mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 12:00:28 +07:00
a3633fe7aa
This patch adds dmaengine supporting using sh_dma driver. The module receives data by DMAC, it also needs TX DMAC to generate SPI's clocks. Signed-off-by: Yoshihiro Shimoda <yoshihiro.shimoda.uh@renesas.com> Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
830 lines
19 KiB
C
830 lines
19 KiB
C
/*
|
|
* SH RSPI driver
|
|
*
|
|
* Copyright (C) 2012 Renesas Solutions Corp.
|
|
*
|
|
* Based on spi-sh.c:
|
|
* Copyright (C) 2011 Renesas Solutions Corp.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/list.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/io.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/sh_dma.h>
|
|
#include <linux/spi/spi.h>
|
|
#include <linux/spi/rspi.h>
|
|
|
|
#define RSPI_SPCR 0x00
|
|
#define RSPI_SSLP 0x01
|
|
#define RSPI_SPPCR 0x02
|
|
#define RSPI_SPSR 0x03
|
|
#define RSPI_SPDR 0x04
|
|
#define RSPI_SPSCR 0x08
|
|
#define RSPI_SPSSR 0x09
|
|
#define RSPI_SPBR 0x0a
|
|
#define RSPI_SPDCR 0x0b
|
|
#define RSPI_SPCKD 0x0c
|
|
#define RSPI_SSLND 0x0d
|
|
#define RSPI_SPND 0x0e
|
|
#define RSPI_SPCR2 0x0f
|
|
#define RSPI_SPCMD0 0x10
|
|
#define RSPI_SPCMD1 0x12
|
|
#define RSPI_SPCMD2 0x14
|
|
#define RSPI_SPCMD3 0x16
|
|
#define RSPI_SPCMD4 0x18
|
|
#define RSPI_SPCMD5 0x1a
|
|
#define RSPI_SPCMD6 0x1c
|
|
#define RSPI_SPCMD7 0x1e
|
|
|
|
/* SPCR */
|
|
#define SPCR_SPRIE 0x80
|
|
#define SPCR_SPE 0x40
|
|
#define SPCR_SPTIE 0x20
|
|
#define SPCR_SPEIE 0x10
|
|
#define SPCR_MSTR 0x08
|
|
#define SPCR_MODFEN 0x04
|
|
#define SPCR_TXMD 0x02
|
|
#define SPCR_SPMS 0x01
|
|
|
|
/* SSLP */
|
|
#define SSLP_SSL1P 0x02
|
|
#define SSLP_SSL0P 0x01
|
|
|
|
/* SPPCR */
|
|
#define SPPCR_MOIFE 0x20
|
|
#define SPPCR_MOIFV 0x10
|
|
#define SPPCR_SPOM 0x04
|
|
#define SPPCR_SPLP2 0x02
|
|
#define SPPCR_SPLP 0x01
|
|
|
|
/* SPSR */
|
|
#define SPSR_SPRF 0x80
|
|
#define SPSR_SPTEF 0x20
|
|
#define SPSR_PERF 0x08
|
|
#define SPSR_MODF 0x04
|
|
#define SPSR_IDLNF 0x02
|
|
#define SPSR_OVRF 0x01
|
|
|
|
/* SPSCR */
|
|
#define SPSCR_SPSLN_MASK 0x07
|
|
|
|
/* SPSSR */
|
|
#define SPSSR_SPECM_MASK 0x70
|
|
#define SPSSR_SPCP_MASK 0x07
|
|
|
|
/* SPDCR */
|
|
#define SPDCR_SPLW 0x20
|
|
#define SPDCR_SPRDTD 0x10
|
|
#define SPDCR_SLSEL1 0x08
|
|
#define SPDCR_SLSEL0 0x04
|
|
#define SPDCR_SLSEL_MASK 0x0c
|
|
#define SPDCR_SPFC1 0x02
|
|
#define SPDCR_SPFC0 0x01
|
|
|
|
/* SPCKD */
|
|
#define SPCKD_SCKDL_MASK 0x07
|
|
|
|
/* SSLND */
|
|
#define SSLND_SLNDL_MASK 0x07
|
|
|
|
/* SPND */
|
|
#define SPND_SPNDL_MASK 0x07
|
|
|
|
/* SPCR2 */
|
|
#define SPCR2_PTE 0x08
|
|
#define SPCR2_SPIE 0x04
|
|
#define SPCR2_SPOE 0x02
|
|
#define SPCR2_SPPE 0x01
|
|
|
|
/* SPCMDn */
|
|
#define SPCMD_SCKDEN 0x8000
