linux_dsm_epyc7002/fs/f2fs/dir.c
Eric Biggers 43c780ba26 f2fs: rework filename handling
Rework f2fs's handling of filenames to use a new 'struct f2fs_filename'.
Similar to 'struct ext4_filename', this stores the usr_fname, disk_name,
dirhash, crypto_buf, and casefolded name.  Some of these names can be
NULL in some cases.  'struct f2fs_filename' differs from
'struct fscrypt_name' mainly in that the casefolded name is included.

For user-initiated directory operations like lookup() and create(),
initialize the f2fs_filename by translating the corresponding
fscrypt_name, then computing the dirhash and casefolded name if needed.

This makes the dirhash and casefolded name be cached for each syscall,
so we don't have to recompute them repeatedly.  (Previously, f2fs
computed the dirhash once per directory level, and the casefolded name
once per directory block.)  This improves performance.

This rework also makes it much easier to correctly handle all
combinations of normal, encrypted, casefolded, and encrypted+casefolded
directories.  (The fourth isn't supported yet but is being worked on.)

The only other cases where an f2fs_filename gets initialized are for two
filesystem-internal operations: (1) when converting an inline directory
to a regular one, we grab the needed disk_name and hash from an existing
f2fs_dir_entry; and (2) when roll-forward recovering a new dentry, we
grab the needed disk_name from f2fs_inode::i_name and compute the hash.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2020-05-11 20:36:46 -07:00

1166 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/dir.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/sched/signal.h>
#include <linux/unicode.h>
#include "f2fs.h"
#include "node.h"
#include "acl.h"
#include "xattr.h"
#include <trace/events/f2fs.h>
static unsigned long dir_blocks(struct inode *inode)
{
return ((unsigned long long) (i_size_read(inode) + PAGE_SIZE - 1))
>> PAGE_SHIFT;
}
static unsigned int dir_buckets(unsigned int level, int dir_level)
{
if (level + dir_level < MAX_DIR_HASH_DEPTH / 2)
return 1 << (level + dir_level);
else
return MAX_DIR_BUCKETS;
}
static unsigned int bucket_blocks(unsigned int level)
{
if (level < MAX_DIR_HASH_DEPTH / 2)
return 2;
else
return 4;
}
static unsigned char f2fs_filetype_table[F2FS_FT_MAX] = {
[F2FS_FT_UNKNOWN] = DT_UNKNOWN,
[F2FS_FT_REG_FILE] = DT_REG,
[F2FS_FT_DIR] = DT_DIR,
[F2FS_FT_CHRDEV] = DT_CHR,
[F2FS_FT_BLKDEV] = DT_BLK,
[F2FS_FT_FIFO] = DT_FIFO,
[F2FS_FT_SOCK] = DT_SOCK,
[F2FS_FT_SYMLINK] = DT_LNK,
};
static unsigned char f2fs_type_by_mode[S_IFMT >> S_SHIFT] = {
[S_IFREG >> S_SHIFT] = F2FS_FT_REG_FILE,
[S_IFDIR >> S_SHIFT] = F2FS_FT_DIR,
[S_IFCHR >> S_SHIFT] = F2FS_FT_CHRDEV,
[S_IFBLK >> S_SHIFT] = F2FS_FT_BLKDEV,
[S_IFIFO >> S_SHIFT] = F2FS_FT_FIFO,
[S_IFSOCK >> S_SHIFT] = F2FS_FT_SOCK,
[S_IFLNK >> S_SHIFT] = F2FS_FT_SYMLINK,
};
static void set_de_type(struct f2fs_dir_entry *de, umode_t mode)
{
de->file_type = f2fs_type_by_mode[(mode & S_IFMT) >> S_SHIFT];
}
unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de)
{
if (de->file_type < F2FS_FT_MAX)
return f2fs_filetype_table[de->file_type];
return DT_UNKNOWN;
}
/* If @dir is casefolded, initialize @fname->cf_name from @fname->usr_fname. */
int f2fs_init_casefolded_name(const struct inode *dir,
struct f2fs_filename *fname)
{
#ifdef CONFIG_UNICODE
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
if (IS_CASEFOLDED(dir)) {
fname->cf_name.name = f2fs_kmalloc(sbi, F2FS_NAME_LEN,
GFP_NOFS);
if (!fname->cf_name.name)
return -ENOMEM;
fname->cf_name.len = utf8_casefold(sbi->s_encoding,
