mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 09:51:00 +07:00
5450e8a316
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCXSMhUgAKCRCRxhvAZXjc
okkiAQC3Hlg/O2JoIb4PqgEvBkpHSdVxyuWagn0ksjACW9ANKQEAl5OadMhvOq16
UHGhKlpE/M8HflknIffoEGlIAWHrdwU=
=7kP5
-----END PGP SIGNATURE-----
Merge tag 'pidfd-updates-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux
Pull pidfd updates from Christian Brauner:
"This adds two main features.
- First, it adds polling support for pidfds. This allows process
managers to know when a (non-parent) process dies in a race-free
way.
The notification mechanism used follows the same logic that is
currently used when the parent of a task is notified of a child's
death. With this patchset it is possible to put pidfds in an
{e}poll loop and get reliable notifications for process (i.e.
thread-group) exit.
- The second feature compliments the first one by making it possible
to retrieve pollable pidfds for processes that were not created
using CLONE_PIDFD.
A lot of processes get created with traditional PID-based calls
such as fork() or clone() (without CLONE_PIDFD). For these
processes a caller can currently not create a pollable pidfd. This
is a problem for Android's low memory killer (LMK) and service
managers such as systemd.
Both patchsets are accompanied by selftests.
It's perhaps worth noting that the work done so far and the work done
in this branch for pidfd_open() and polling support do already see
some adoption:
- Android is in the process of backporting this work to all their LTS
kernels [1]
- Service managers make use of pidfd_send_signal but will need to
wait until we enable waiting on pidfds for full adoption.
- And projects I maintain make use of both pidfd_send_signal and
CLONE_PIDFD [2] and will use polling support and pidfd_open() too"
[1] https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.9+backport%22
https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.14+backport%22
https://android-review.googlesource.com/q/topic:%22pidfd+polling+support+4.19+backport%22
[2] aab6e3eb73/src/lxc/start.c (L1753)
* tag 'pidfd-updates-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
tests: add pidfd_open() tests
arch: wire-up pidfd_open()
pid: add pidfd_open()
pidfd: add polling selftests
pidfd: add polling support
542 lines
13 KiB
C
542 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Generic pidhash and scalable, time-bounded PID allocator
|
|
*
|
|
* (C) 2002-2003 Nadia Yvette Chambers, IBM
|
|
* (C) 2004 Nadia Yvette Chambers, Oracle
|
|
* (C) 2002-2004 Ingo Molnar, Red Hat
|
|
*
|
|
* pid-structures are backing objects for tasks sharing a given ID to chain
|
|
* against. There is very little to them aside from hashing them and
|
|
* parking tasks using given ID's on a list.
|
|
*
|
|
* The hash is always changed with the tasklist_lock write-acquired,
|
|
* and the hash is only accessed with the tasklist_lock at least
|
|
* read-acquired, so there's no additional SMP locking needed here.
|
|
*
|
|
* We have a list of bitmap pages, which bitmaps represent the PID space.
|
|
* Allocating and freeing PIDs is completely lockless. The worst-case
|
|
* allocation scenario when all but one out of 1 million PIDs possible are
|
|
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
|
|
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
|
|
*
|
|
* Pid namespaces:
|
|
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
|
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
|
* Many thanks to Oleg Nesterov for comments and help
|
|
*
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/export.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/init_task.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/proc_ns.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/idr.h>
|
|
|
|
struct pid init_struct_pid = {
|
|
.count = ATOMIC_INIT(1),
|
|
.tasks = {
|
|
{ .first = NULL },
|
|
{ .first = NULL },
|
|
{ .first = NULL },
|
|
},
|
|
.level = 0,
|
|
.numbers = { {
|
|
.nr = 0,
|
|
.ns = &init_pid_ns,
|
|
}, }
|
|
};
|
|
|
|
int pid_max = PID_MAX_DEFAULT;
|
|
|
|
#define RESERVED_PIDS 300
|
|
|
|
int pid_max_min = RESERVED_PIDS + 1;
|
|
int pid_max_max = PID_MAX_LIMIT;
|
|
|
|
/*
|
|
* PID-map pages start out as NULL, they get allocated upon
|
|
* first use and are never deallocated. This way a low pid_max
|
|
* value does not cause lots of bitmaps to be allocated, but
|
|
* the scheme scales to up to 4 million PIDs, runtime.