|
|
#define SPCMD_SLNDEN 0x4000
|
|
#define SPCMD_SPNDEN 0x2000
|
|
#define SPCMD_LSBF 0x1000
|
|
#define SPCMD_SPB_MASK 0x0f00
|
|
#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
|
|
#define SPCMD_SPB_20BIT 0x0000
|
|
#define SPCMD_SPB_24BIT 0x0100
|
|
#define SPCMD_SPB_32BIT 0x0200
|
|
#define SPCMD_SSLKP 0x0080
|
|
#define SPCMD_SSLA_MASK 0x0030
|
|
#define SPCMD_BRDV_MASK 0x000c
|
|
#define SPCMD_CPOL 0x0002
|
|
#define SPCMD_CPHA 0x0001
|
|
|
|
struct rspi_data {
|
|
void __iomem *addr;
|
|
u32 max_speed_hz;
|
|
struct spi_master *master;
|
|
struct list_head queue;
|
|
struct work_struct ws;
|
|
wait_queue_head_t wait;
|
|
spinlock_t lock;
|
|
struct clk *clk;
|
|
unsigned char spsr;
|
|
|
|
/* for dmaengine */
|
|
struct sh_dmae_slave dma_tx;
|
|
struct sh_dmae_slave dma_rx;
|
|
struct dma_chan *chan_tx;
|
|
struct dma_chan *chan_rx;
|
|
int irq;
|
|
|
|
unsigned dma_width_16bit:1;
|
|
unsigned dma_callbacked:1;
|
|
};
|
|
|
|
static void rspi_write8(struct rspi_data *rspi, u8 data, u16 offset)
|
|
{
|
|
iowrite8(data, rspi->addr + offset);
|
|
}
|
|
|
|
static void rspi_write16(struct rspi_data *rspi, u16 data, u16 offset)
|
|
{
|
|
iowrite16(data, rspi->addr + offset);
|
|
}
|
|
|
|
static u8 rspi_read8(struct rspi_data *rspi, u16 offset)
|
|
{
|
|
return ioread8(rspi->addr + offset);
|
|
}
|
|
|
|
static u16 rspi_read16(struct rspi_data *rspi, u16 offset)
|
|
{
|
|
return ioread16(rspi->addr + offset);
|
|
}
|
|
|
|
static unsigned char rspi_calc_spbr(struct rspi_data *rspi)
|
|
{
|
|
int tmp;
|
|
unsigned char spbr;
|
|
|
|
tmp = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
|
|
spbr = clamp(tmp, 0, 255);
|
|
|
|
return spbr;
|
|
}
|
|
|
|
static void rspi_enable_irq(struct rspi_data *rspi, u8 enable)
|
|
{
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
|
|
}
|
|
|
|
static void rspi_disable_irq(struct rspi_data *rspi, u8 disable)
|
|
{
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
|
|
}
|
|
|
|
static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
|
|
u8 enable_bit)
|
|
{
|
|
int ret;
|
|
|
|
rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
rspi_enable_irq(rspi, enable_bit);
|
|
ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
|
|
if (ret == 0 && !(rspi->spsr & wait_mask))
|
|
return -ETIMEDOUT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rspi_assert_ssl(struct rspi_data *rspi)
|
|
{
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
|
|
}
|
|
|
|
static void rspi_negate_ssl(struct rspi_data *rspi)
|
|
{
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
|
|
}
|
|
|
|
static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
|
|
{
|
|
/* Sets output mode(CMOS) and MOSI signal(from previous transfer) */
|
|