fname->usr_fname,
fname->cf_name.name,
F2FS_NAME_LEN);
if ((int)fname->cf_name.len <= 0) {
kfree(fname->cf_name.name);
fname->cf_name.name = NULL;
if (f2fs_has_strict_mode(sbi))
return -EINVAL;
/* fall back to treating name as opaque byte sequence */
}
}
#endif
return 0;
}
static int __f2fs_setup_filename(const struct inode *dir,
const struct fscrypt_name *crypt_name,
struct f2fs_filename *fname)
{
int err;
memset(fname, 0, sizeof(*fname));
fname->usr_fname = crypt_name->usr_fname;
fname->disk_name = crypt_name->disk_name;
#ifdef CONFIG_FS_ENCRYPTION
fname->crypto_buf = crypt_name->crypto_buf;
#endif
if (crypt_name->is_ciphertext_name) {
/* hash was decoded from the no-key name */
fname->hash = cpu_to_le32(crypt_name->hash);
} else {
err = f2fs_init_casefolded_name(dir, fname);
if (err) {
f2fs_free_filename(fname);
return err;
}
f2fs_hash_filename(dir, fname);
}
return 0;
}
/*
* Prepare to search for @iname in @dir. This is similar to
* fscrypt_setup_filename(), but this also handles computing the casefolded name
* and the f2fs dirhash if needed, then packing all the information about this
* filename up into a 'struct f2fs_filename'.
*/
int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
int lookup, struct f2fs_filename *fname)
{
struct fscrypt_name crypt_name;
int err;
err = fscrypt_setup_filename(dir, iname, lookup, &crypt_name);
if (err)
return err;
return __f2fs_setup_filename(dir, &crypt_name, fname);
}
/*
* Prepare to look up @dentry in @dir. This is similar to
* fscrypt_prepare_lookup(), but this also handles computing the casefolded name
* and the f2fs dirhash if needed, then packing all the information about this
* filename up into a 'struct f2fs_filename'.
*/
int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
struct f2fs_filename *fname)
{
struct fscrypt_name crypt_name;
int err;
err = fscrypt_prepare_lookup(dir, dentry, &crypt_name);
if (err)
return err;
return __f2fs_setup_filename(dir, &crypt_name, fname);
}
void f2fs_free_filename(struct f2fs_filename *fname)
{
#ifdef CONFIG_FS_ENCRYPTION
kfree(fname->crypto_buf.name);
fname->crypto_buf.name = NULL;
#endif
#ifdef CONFIG_UNICODE
kfree(fname->cf_name.name);
fname->cf_name.name = NULL;
#endif
}
static unsigned long dir_block_index(unsigned int level,
int dir_level, unsigned int idx)
{
unsigned long i;
unsigned long bidx = 0;
for (i = 0; i < level; i++)
bidx += dir_buckets(i, dir_level) * bucket_blocks(i);
bidx += idx * bucket_blocks(level);
return bidx;
}
static struct f2fs_dir_entry *find_in_block(struct inode *dir,
struct page *dentry_page,
const struct f2fs_filename *fname,
int *max_slots,
struct page **res_page)
{
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dir_entry *de;
struct f2fs_dentry_ptr d;
dentry_blk = (struct f2fs_dentry_block *)page_address(dentry_page);
make_dentry_ptr_block(dir, &d, dentry_blk);
de = f2fs_find_target_dentry(&d, fname, max_slots);
if (de)
*res_page = dentry_page;
return de;
}
#ifdef CONFIG_UNICODE
/*
* Test whether a case-insensitive directory entry matches the filename
* being searched for.
*/
static bool f2fs_match_ci_name(const struct inode *dir, const struct qstr *name,
const u8 *de_name, u32 de_name_len)
{
const struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
const struct unicode_map *um = sbi->s_encoding;
struct qstr entry = QSTR_INIT(de_name, de_name_len);
int res;
res = utf8_strncasecmp_folded(um, name, &entry);
if (res < 0) {
/*
* In strict mode, ignore invalid names. In non-strict mode,
* fall back to treating them as opaque byte sequences.