|
|
*/
|
|
struct pid_namespace init_pid_ns = {
|
|
.kref = KREF_INIT(2),
|
|
.idr = IDR_INIT(init_pid_ns.idr),
|
|
.pid_allocated = PIDNS_ADDING,
|
|
.level = 0,
|
|
.child_reaper = &init_task,
|
|
.user_ns = &init_user_ns,
|
|
.ns.inum = PROC_PID_INIT_INO,
|
|
#ifdef CONFIG_PID_NS
|
|
.ns.ops = &pidns_operations,
|
|
#endif
|
|
};
|
|
EXPORT_SYMBOL_GPL(init_pid_ns);
|
|
|
|
/*
|
|
* Note: disable interrupts while the pidmap_lock is held as an
|
|
* interrupt might come in and do read_lock(&tasklist_lock).
|
|
*
|
|
* If we don't disable interrupts there is a nasty deadlock between
|
|
* detach_pid()->free_pid() and another cpu that does
|
|
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
|
|
* read_lock(&tasklist_lock);
|
|
*
|
|
* After we clean up the tasklist_lock and know there are no
|
|
* irq handlers that take it we can leave the interrupts enabled.
|
|
* For now it is easier to be safe than to prove it can't happen.
|
|
*/
|
|
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
|
|
|
|
void put_pid(struct pid *pid)
|
|
{
|
|
struct pid_namespace *ns;
|
|
|
|
if (!pid)
|
|
return;
|
|
|
|
ns = pid->numbers[pid->level].ns;
|
|
if ((atomic_read(&pid->count) == 1) ||
|
|
atomic_dec_and_test(&pid->count)) {
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
|
put_pid_ns(ns);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(put_pid);
|
|
|
|
static void delayed_put_pid(struct rcu_head *rhp)
|
|
{
|
|
struct pid *pid = container_of(rhp, struct pid, rcu);
|
|
put_pid(pid);
|
|
}
|
|
|
|
void free_pid(struct pid *pid)
|
|
{
|
|
/* We can be called with write_lock_irq(&tasklist_lock) held */
|
|
int i;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pidmap_lock, flags);
|
|
for (i = 0; i <= pid->level; i++) {
|
|
struct upid *upid = pid->numbers + i;
|
|
struct pid_namespace *ns = upid->ns;
|
|
switch (--ns->pid_allocated) {
|
|
case 2:
|
|
case 1:
|
|
/* When all that is left in the pid namespace
|
|
* is the reaper wake up the reaper. The reaper
|
|
* may be sleeping in zap_pid_ns_processes().
|
|
*/
|
|
wake_up_process(ns->child_reaper);
|
|
break;
|
|
case PIDNS_ADDING:
|
|
/* Handle a fork failure of the first process */
|
|
WARN_ON(ns->child_reaper);
|
|
ns->pid_allocated = 0;
|
|
/* fall through */
|
|
case 0:
|
|
schedule_work(&ns->proc_work);
|
|
break;
|
|
}
|
|
|
|
idr_remove(&ns->idr, upid->nr);
|
|
}
|
|
spin_unlock_irqrestore(&pidmap_lock, flags);
|
|
|
|
call_rcu(&pid->rcu, delayed_put_pid);
|
|
}
|
|
|
|
struct pid *alloc_pid(struct pid_namespace *ns)
|
|
{
|
|
struct pid *pid;
|
|
enum pid_type type;
|
|
int i, nr;
|
|
struct pid_namespace *tmp;
|
|
struct upid *upid;
|
|
int retval = -ENOMEM;
|
|
|
|
pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
|
|
if (!pid)
|
|
return ERR_PTR(retval);
|
|
|
|
tmp = ns;
|
|
pid->level = ns->level;
|
|
|
|
for (i = ns->level; i >= 0; i--) {
|
|
int pid_min = 1;
|
|
|
|
idr_preload(GFP_KERNEL);
|
|
spin_lock_irq(&pidmap_lock);
|
|
|
|
/*
|
|
* init really needs pid 1, but after reaching the maximum
|
|
* wrap back to RESERVED_PIDS
|
|
*/
|
|
if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
|
|
pid_min = RESERVED_PIDS;
|
|
|
|
/*
|
|
* Store a null pointer so find_pid_ns does not find
|
|
* a partially initialized PID (see below).