rspi_write8(rspi, 0x00, RSPI_SPPCR);
|
|
|
|
/* Sets transfer bit rate */
|
|
rspi_write8(rspi, rspi_calc_spbr(rspi), RSPI_SPBR);
|
|
|
|
/* Sets number of frames to be used: 1 frame */
|
|
rspi_write8(rspi, 0x00, RSPI_SPDCR);
|
|
|
|
/* Sets RSPCK, SSL, next-access delay value */
|
|
rspi_write8(rspi, 0x00, RSPI_SPCKD);
|
|
rspi_write8(rspi, 0x00, RSPI_SSLND);
|
|
rspi_write8(rspi, 0x00, RSPI_SPND);
|
|
|
|
/* Sets parity, interrupt mask */
|
|
rspi_write8(rspi, 0x00, RSPI_SPCR2);
|
|
|
|
/* Sets SPCMD */
|
|
rspi_write16(rspi, SPCMD_SPB_8_TO_16(access_size) | SPCMD_SSLKP,
|
|
RSPI_SPCMD0);
|
|
|
|
/* Sets RSPI mode */
|
|
rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rspi_send_pio(struct rspi_data *rspi, struct spi_message *mesg,
|
|
struct spi_transfer *t)
|
|
{
|
|
int remain = t->len;
|
|
u8 *data;
|
|
|
|
data = (u8 *)t->tx_buf;
|
|
while (remain > 0) {
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD,
|
|
RSPI_SPCR);
|
|
|
|
if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
|
|
dev_err(&rspi->master->dev,
|
|
"%s: tx empty timeout\n", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
rspi_write16(rspi, *data, RSPI_SPDR);
|
|
data++;
|
|
remain--;
|
|
}
|
|
|
|
/* Waiting for the last transmition */
|
|
rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rspi_dma_complete(void *arg)
|
|
{
|
|
struct rspi_data *rspi = arg;
|
|
|
|
rspi->dma_callbacked = 1;
|
|
wake_up_interruptible(&rspi->wait);
|
|
}
|
|
|
|
static int rspi_dma_map_sg(struct scatterlist *sg, void *buf, unsigned len,
|
|
struct dma_chan *chan,
|
|
enum dma_transfer_direction dir)
|
|
{
|
|
sg_init_table(sg, 1);
|
|
sg_set_buf(sg, buf, len);
|
|
sg_dma_len(sg) = len;
|
|
return dma_map_sg(chan->device->dev, sg, 1, dir);
|
|
}
|
|
|
|
static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
|
|
enum dma_transfer_direction dir)
|
|
{
|
|
dma_unmap_sg(chan->device->dev, sg, 1, dir);
|
|
}
|
|
|
|
static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
|
|
{
|
|
u16 *dst = buf;
|
|
const u8 *src = data;
|
|
|
|
while (len) {
|
|
*dst++ = (u16)(*src++);
|
|
len--;
|
|
}
|
|
}
|
|
|
|
static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
|
|
{
|
|
u8 *dst = buf;
|
|
const u16 *src = data;
|
|
|
|
while (len) {
|
|
*dst++ = (u8)*src++;
|
|
len--;
|
|
}
|
|
}
|
|
|
|
static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
|
|
{
|
|
struct scatterlist sg;
|
|
void *buf = NULL;
|
|
struct dma_async_tx_descriptor *desc;
|
|
unsigned len;
|
|
int ret = 0;
|
|
|
|
if (rspi->dma_width_16bit) {
|
|
/*
|
|
* If DMAC bus width is 16-bit, the driver allocates a dummy
|
|
* buffer. And, the driver converts original data into the
|
|
* DMAC data as the following format:
|
|
* original data: 1st byte, 2nd byte ...