*/
if (f2fs_has_strict_mode(sbi) || name->len != entry.len)
return false;
return !memcmp(name->name, entry.name, name->len);
}
return res == 0;
}
#endif /* CONFIG_UNICODE */
static inline bool f2fs_match_name(const struct inode *dir,
const struct f2fs_filename *fname,
const u8 *de_name, u32 de_name_len)
{
struct fscrypt_name f;
#ifdef CONFIG_UNICODE
if (fname->cf_name.name) {
struct qstr cf = FSTR_TO_QSTR(&fname->cf_name);
return f2fs_match_ci_name(dir, &cf, de_name, de_name_len);
}
#endif
f.usr_fname = fname->usr_fname;
f.disk_name = fname->disk_name;
#ifdef CONFIG_FS_ENCRYPTION
f.crypto_buf = fname->crypto_buf;
#endif
return fscrypt_match_name(&f, de_name, de_name_len);
}
struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
const struct f2fs_filename *fname, int *max_slots)
{
struct f2fs_dir_entry *de;
unsigned long bit_pos = 0;
int max_len = 0;
if (max_slots)
*max_slots = 0;
while (bit_pos < d->max) {
if (!test_bit_le(bit_pos, d->bitmap)) {
bit_pos++;
max_len++;
continue;
}
de = &d->dentry[bit_pos];
if (unlikely(!de->name_len)) {
bit_pos++;
continue;
}
if (de->hash_code == fname->hash &&
f2fs_match_name(d->inode, fname, d->filename[bit_pos],
le16_to_cpu(de->name_len)))
goto found;
if (max_slots && max_len > *max_slots)
*max_slots = max_len;
max_len = 0;
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
}
de = NULL;
found:
if (max_slots && max_len > *max_slots)
*max_slots = max_len;
return de;
}
static struct f2fs_dir_entry *find_in_level(struct inode *dir,
unsigned int level,
const struct f2fs_filename *fname,
struct page **res_page)
{
int s = GET_DENTRY_SLOTS(fname->disk_name.len);
unsigned int nbucket, nblock;
unsigned int bidx, end_block;
struct page *dentry_page;
struct f2fs_dir_entry *de = NULL;
bool room = false;
int max_slots;
nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
nblock = bucket_blocks(level);
bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
le32_to_cpu(fname->hash) % nbucket);
end_block = bidx + nblock;
for (; bidx < end_block; bidx++) {
/* no need to allocate new dentry pages to all the indices */
dentry_page = f2fs_find_data_page(dir, bidx);
if (IS_ERR(dentry_page)) {
if (PTR_ERR(dentry_page) == -ENOENT) {
room = true;
continue;
} else {
*res_page = dentry_page;
break;
}
}
de = find_in_block(dir, dentry_page, fname, &max_slots,
res_page);
if (de)
break;
if (max_slots >= s)
room = true;
f2fs_put_page(dentry_page, 0);
}
if (!de && room && F2FS_I(dir)->chash != fname->hash) {
F2FS_I(dir)->chash = fname->hash;
F2FS_I(dir)->clevel = level;
}
return de;
}
struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
const struct f2fs_filename *fname,
struct page **res_page)
{
unsigned long npages = dir_blocks(dir);
struct f2fs_dir_entry *de = NULL;
unsigned int max_depth;
unsigned int level;
if (f2fs_has_inline_dentry(dir)) {
*res_page = NULL;
de = f2fs_find_in_inline_dir(dir, fname, res_page);
goto out;
}
if (npages == 0) {
*res_page = NULL;
goto out;
}
max_depth = F2FS_I(dir)->i_current_depth;
if (unlikely(max_depth > MAX_DIR_HASH_DEPTH)) {
f2fs_warn(F2FS_I_SB(dir), "Corrupted max_depth of %lu: %u",
dir->i_ino, max_depth);
max_depth = MAX_DIR_HASH_DEPTH;
f2fs_i_depth_write(dir, max_depth);
}
for (level = 0; level < max_depth; level++) {
*res_page = NULL;
de = find_in_level(dir, level, fname, res_page);
if (de || IS_ERR(*res_page))
break;
}
out:
/* This is to increase the speed of f2fs_create */
if (!de)
F2FS_I(dir)->task = current;
return de;
}
/*
* Find an entry in the specified directory with the wanted name.
* It returns the page where the entry was found (as a parameter - res_page),
* and the entry itself. Page is returned mapped and unlocked.
* Entry is guaranteed to be valid.