|
|
*/
|
|
nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
|
|
pid_max, GFP_ATOMIC);
|
|
spin_unlock_irq(&pidmap_lock);
|
|
idr_preload_end();
|
|
|
|
if (nr < 0) {
|
|
retval = (nr == -ENOSPC) ? -EAGAIN : nr;
|
|
goto out_free;
|
|
}
|
|
|
|
pid->numbers[i].nr = nr;
|
|
pid->numbers[i].ns = tmp;
|
|
tmp = tmp->parent;
|
|
}
|
|
|
|
if (unlikely(is_child_reaper(pid))) {
|
|
if (pid_ns_prepare_proc(ns))
|
|
goto out_free;
|
|
}
|
|
|
|
get_pid_ns(ns);
|
|
atomic_set(&pid->count, 1);
|
|
for (type = 0; type < PIDTYPE_MAX; ++type)
|
|
INIT_HLIST_HEAD(&pid->tasks[type]);
|
|
|
|
init_waitqueue_head(&pid->wait_pidfd);
|
|
|
|
upid = pid->numbers + ns->level;
|
|
spin_lock_irq(&pidmap_lock);
|
|
if (!(ns->pid_allocated & PIDNS_ADDING))
|
|
goto out_unlock;
|
|
for ( ; upid >= pid->numbers; --upid) {
|
|
/* Make the PID visible to find_pid_ns. */
|
|
idr_replace(&upid->ns->idr, pid, upid->nr);
|
|
upid->ns->pid_allocated++;
|
|
}
|
|
spin_unlock_irq(&pidmap_lock);
|
|
|
|
return pid;
|
|
|
|
out_unlock:
|
|
spin_unlock_irq(&pidmap_lock);
|
|
put_pid_ns(ns);
|
|
|
|
out_free:
|
|
spin_lock_irq(&pidmap_lock);
|
|
while (++i <= ns->level) {
|
|
upid = pid->numbers + i;
|
|
idr_remove(&upid->ns->idr, upid->nr);
|
|
}
|
|
|
|
/* On failure to allocate the first pid, reset the state */
|
|
if (ns->pid_allocated == PIDNS_ADDING)
|
|
idr_set_cursor(&ns->idr, 0);
|
|
|
|
spin_unlock_irq(&pidmap_lock);
|
|
|
|
kmem_cache_free(ns->pid_cachep, pid);
|
|
return ERR_PTR(retval);
|
|
}
|
|
|
|
void disable_pid_allocation(struct pid_namespace *ns)
|
|
{
|
|
spin_lock_irq(&pidmap_lock);
|
|
ns->pid_allocated &= ~PIDNS_ADDING;
|
|
spin_unlock_irq(&pidmap_lock);
|
|
}
|
|
|
|
struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
|
|
{
|
|
return idr_find(&ns->idr, nr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_pid_ns);
|
|
|
|
struct pid *find_vpid(int nr)
|
|
{
|
|
return find_pid_ns(nr, task_active_pid_ns(current));
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_vpid);
|
|
|
|
static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
|
|
{
|
|
return (type == PIDTYPE_PID) ?
|
|
&task->thread_pid :
|
|
&task->signal->pids[type];
|
|
}
|
|
|
|
/*
|
|
* attach_pid() must be called with the tasklist_lock write-held.