|
|
* DMAC data: 1st byte, dummy, 2nd byte, dummy ...
|
|
*/
|
|
len = t->len * 2;
|
|
buf = kmalloc(len, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
rspi_memory_to_8bit(buf, t->tx_buf, t->len);
|
|
} else {
|
|
len = t->len;
|
|
buf = (void *)t->tx_buf;
|
|
}
|
|
|
|
if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
|
|
ret = -EFAULT;
|
|
goto end_nomap;
|
|
}
|
|
desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc) {
|
|
ret = -EIO;
|
|
goto end;
|
|
}
|
|
|
|
/*
|
|
* DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
|
|
* called. So, this driver disables the IRQ while DMA transfer.
|
|
*/
|
|
disable_irq(rspi->irq);
|
|
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
|
|
rspi_enable_irq(rspi, SPCR_SPTIE);
|
|
rspi->dma_callbacked = 0;
|
|
|
|
desc->callback = rspi_dma_complete;
|
|
desc->callback_param = rspi;
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(rspi->chan_tx);
|
|
|
|
ret = wait_event_interruptible_timeout(rspi->wait,
|
|
rspi->dma_callbacked, HZ);
|
|
if (ret > 0 && rspi->dma_callbacked)
|
|
ret = 0;
|
|
else if (!ret)
|
|
ret = -ETIMEDOUT;
|
|
rspi_disable_irq(rspi, SPCR_SPTIE);
|
|
|
|
enable_irq(rspi->irq);
|
|
|
|
end:
|
|
rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
|
|
end_nomap:
|
|
if (rspi->dma_width_16bit)
|
|
kfree(buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void rspi_receive_init(struct rspi_data *rspi)
|
|
{
|
|
unsigned char spsr;
|
|
|
|
spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
if (spsr & SPSR_SPRF)
|
|
rspi_read16(rspi, RSPI_SPDR); /* dummy read */
|
|
if (spsr & SPSR_OVRF)
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
|
|
RSPI_SPCR);
|
|
}
|
|
|
|
static int rspi_receive_pio(struct rspi_data *rspi, struct spi_message *mesg,
|
|
struct spi_transfer *t)
|
|
{
|
|
int remain = t->len;
|
|
u8 *data;
|
|
|
|
rspi_receive_init(rspi);
|
|
|
|
data = (u8 *)t->rx_buf;
|
|
while (remain > 0) {
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD,
|
|
RSPI_SPCR);
|
|
|
|
if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
|
|
dev_err(&rspi->master->dev,
|
|
"%s: tx empty timeout\n", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
/* dummy write for generate clock */
|
|
rspi_write16(rspi, 0x00, RSPI_SPDR);
|
|
|
|
if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
|
|
dev_err(&rspi->master->dev,
|
|
"%s: receive timeout\n", __func__);
|
|
return -ETIMEDOUT;
|
|
}
|
|
/* SPDR allows 16 or 32-bit access only */
|
|
*data = (u8)rspi_read16(rspi, RSPI_SPDR);
|
|
|
|
data++;
|
|
remain--;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
|
|
{
|
|
struct scatterlist sg, sg_dummy;
|
|
void *dummy = NULL, *rx_buf = NULL;
|
|
struct dma_async_tx_descriptor *desc, *desc_dummy;
|
|
unsigned len;
|
|
int ret = 0;
|
|
|
|
if (rspi->dma_width_16bit) {
|
|
/*
|
|
* If DMAC bus width is 16-bit, the driver allocates a dummy
|
|
* buffer. And, finally the driver converts the DMAC data into
|
|
* actual data as the following format:
|
|
* DMAC data: 1st byte, dummy, 2nd byte, dummy ...
|
|
* actual data: 1st byte, 2nd byte ...