*/
struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
const struct qstr *child, struct page **res_page)
{
struct f2fs_dir_entry *de = NULL;
struct f2fs_filename fname;
int err;
err = f2fs_setup_filename(dir, child, 1, &fname);
if (err) {
if (err == -ENOENT)
*res_page = NULL;
else
*res_page = ERR_PTR(err);
return NULL;
}
de = __f2fs_find_entry(dir, &fname, res_page);
f2fs_free_filename(&fname);
return de;
}
struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p)
{
struct qstr dotdot = QSTR_INIT("..", 2);
return f2fs_find_entry(dir, &dotdot, p);
}
ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
struct page **page)
{
ino_t res = 0;
struct f2fs_dir_entry *de;
de = f2fs_find_entry(dir, qstr, page);
if (de) {
res = le32_to_cpu(de->ino);
f2fs_put_page(*page, 0);
}
return res;
}
void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
struct page *page, struct inode *inode)
{
enum page_type type = f2fs_has_inline_dentry(dir) ? NODE : DATA;
lock_page(page);
f2fs_wait_on_page_writeback(page, type, true, true);
de->ino = cpu_to_le32(inode->i_ino);
set_de_type(de, inode->i_mode);
set_page_dirty(page);
dir->i_mtime = dir->i_ctime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
f2fs_put_page(page, 1);
}
static void init_dent_inode(const struct f2fs_filename *fname,
struct page *ipage)
{
struct f2fs_inode *ri;
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
/* copy name info. to this inode page */
ri = F2FS_INODE(ipage);
ri->i_namelen = cpu_to_le32(fname->disk_name.len);
memcpy(ri->i_name, fname->disk_name.name, fname->disk_name.len);
set_page_dirty(ipage);
}
void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
struct f2fs_dentry_ptr *d)
{
struct fscrypt_str dot = FSTR_INIT(".", 1);
struct fscrypt_str dotdot = FSTR_INIT("..", 2);
/* update dirent of "." */
f2fs_update_dentry(inode->i_ino, inode->i_mode, d, &dot, 0, 0);
/* update dirent of ".." */
f2fs_update_dentry(parent->i_ino, parent->i_mode, d, &dotdot, 0, 1);
}
static int make_empty_dir(struct inode *inode,
struct inode *parent, struct page *page)
{
struct page *dentry_page;
struct f2fs_dentry_block *dentry_blk;
struct f2fs_dentry_ptr d;
if (f2fs_has_inline_dentry(inode))
return f2fs_make_empty_inline_dir(inode, parent, page);
dentry_page = f2fs_get_new_data_page(inode, page, 0, true);
if (IS_ERR(dentry_page))
return PTR_ERR(dentry_page);
dentry_blk = page_address(dentry_page);
make_dentry_ptr_block(NULL, &d, dentry_blk);
f2fs_do_make_empty_dir(inode, parent, &d);
set_page_dirty(dentry_page);
f2fs_put_page(dentry_page, 1);
return 0;
}
struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
const struct f2fs_filename *fname, struct page *dpage)
{
struct page *page;
int err;
if (is_inode_flag_set(inode, FI_NEW_INODE)) {
page = f2fs_new_inode_page(inode);
if (IS_ERR(page))
return page;
if (S_ISDIR(inode->i_mode)) {
/* in order to handle error case */
get_page(page);
err = make_empty_dir(inode, dir, page);
if (err) {
lock_page(page);
goto put_error;
}
put_page(page);
}
err = f2fs_init_acl(inode, dir, page, dpage);
if (err)
goto put_error;
err = f2fs_init_security(inode, dir,
fname ? fname->usr_fname : NULL, page);
if (err)
goto put_error;
if (IS_ENCRYPTED(inode)) {
err = fscrypt_inherit_context(dir, inode, page, false);
if (err)
goto put_error;
}
} else {
page = f2fs_get_node_page(F2FS_I_SB(dir), inode->i_ino);
if (IS_ERR(page))
return page;
}
if (fname) {
init_dent_inode(fname, page);
if (IS_ENCRYPTED(dir))
file_set_enc_name(inode);
}
/*
* This file should be checkpointed during fsync.
* We lost i_pino from now on.
*/
if (is_inode_flag_set(inode, FI_INC_LINK)) {
if (!S_ISDIR(inode->i_mode))
file_lost_pino(inode);
/*
* If link the tmpfile to alias through linkat path,
* we should remove this inode from orphan list.