|
|
*/
|
|
void attach_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid *pid = *task_pid_ptr(task, type);
|
|
hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
|
|
}
|
|
|
|
static void __change_pid(struct task_struct *task, enum pid_type type,
|
|
struct pid *new)
|
|
{
|
|
struct pid **pid_ptr = task_pid_ptr(task, type);
|
|
struct pid *pid;
|
|
int tmp;
|
|
|
|
pid = *pid_ptr;
|
|
|
|
hlist_del_rcu(&task->pid_links[type]);
|
|
*pid_ptr = new;
|
|
|
|
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
|
|
if (!hlist_empty(&pid->tasks[tmp]))
|
|
return;
|
|
|
|
free_pid(pid);
|
|
}
|
|
|
|
void detach_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
__change_pid(task, type, NULL);
|
|
}
|
|
|
|
void change_pid(struct task_struct *task, enum pid_type type,
|
|
struct pid *pid)
|
|
{
|
|
__change_pid(task, type, pid);
|
|
attach_pid(task, type);
|
|
}
|
|
|
|
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
|
|
void transfer_pid(struct task_struct *old, struct task_struct *new,
|
|
enum pid_type type)
|
|
{
|
|
if (type == PIDTYPE_PID)
|
|
new->thread_pid = old->thread_pid;
|
|
hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
|
|
}
|
|
|
|
struct task_struct *pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result = NULL;
|
|
if (pid) {
|
|
struct hlist_node *first;
|
|
first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
|
|
lockdep_tasklist_lock_is_held());
|
|
if (first)
|
|
result = hlist_entry(first, struct task_struct, pid_links[(type)]);
|
|
}
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL(pid_task);
|
|
|
|
/*
|
|
* Must be called under rcu_read_lock().
|
|
*/
|
|
struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
|
|
{
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
|
|
"find_task_by_pid_ns() needs rcu_read_lock() protection");
|
|
return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
|
|
}
|
|
|
|
struct task_struct *find_task_by_vpid(pid_t vnr)
|
|
{
|
|
return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
|
|
}
|
|
|
|
struct task_struct *find_get_task_by_vpid(pid_t nr)
|
|
{
|
|
struct task_struct *task;
|
|
|
|
rcu_read_lock();
|
|
task = find_task_by_vpid(nr);
|
|
if (task)
|
|
get_task_struct(task);
|
|
rcu_read_unlock();
|
|
|
|
return task;
|
|
}
|
|
|
|
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
|
|
{
|
|
struct pid *pid;
|
|
rcu_read_lock();
|
|
pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
|
|
rcu_read_unlock();
|
|
return pid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_task_pid);
|
|
|
|
struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
|
|
{
|
|
struct task_struct *result;
|
|
rcu_read_lock();
|
|
result = pid_task(pid, type);
|
|
if (result)
|
|
get_task_struct(result);
|
|
rcu_read_unlock();
|
|
return result;
|
|
}
|
|
EXPORT_SYMBOL_GPL(get_pid_task);
|
|
|
|
struct pid *find_get_pid(pid_t nr)
|
|
{
|
|
struct pid *pid;
|
|
|
|
rcu_read_lock();
|
|
pid = get_pid(find_vpid(nr));
|
|
rcu_read_unlock();
|
|
|
|
return pid;
|
|
}
|
|
EXPORT_SYMBOL_GPL(find_get_pid);
|
|
|
|
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
|
|
{
|
|
struct upid *upid;
|
|
pid_t nr = 0;
|
|
|
|
if (pid && ns->level <= pid->level) {
|
|
upid = &pid->numbers[ns->level];
|
|
if (upid->ns == ns)
|
|
nr = upid->nr;
|
|
}
|
|
return nr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(pid_nr_ns);
|
|
|
|
pid_t pid_vnr(struct pid *pid)
|
|
{
|
|
return pid_nr_ns(pid, task_active_pid_ns(current));
|
|
}
|
|
EXPORT_SYMBOL_GPL(pid_vnr);
|
|
|
|
pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
|
|
struct pid_namespace *ns)
|
|
{
|
|
pid_t nr = 0;
|
|
|
|
rcu_read_lock();
|
|
if (!ns)
|
|
ns = task_active_pid_ns(current);
|
|
if (likely(pid_alive(task)))
|
|
nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
|
|
rcu_read_unlock();
|
|
|
|
return nr;
|
|
}
|
|
EXPORT_SYMBOL(__task_pid_nr_ns);
|
|
|
|
struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
|
|
{
|
|
return ns_of_pid(task_pid(tsk));
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_active_pid_ns);
|
|
|
|
/*
|
|
* Used by proc to find the first pid that is greater than or equal to nr.