|
|
*/
|
|
len = t->len * 2;
|
|
rx_buf = kmalloc(len, GFP_KERNEL);
|
|
if (!rx_buf)
|
|
return -ENOMEM;
|
|
} else {
|
|
len = t->len;
|
|
rx_buf = t->rx_buf;
|
|
}
|
|
|
|
/* prepare dummy transfer to generate SPI clocks */
|
|
dummy = kzalloc(len, GFP_KERNEL);
|
|
if (!dummy) {
|
|
ret = -ENOMEM;
|
|
goto end_nomap;
|
|
}
|
|
if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
|
|
DMA_TO_DEVICE)) {
|
|
ret = -EFAULT;
|
|
goto end_nomap;
|
|
}
|
|
desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
|
|
DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc_dummy) {
|
|
ret = -EIO;
|
|
goto end_dummy_mapped;
|
|
}
|
|
|
|
/* prepare receive transfer */
|
|
if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
|
|
DMA_FROM_DEVICE)) {
|
|
ret = -EFAULT;
|
|
goto end_dummy_mapped;
|
|
|
|
}
|
|
desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc) {
|
|
ret = -EIO;
|
|
goto end;
|
|
}
|
|
|
|
rspi_receive_init(rspi);
|
|
|
|
/*
|
|
* DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
|
|
* called. So, this driver disables the IRQ while DMA transfer.
|
|
*/
|
|
disable_irq(rspi->irq);
|
|
|
|
rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
|
|
rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
|
|
rspi->dma_callbacked = 0;
|
|
|
|
desc->callback = rspi_dma_complete;
|
|
desc->callback_param = rspi;
|
|
dmaengine_submit(desc);
|
|
dma_async_issue_pending(rspi->chan_rx);
|
|
|
|
desc_dummy->callback = NULL; /* No callback */
|
|
dmaengine_submit(desc_dummy);
|
|
dma_async_issue_pending(rspi->chan_tx);
|
|
|
|
ret = wait_event_interruptible_timeout(rspi->wait,
|
|
rspi->dma_callbacked, HZ);
|
|
if (ret > 0 && rspi->dma_callbacked)
|
|
ret = 0;
|
|
else if (!ret)
|
|
ret = -ETIMEDOUT;
|
|
rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
|
|
|
|
enable_irq(rspi->irq);
|
|
|
|
end:
|
|
rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
|
|
end_dummy_mapped:
|
|
rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
|
|
end_nomap:
|
|
if (rspi->dma_width_16bit) {
|
|
if (!ret)
|
|
rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
|
|
kfree(rx_buf);
|
|
}
|
|
kfree(dummy);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rspi_is_dma(struct rspi_data *rspi, struct spi_transfer *t)
|
|
{
|
|
if (t->tx_buf && rspi->chan_tx)
|
|
return 1;
|
|
/* If the module receives data by DMAC, it also needs TX DMAC */
|
|
if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rspi_work(struct work_struct *work)
|
|
{
|
|
struct rspi_data *rspi = container_of(work, struct rspi_data, ws);
|
|
struct spi_message *mesg;
|
|
struct spi_transfer *t;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(&rspi->lock, flags);
|
|
while (!list_empty(&rspi->queue)) {
|
|
mesg = list_entry(rspi->queue.next, struct spi_message, queue);
|
|
list_del_init(&mesg->queue);
|
|
spin_unlock_irqrestore(&rspi->lock, flags);
|
|
|
|
rspi_assert_ssl(rspi);
|
|
|
|
list_for_each_entry(t, &mesg->transfers, transfer_list) {
|
|
if (t->tx_buf) {
|
|
if (rspi_is_dma(rspi, t))
|
|
ret = rspi_send_dma(rspi, t);
|
|
else
|
|