*/
if (inode->i_nlink == 0)
f2fs_remove_orphan_inode(F2FS_I_SB(dir), inode->i_ino);
f2fs_i_links_write(inode, true);
}
return page;
put_error:
clear_nlink(inode);
f2fs_update_inode(inode, page);
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
unsigned int current_depth)
{
if (inode && is_inode_flag_set(inode, FI_NEW_INODE)) {
if (S_ISDIR(inode->i_mode))
f2fs_i_links_write(dir, true);
clear_inode_flag(inode, FI_NEW_INODE);
}
dir->i_mtime = dir->i_ctime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
if (F2FS_I(dir)->i_current_depth != current_depth)
f2fs_i_depth_write(dir, current_depth);
if (inode && is_inode_flag_set(inode, FI_INC_LINK))
clear_inode_flag(inode, FI_INC_LINK);
}
int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots)
{
int bit_start = 0;
int zero_start, zero_end;
next:
zero_start = find_next_zero_bit_le(bitmap, max_slots, bit_start);
if (zero_start >= max_slots)
return max_slots;
zero_end = find_next_bit_le(bitmap, max_slots, zero_start);
if (zero_end - zero_start >= slots)
return zero_start;
bit_start = zero_end + 1;
if (zero_end + 1 >= max_slots)
return max_slots;
goto next;
}
bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
const struct f2fs_filename *fname)
{
struct f2fs_dentry_ptr d;
unsigned int bit_pos;
int slots = GET_DENTRY_SLOTS(fname->disk_name.len);
make_dentry_ptr_inline(dir, &d, inline_data_addr(dir, ipage));
bit_pos = f2fs_room_for_filename(d.bitmap, slots, d.max);
return bit_pos < d.max;
}
void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
const struct fscrypt_str *name, f2fs_hash_t name_hash,
unsigned int bit_pos)
{
struct f2fs_dir_entry *de;
int slots = GET_DENTRY_SLOTS(name->len);
int i;
de = &d->dentry[bit_pos];
de->hash_code = name_hash;
de->name_len = cpu_to_le16(name->len);
memcpy(d->filename[bit_pos], name->name, name->len);
de->ino = cpu_to_le32(ino);
set_de_type(de, mode);
for (i = 0; i < slots; i++) {
__set_bit_le(bit_pos + i, (void *)d->bitmap);
/* avoid wrong garbage data for readdir */
if (i)
(de + i)->name_len = 0;
}
}
int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
struct inode *inode, nid_t ino, umode_t mode)
{
unsigned int bit_pos;
unsigned int level;
unsigned int current_depth;
unsigned long bidx, block;
unsigned int nbucket, nblock;
struct page *dentry_page = NULL;
struct f2fs_dentry_block *dentry_blk = NULL;
struct f2fs_dentry_ptr d;
struct page *page = NULL;
int slots, err = 0;
level = 0;
slots = GET_DENTRY_SLOTS(fname->disk_name.len);
current_depth = F2FS_I(dir)->i_current_depth;
if (F2FS_I(dir)->chash == fname->hash) {
level = F2FS_I(dir)->clevel;
F2FS_I(dir)->chash = 0;
}
start:
if (time_to_inject(F2FS_I_SB(dir), FAULT_DIR_DEPTH)) {
f2fs_show_injection_info(F2FS_I_SB(dir), FAULT_DIR_DEPTH);
return -ENOSPC;
}
if (unlikely(current_depth == MAX_DIR_HASH_DEPTH))
return -ENOSPC;
/* Increase the depth, if required */
if (level == current_depth)
++current_depth;
nbucket = dir_buckets(level, F2FS_I(dir)->i_dir_level);
nblock = bucket_blocks(level);
bidx = dir_block_index(level, F2FS_I(dir)->i_dir_level,
(le32_to_cpu(fname->hash) % nbucket));
for (block = bidx; block <= (bidx + nblock - 1); block++) {
dentry_page = f2fs_get_new_data_page(dir, NULL, block, true);
if (IS_ERR(dentry_page))
return PTR_ERR(dentry_page);
dentry_blk = page_address(dentry_page);
