get_stolen_size(snb_gmch_ctl);
|
|
gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
|
|
} else {
|
|
*stolen = gen8_get_stolen_size(snb_gmch_ctl);
|
|
gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
|
|
}
|
|
|
|
*gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
|
|
|
|
if (IS_CHERRYVIEW(dev))
|
|
chv_setup_private_ppat(dev_priv);
|
|
else
|
|
bdw_setup_private_ppat(dev_priv);
|
|
|
|
ret = ggtt_probe_common(dev, gtt_size);
|
|
|
|
dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
|
|
dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gen6_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned int gtt_size;
|
|
u16 snb_gmch_ctl;
|
|
int ret;
|
|
|
|
*mappable_base = pci_resource_start(dev->pdev, 2);
|
|
*mappable_end = pci_resource_len(dev->pdev, 2);
|
|
|
|
/* 64/512MB is the current min/max we actually know of, but this is just
|
|
* a coarse sanity check.
|
|
*/
|
|
if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
|
|
DRM_ERROR("Unknown GMADR size (%lx)\n",
|
|
dev_priv->gtt.mappable_end);
|
|
return -ENXIO;
|
|
}
|
|
|
|
if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
|
|
pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
|
|
pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
|
|
|
|
*stolen = gen6_get_stolen_size(snb_gmch_ctl);
|
|
|
|
gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
|
|
*gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
|
|
|
|
ret = ggtt_probe_common(dev, gtt_size);
|
|
|
|
dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
|
|
dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void gen6_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
|
|
struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
|
|
|
|
drm_mm_takedown(&vm->mm);
|
|
iounmap(gtt->gsm);
|
|
teardown_scratch_page(vm->dev);
|
|
}
|
|
|
|
static int i915_gmch_probe(struct drm_device *dev,
|
|
size_t *gtt_total,
|
|
size_t *stolen,
|
|
phys_addr_t *mappable_base,
|
|
unsigned long *mappable_end)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret;
|
|
|
|
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
|
|
if (!ret) {
|
|
DRM_ERROR("failed to set up gmch\n");
|
|
return -EIO;
|
|
}
|
|
|
|
intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
|
|
|
|
dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
|
|
dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
|
|
|
|
if (unlikely(dev_priv->gtt.do_idle_maps))
|
|
DRM_INFO("applying Ironlake quirks for intel_iommu\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void i915_gmch_remove(struct i915_address_space *vm)
|
|
{
|
|
intel_gmch_remove();
|
|
}
|
|
|
|
int i915_gem_gtt_init(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_gtt *gtt = &dev_priv->gtt;
|
|
int ret;
|
|
|
|
if (INTEL_INFO(dev)->gen <= 5) {
|
|
gtt->gtt_probe = i915_gmch_probe;
|
|
gtt->base.cleanup = i915_gmch_remove;
|
|
} else if (INTEL_INFO(dev)->gen < 8) {
|
|
gtt->gtt_probe = gen6_gmch_probe;
|
|
gtt->base.cleanup = gen6_gmch_remove;
|
|
if (IS_HASWELL(dev) && dev_priv->ellc_size)
|
|
gtt->base.pte_encode = iris_pte_encode;
|
|
else if (IS_HASWELL(dev))
|
|
gtt->base.pte_encode = hsw_pte_encode;
|
|
else if (IS_VALLEYVIEW(dev))
|
|
gtt->base.pte_encode = byt_pte_encode;
|
|
else if (INTEL_INFO(dev)->gen >= 7)
|
|
gtt->base.pte_encode = ivb_pte_encode;
|
|
else
|
|
gtt->base.pte_encode = snb_pte_encode;
|
|
} else {
|
|
dev_priv->gtt.gtt_probe = gen8_gmch_probe;
|
|
dev_priv->gtt.base.cleanup = gen6_gmch_remove;
|
|
}
|
|
|
|
ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size,
|
|
>t->mappable_base, >t->mappable_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
gtt->base.dev = dev;
|
|
|
|
/* GMADR is the PCI mmio aperture into the global GTT. */
|
|
DRM_INFO("Memory usable by graphics device = %zdM\n",
|
|
gtt->base.total >> 20);
|
|
DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
|
|
DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
|
|
#ifdef CONFIG_INTEL_IOMMU
|
|
if (intel_iommu_gfx_mapped)
|
|
DRM_INFO("VT-d active for gfx access\n");
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
|
|
if (vma == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
INIT_LIST_HEAD(&vma->vma_link);
|
|
INIT_LIST_HEAD(&vma->mm_list);
|
|
INIT_LIST_HEAD(&vma->exec_list);
|
|
vma->vm = vm;
|
|
vma->obj = obj;
|
|
|
|
switch (INTEL_INFO(vm->dev)->gen) {
|
|
case 8:
|
|
case 7:
|
|
case 6:
|
|
if (i915_is_ggtt(vm)) {
|
|
vma->unbind_vma = ggtt_unbind_vma;
|
|
vma->bind_vma = ggtt_bind_vma;
|
|
} else {
|
|
vma->unbind_vma = ppgtt_unbind_vma;
|
|
vma->bind_vma = ppgtt_bind_vma;
|
|
}
|
|
break;
|
|
case 5:
|
|
case 4:
|
|
case 3:
|
|
case 2:
|
|
BUG_ON(!i915_is_ggtt(vm));
|
|
vma->unbind_vma = i915_ggtt_unbind_vma;
|
|
vma->bind_vma = i915_ggtt_bind_vma;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
/* Keep GGTT vmas first to make debug easier */
|
|
if (i915_is_ggtt(vm))
|
|
list_add(&vma->vma_link, &obj->vma_list);
|
|
else
|
|
list_add_tail(&vma->vma_link, &obj->vma_list);
|
|
|
|
return vma;
|
|
}
|
|
|
|
struct i915_vma *
|
|
i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
|
|
struct i915_address_space *vm)
|
|
{
|
|
struct i915_vma *vma;
|
|
|
|
vma = i915_gem_obj_to_vma(obj, vm);
|
|
if (!vma)
|
|
vma = __i915_gem_vma_create(obj, vm);
|
|
|
|
return vma;
|
|
}
|