ret = rspi_send_pio(rspi, mesg, t);
|
|
if (ret < 0)
|
|
goto error;
|
|
}
|
|
if (t->rx_buf) {
|
|
if (rspi_is_dma(rspi, t))
|
|
ret = rspi_receive_dma(rspi, t);
|
|
else
|
|
ret = rspi_receive_pio(rspi, mesg, t);
|
|
if (ret < 0)
|
|
goto error;
|
|
}
|
|
mesg->actual_length += t->len;
|
|
}
|
|
rspi_negate_ssl(rspi);
|
|
|
|
mesg->status = 0;
|
|
mesg->complete(mesg->context);
|
|
|
|
spin_lock_irqsave(&rspi->lock, flags);
|
|
}
|
|
|
|
return;
|
|
|
|
error:
|
|
mesg->status = ret;
|
|
mesg->complete(mesg->context);
|
|
}
|
|
|
|
static int rspi_setup(struct spi_device *spi)
|
|
{
|
|
struct rspi_data *rspi = spi_master_get_devdata(spi->master);
|
|
|
|
if (!spi->bits_per_word)
|
|
spi->bits_per_word = 8;
|
|
rspi->max_speed_hz = spi->max_speed_hz;
|
|
|
|
rspi_set_config_register(rspi, 8);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rspi_transfer(struct spi_device *spi, struct spi_message *mesg)
|
|
{
|
|
struct rspi_data *rspi = spi_master_get_devdata(spi->master);
|
|
unsigned long flags;
|
|
|
|
mesg->actual_length = 0;
|
|
mesg->status = -EINPROGRESS;
|
|
|
|
spin_lock_irqsave(&rspi->lock, flags);
|
|
list_add_tail(&mesg->queue, &rspi->queue);
|
|
schedule_work(&rspi->ws);
|
|
spin_unlock_irqrestore(&rspi->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rspi_cleanup(struct spi_device *spi)
|
|
{
|
|
}
|
|
|
|
static irqreturn_t rspi_irq(int irq, void *_sr)
|
|
{
|
|
struct rspi_data *rspi = (struct rspi_data *)_sr;
|
|
unsigned long spsr;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
unsigned char disable_irq = 0;
|
|
|
|
rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
|
|
if (spsr & SPSR_SPRF)
|
|
disable_irq |= SPCR_SPRIE;
|
|
if (spsr & SPSR_SPTEF)
|
|
disable_irq |= SPCR_SPTIE;
|
|
|
|
if (disable_irq) {
|
|
ret = IRQ_HANDLED;
|
|
rspi_disable_irq(rspi, disable_irq);
|
|
wake_up(&rspi->wait);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool rspi_filter(struct dma_chan *chan, void *filter_param)
|
|
{
|
|
chan->private = filter_param;
|
|
return true;
|
|
}
|
|
|
|
static void __devinit rspi_request_dma(struct rspi_data *rspi,
|
|
struct platform_device *pdev)
|
|
{
|
|
struct rspi_plat_data *rspi_pd = pdev->dev.platform_data;
|
|
dma_cap_mask_t mask;
|
|
|
|
if (!rspi_pd)
|
|
return;
|
|
|
|
rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
|
|
|
|
/* If the module receives data by DMAC, it also needs TX DMAC */
|
|
if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
rspi->dma_rx.slave_id = rspi_pd->dma_rx_id;
|
|
rspi->chan_rx = dma_request_channel(mask, rspi_filter,
|
|
&rspi->dma_rx);
|
|
if (rspi->chan_rx)
|
|
dev_info(&pdev->dev, "Use DMA when rx.\n");
|
|
}
|
|
if (rspi_pd->dma_tx_id) {
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
rspi->dma_tx.slave_id = rspi_pd->dma_tx_id;
|
|
rspi->chan_tx = dma_request_channel(mask, rspi_filter,
|
|
&rspi->dma_tx);
|
|
if (rspi->chan_tx)
|
|
dev_info(&pdev->dev, "Use DMA when tx\n");
|
|
}
|
|
}
|
|
|
|
static void __devexit rspi_release_dma(struct rspi_data *rspi)
|
|
{
|
|
if (rspi->chan_tx)
|
|
dma_release_channel(rspi->chan_tx);