bit_pos = f2fs_room_for_filename(&dentry_blk->dentry_bitmap,
slots, NR_DENTRY_IN_BLOCK);
if (bit_pos < NR_DENTRY_IN_BLOCK)
goto add_dentry;
f2fs_put_page(dentry_page, 1);
}
/* Move to next level to find the empty slot for new dentry */
++level;
goto start;
add_dentry:
f2fs_wait_on_page_writeback(dentry_page, DATA, true, true);
if (inode) {
down_write(&F2FS_I(inode)->i_sem);
page = f2fs_init_inode_metadata(inode, dir, fname, NULL);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
}
make_dentry_ptr_block(NULL, &d, dentry_blk);
f2fs_update_dentry(ino, mode, &d, &fname->disk_name, fname->hash,
bit_pos);
set_page_dirty(dentry_page);
if (inode) {
f2fs_i_pino_write(inode, dir->i_ino);
/* synchronize inode page's data from inode cache */
if (is_inode_flag_set(inode, FI_NEW_INODE))
f2fs_update_inode(inode, page);
f2fs_put_page(page, 1);
}
f2fs_update_parent_metadata(dir, inode, current_depth);
fail:
if (inode)
up_write(&F2FS_I(inode)->i_sem);
f2fs_put_page(dentry_page, 1);
return err;
}
int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
struct inode *inode, nid_t ino, umode_t mode)
{
int err = -EAGAIN;
if (f2fs_has_inline_dentry(dir))
err = f2fs_add_inline_entry(dir, fname, inode, ino, mode);
if (err == -EAGAIN)
err = f2fs_add_regular_entry(dir, fname, inode, ino, mode);
f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
return err;
}
/*
* Caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
*/
int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
struct inode *inode, nid_t ino, umode_t mode)
{
struct f2fs_filename fname;
struct page *page = NULL;
struct f2fs_dir_entry *de = NULL;
int err;
err = f2fs_setup_filename(dir, name, 0, &fname);
if (err)
return err;
/*
* An immature stakable filesystem shows a race condition between lookup
* and create. If we have same task when doing lookup and create, it's
* definitely fine as expected by VFS normally. Otherwise, let's just
* verify on-disk dentry one more time, which guarantees filesystem
* consistency more.
*/
if (current != F2FS_I(dir)->task) {
de = __f2fs_find_entry(dir, &fname, &page);
F2FS_I(dir)->task = NULL;
}
if (de) {
f2fs_put_page(page, 0);
err = -EEXIST;
} else if (IS_ERR(page)) {
err = PTR_ERR(page);
} else {
err = f2fs_add_dentry(dir, &fname, inode, ino, mode);
}
f2fs_free_filename(&fname);
return err;
}
int f2fs_do_tmpfile(struct inode *inode, struct inode *dir)
{
struct page *page;
int err = 0;
down_write(&F2FS_I(inode)->i_sem);
page = f2fs_init_inode_metadata(inode, dir, NULL, NULL);
if (IS_ERR(page)) {
err = PTR_ERR(page);
goto fail;
}
f2fs_put_page(page, 1);
clear_inode_flag(inode, FI_NEW_INODE);
f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
fail:
up_write(&F2FS_I(inode)->i_sem);
return err;
}
void f2fs_drop_nlink(struct inode *dir, struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
down_write(&F2FS_I(inode)->i_sem);
if (S_ISDIR(inode->i_mode))
f2fs_i_links_write(dir, false);
inode->i_ctime = current_time(inode);
f2fs_i_links_write(inode, false);
if (S_ISDIR(inode->i_mode)) {
f2fs_i_links_write(inode, false);
f2fs_i_size_write(inode, 0);
}
up_write(&F2FS_I(inode)->i_sem);
if (inode->i_nlink == 0)
f2fs_add_orphan_inode(inode);
else
f2fs_release_orphan_inode(sbi);
}
/*
* It only removes the dentry from the dentry page, corresponding name
* entry in name page does not need to be touched during deletion.