|
|
*
|
|
* If there is a pid at nr this function is exactly the same as find_pid_ns.
|
|
*/
|
|
struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
|
|
{
|
|
return idr_get_next(&ns->idr, &nr);
|
|
}
|
|
|
|
/**
|
|
* pidfd_create() - Create a new pid file descriptor.
|
|
*
|
|
* @pid: struct pid that the pidfd will reference
|
|
*
|
|
* This creates a new pid file descriptor with the O_CLOEXEC flag set.
|
|
*
|
|
* Note, that this function can only be called after the fd table has
|
|
* been unshared to avoid leaking the pidfd to the new process.
|
|
*
|
|
* Return: On success, a cloexec pidfd is returned.
|
|
* On error, a negative errno number will be returned.
|
|
*/
|
|
static int pidfd_create(struct pid *pid)
|
|
{
|
|
int fd;
|
|
|
|
fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
|
|
O_RDWR | O_CLOEXEC);
|
|
if (fd < 0)
|
|
put_pid(pid);
|
|
|
|
return fd;
|
|
}
|
|
|
|
/**
|
|
* pidfd_open() - Open new pid file descriptor.
|
|
*
|
|
* @pid: pid for which to retrieve a pidfd
|
|
* @flags: flags to pass
|
|
*
|
|
* This creates a new pid file descriptor with the O_CLOEXEC flag set for
|
|
* the process identified by @pid. Currently, the process identified by
|
|
* @pid must be a thread-group leader. This restriction currently exists
|
|
* for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
|
|
* be used with CLONE_THREAD) and pidfd polling (only supports thread group
|
|
* leaders).
|
|
*
|
|
* Return: On success, a cloexec pidfd is returned.
|
|
* On error, a negative errno number will be returned.
|
|
*/
|
|
SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
|
|
{
|
|
int fd, ret;
|
|
struct pid *p;
|
|
|
|
if (flags)
|
|
return -EINVAL;
|
|
|
|
if (pid <= 0)
|
|
return -EINVAL;
|
|
|
|
p = find_get_pid(pid);
|
|
if (!p)
|
|
return -ESRCH;
|
|
|
|
ret = 0;
|
|
rcu_read_lock();
|
|
if (!pid_task(p, PIDTYPE_TGID))
|
|
ret = -EINVAL;
|
|
rcu_read_unlock();
|
|
|
|
fd = ret ?: pidfd_create(p);
|
|
put_pid(p);
|
|
return fd;
|
|
}
|
|
|
|
void __init pid_idr_init(void)
|
|
{
|
|
/* Verify no one has done anything silly: */
|
|
BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
|
|
|
|
/* bump default and minimum pid_max based on number of cpus */
|
|
pid_max = min(pid_max_max, max_t(int, pid_max,
|
|
PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
|
|
pid_max_min = max_t(int, pid_max_min,
|
|
PIDS_PER_CPU_MIN * num_possible_cpus());
|
|
pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
|
|
|
|
idr_init(&init_pid_ns.idr);
|
|
|
|
init_pid_ns.pid_cachep = KMEM_CACHE(pid,
|
|
SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
|
|
}
|