|
|
if (rspi->chan_rx)
|
|
dma_release_channel(rspi->chan_rx);
|
|
}
|
|
|
|
static int __devexit rspi_remove(struct platform_device *pdev)
|
|
{
|
|
struct rspi_data *rspi = dev_get_drvdata(&pdev->dev);
|
|
|
|
spi_unregister_master(rspi->master);
|
|
rspi_release_dma(rspi);
|
|
free_irq(platform_get_irq(pdev, 0), rspi);
|
|
clk_put(rspi->clk);
|
|
iounmap(rspi->addr);
|
|
spi_master_put(rspi->master);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __devinit rspi_probe(struct platform_device *pdev)
|
|
{
|
|
struct resource *res;
|
|
struct spi_master *master;
|
|
struct rspi_data *rspi;
|
|
int ret, irq;
|
|
char clk_name[16];
|
|
|
|
/* get base addr */
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (unlikely(res == NULL)) {
|
|
dev_err(&pdev->dev, "invalid resource\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
irq = platform_get_irq(pdev, 0);
|
|
if (irq < 0) {
|
|
dev_err(&pdev->dev, "platform_get_irq error\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
|
|
if (master == NULL) {
|
|
dev_err(&pdev->dev, "spi_alloc_master error.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rspi = spi_master_get_devdata(master);
|
|
dev_set_drvdata(&pdev->dev, rspi);
|
|
|
|
rspi->master = master;
|
|
rspi->addr = ioremap(res->start, resource_size(res));
|
|
if (rspi->addr == NULL) {
|
|
dev_err(&pdev->dev, "ioremap error.\n");
|
|
ret = -ENOMEM;
|
|
goto error1;
|
|
}
|
|
|
|
snprintf(clk_name, sizeof(clk_name), "rspi%d", pdev->id);
|
|
rspi->clk = clk_get(&pdev->dev, clk_name);
|
|
if (IS_ERR(rspi->clk)) {
|
|
dev_err(&pdev->dev, "cannot get clock\n");
|
|
ret = PTR_ERR(rspi->clk);
|
|
goto error2;
|
|
}
|
|
clk_enable(rspi->clk);
|
|
|
|
INIT_LIST_HEAD(&rspi->queue);
|
|
spin_lock_init(&rspi->lock);
|
|
INIT_WORK(&rspi->ws, rspi_work);
|
|
init_waitqueue_head(&rspi->wait);
|
|
|
|
master->num_chipselect = 2;
|
|
master->bus_num = pdev->id;
|
|
master->setup = rspi_setup;
|
|
master->transfer = rspi_transfer;
|
|
master->cleanup = rspi_cleanup;
|
|
|
|
ret = request_irq(irq, rspi_irq, 0, dev_name(&pdev->dev), rspi);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "request_irq error\n");
|
|
goto error3;
|
|
}
|
|
|
|
rspi->irq = irq;
|
|
rspi_request_dma(rspi, pdev);
|
|
|
|
ret = spi_register_master(master);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "spi_register_master error.\n");
|
|
goto error4;
|
|
}
|
|
|
|
dev_info(&pdev->dev, "probed\n");
|
|
|
|
return 0;
|
|
|
|
error4:
|
|
rspi_release_dma(rspi);
|
|
free_irq(irq, rspi);
|
|
error3:
|
|
clk_put(rspi->clk);
|
|
error2:
|
|
iounmap(rspi->addr);
|
|
error1:
|
|
spi_master_put(master);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct platform_driver rspi_driver = {
|
|
.probe = rspi_probe,
|
|
.remove = __devexit_p(rspi_remove),
|
|
.driver = {
|
|
.name = "rspi",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
};
|
|
module_platform_driver(rspi_driver);
|
|
|
|
MODULE_DESCRIPTION("Renesas RSPI bus driver");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_AUTHOR("Yoshihiro Shimoda");
|
|
MODULE_ALIAS("platform:rspi");
|