*/
void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
struct inode *dir, struct inode *inode)
{
struct f2fs_dentry_block *dentry_blk;
unsigned int bit_pos;
int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
int i;
f2fs_update_time(F2FS_I_SB(dir), REQ_TIME);
if (F2FS_OPTION(F2FS_I_SB(dir)).fsync_mode == FSYNC_MODE_STRICT)
f2fs_add_ino_entry(F2FS_I_SB(dir), dir->i_ino, TRANS_DIR_INO);
if (f2fs_has_inline_dentry(dir))
return f2fs_delete_inline_entry(dentry, page, dir, inode);
lock_page(page);
f2fs_wait_on_page_writeback(page, DATA, true, true);
dentry_blk = page_address(page);
bit_pos = dentry - dentry_blk->dentry;
for (i = 0; i < slots; i++)
__clear_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
/* Let's check and deallocate this dentry page */
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
0);
set_page_dirty(page);
if (bit_pos == NR_DENTRY_IN_BLOCK &&
!f2fs_truncate_hole(dir, page->index, page->index + 1)) {
f2fs_clear_page_cache_dirty_tag(page);
clear_page_dirty_for_io(page);
f2fs_clear_page_private(page);
ClearPageUptodate(page);
clear_cold_data(page);
inode_dec_dirty_pages(dir);
f2fs_remove_dirty_inode(dir);
}
f2fs_put_page(page, 1);
dir->i_ctime = dir->i_mtime = current_time(dir);
f2fs_mark_inode_dirty_sync(dir, false);
if (inode)
f2fs_drop_nlink(dir, inode);
}
bool f2fs_empty_dir(struct inode *dir)
{
unsigned long bidx;
struct page *dentry_page;
unsigned int bit_pos;
struct f2fs_dentry_block *dentry_blk;
unsigned long nblock = dir_blocks(dir);
if (f2fs_has_inline_dentry(dir))
return f2fs_empty_inline_dir(dir);
for (bidx = 0; bidx < nblock; bidx++) {
dentry_page = f2fs_get_lock_data_page(dir, bidx, false);
if (IS_ERR(dentry_page)) {
if (PTR_ERR(dentry_page) == -ENOENT)
continue;
else
return false;
}
dentry_blk = page_address(dentry_page);
if (bidx == 0)
bit_pos = 2;
else
bit_pos = 0;
bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
NR_DENTRY_IN_BLOCK,
bit_pos);
f2fs_put_page(dentry_page, 1);
if (bit_pos < NR_DENTRY_IN_BLOCK)
return false;
}
return true;
}
int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
unsigned int start_pos, struct fscrypt_str *fstr)
{
unsigned char d_type = DT_UNKNOWN;
unsigned int bit_pos;
struct f2fs_dir_entry *de = NULL;
struct fscrypt_str de_name = FSTR_INIT(NULL, 0);
struct f2fs_sb_info *sbi = F2FS_I_SB(d->inode);
struct blk_plug plug;
bool readdir_ra = sbi->readdir_ra == 1;
int err = 0;
bit_pos = ((unsigned long)ctx->pos % d->max);
if (readdir_ra)
blk_start_plug(&plug);
while (bit_pos < d->max) {
bit_pos = find_next_bit_le(d->bitmap, d->max, bit_pos);
if (bit_pos >= d->max)
break;
de = &d->dentry[bit_pos];
if (de->name_len == 0) {
bit_pos++;
ctx->pos = start_pos + bit_pos;
printk_ratelimited(
"%sF2FS-fs (%s): invalid namelen(0), ino:%u, run fsck to fix.",
KERN_WARNING, sbi->sb->s_id,
le32_to_cpu(de->ino));
set_sbi_flag(sbi, SBI_NEED_FSCK);
continue;
}
d_type = f2fs_get_de_type(de);
de_name.name = d->filename[bit_pos];
de_name.len = le16_to_cpu(de->name_len);
/* check memory boundary before moving forward */
bit_pos += GET_DENTRY_SLOTS(le16_to_cpu(de->name_len));
if (unlikely(bit_pos > d->max ||
le16_to_cpu(de->name_len) > F2FS_NAME_LEN)) {
f2fs_warn(sbi, "%s: corrupted namelen=%d, run fsck to fix.",
__func__, le16_to_cpu(de->name_len));
set_sbi_flag(sbi, SBI_NEED_FSCK);
err = -EFSCORRUPTED;
goto out;
}
if (IS_ENCRYPTED(d->inode)) {
int save_len = fstr->len;
err = fscrypt_fname_disk_to_usr(d->inode,
(u32)le32_to_cpu(de->hash_code),
0, &de_name, fstr);
if (err)
goto out;
de_name = *fstr;
fstr->len = save_len;
}
if (!dir_emit(ctx, de_name.name, de_name.len,
le32_to_cpu(de->ino), d_type)) {
err = 1;
goto out;
}
if (readdir_ra)
f2fs_ra_node_page(sbi, le32_to_cpu(de->ino));
ctx->pos = start_pos + bit_pos;
}
out:
if (readdir_ra)
blk_finish_plug(&plug);
return err;
}
static int f2fs_readdir(struct file *file, struct dir_context *ctx)
{
struct inode *inode = file_inode(file);
unsigned long npages = dir_blocks(inode);
struct f2fs_dentry_block *dentry_blk = NULL;
struct page *dentry_page = NULL;
struct file_ra_state *ra = &file->f_ra;
loff_t start_pos = ctx->pos;
unsigned int n = ((unsigned long)ctx->pos / NR_DENTRY_IN_BLOCK);
struct f2fs_dentry_ptr d;
struct fscrypt_str fstr = FSTR_INIT(NULL, 0);
int err = 0;
if (IS_ENCRYPTED(inode)) {
err = fscrypt_get_encryption_info(inode);
if (err)
goto out;
err = fscrypt_fname_alloc_buffer(inode, F2FS_NAME_LEN, &fstr);
if (err < 0)
goto out;
}
if (f2fs_has_inline_dentry(inode)) {
err = f2fs_read_inline_dir(file, ctx, &fstr);
goto out_free;
}
for (; n < npages; n++, ctx->pos = n * NR_DENTRY_IN_BLOCK) {
/* allow readdir() to be interrupted */
if (fatal_signal_pending(current)) {
err = -ERESTARTSYS;
goto out_free;
}
cond_resched();
/* readahead for multi pages of dir */
if (npages - n > 1 && !ra_has_index(ra, n))
page_cache_sync_readahead(inode->i_mapping, ra, file, n,
min(npages - n, (pgoff_t)MAX_DIR_RA_PAGES));
dentry_page = f2fs_find_data_page(inode, n);
if (IS_ERR(dentry_page)) {
err = PTR_ERR(dentry_page);
if (err == -ENOENT) {
err = 0;
continue;
} else {
goto out_free;
}
}
dentry_blk = page_address(dentry_page);
make_dentry_ptr_block(inode, &d, dentry_blk);
err = f2fs_fill_dentries(ctx, &d,
n * NR_DENTRY_IN_BLOCK, &fstr);
if (err) {
f2fs_put_page(dentry_page, 0);
break;
}
f2fs_put_page(dentry_page, 0);
}
out_free:
fscrypt_fname_free_buffer(&fstr);
out:
trace_f2fs_readdir(inode, start_pos, ctx->pos, err);
return err < 0 ? err : 0;
}
static int f2fs_dir_open(struct inode *inode, struct file *filp)
{
if (IS_ENCRYPTED(inode))
return fscrypt_get_encryption_info(inode) ? -EACCES : 0;
return 0;
}
const struct file_operations f2fs_dir_operations = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.iterate_shared = f2fs_readdir,
.fsync = f2fs_sync_file,
.open = f2fs_dir_open,
.unlocked_ioctl = f2fs_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = f2fs_compat_ioctl,
#endif
};
#ifdef CONFIG_UNICODE
static int f2fs_d_compare(const struct dentry *dentry, unsigned int len,
const char *str, const struct qstr *name)
{
const struct dentry *parent = READ_ONCE(dentry->d_parent);
const struct inode *dir = READ_ONCE(parent->d_inode);
const struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
struct qstr entry = QSTR_INIT(str, len);
int res;
if (!dir || !IS_CASEFOLDED(dir))
goto fallback;
res = utf8_strncasecmp(sbi->s_encoding, name, &entry);
if (res >= 0)
return res;
if (f2fs_has_strict_mode(sbi))
return -EINVAL;
fallback:
if (len != name->len)
return 1;
return !!memcmp(str, name->name, len);
}
static int f2fs_d_hash(const struct dentry *dentry, struct qstr *str)
{
struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
const struct unicode_map *um = sbi->s_encoding;
const struct inode *inode = READ_ONCE(dentry->d_inode);
unsigned char *norm;
int len, ret = 0;
if (!inode || !IS_CASEFOLDED(inode))
return 0;
norm = f2fs_kmalloc(sbi, PATH_MAX, GFP_ATOMIC);
if (!norm)
return -ENOMEM;
len = utf8_casefold(um, str, norm, PATH_MAX);
if (len < 0) {
if (f2fs_has_strict_mode(sbi))
ret = -EINVAL;
goto out;
}
str->hash = full_name_hash(dentry, norm, len);
out:
kvfree(norm);
return ret;
}
const struct dentry_operations f2fs_dentry_ops = {
.d_hash = f2fs_d_hash,
.d_compare = f2fs_d_compare,
};
#endif