mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 09:36:45 +07:00
c461731836
Multiple Loongson-3A chips can be interconnected with HT0-bus. This is a CC-NUMA system that every chip (node) has its own local memory and cache coherency is maintained by hardware. The 64-bit physical memory address format is as follows: 0x-0000-YZZZ-ZZZZ-ZZZZ The high 16 bits should be 0, which means the real physical address supported by Loongson-3 is 48-bit. The "Y" bits is the base address of each node, which can be also considered as the node-id. The "Z" bits is the address offset within a node, which means every node has a 44 bits address space. Macros XPHYSADDR and MAX_PHYSMEM_BITS are modified unconditionally, because many other MIPS CPUs have also extended their address spaces. Signed-off-by: Huacai Chen <chenhc@lemote.com> Cc: John Crispin <john@phrozen.org> Cc: Steven J. Hill <Steven.Hill@imgtec.com> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: linux-mips@linux-mips.org Cc: Fuxin Zhang <zhangfx@lemote.com> Cc: Zhangjin Wu <wuzhangjin@gmail.com> Patchwork: https://patchwork.linux-mips.org/patch/7187/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
796 lines
18 KiB
C
796 lines
18 KiB
C
/*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
* Copyright (C) 1995 Waldorf Electronics
|
|
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
|
|
* Copyright (C) 1996 Stoned Elipot
|
|
* Copyright (C) 1999 Silicon Graphics, Inc.
|
|
* Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/export.h>
|
|
#include <linux/screen_info.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/console.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/sizes.h>
|
|
|
|
#include <asm/addrspace.h>
|
|
#include <asm/bootinfo.h>
|
|
#include <asm/bugs.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/smp-ops.h>
|
|
#include <asm/prom.h>
|
|
|
|
struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
|
|
|
|
EXPORT_SYMBOL(cpu_data);
|
|
|
|
#ifdef CONFIG_VT
|
|
struct screen_info screen_info;
|
|
#endif
|
|
|
|
/*
|
|
* Despite it's name this variable is even if we don't have PCI
|
|
*/
|
|
unsigned int PCI_DMA_BUS_IS_PHYS;
|
|
|
|
EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
|
|
|
|
/*
|
|
* Setup information
|
|
*
|
|
* These are initialized so they are in the .data section
|
|
*/
|
|
unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
|
|
|
|
EXPORT_SYMBOL(mips_machtype);
|
|
|
|
struct boot_mem_map boot_mem_map;
|
|
|
|
static char __initdata command_line[COMMAND_LINE_SIZE];
|
|
char __initdata arcs_cmdline[COMMAND_LINE_SIZE];
|
|
|
|
#ifdef CONFIG_CMDLINE_BOOL
|
|
static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
|
|
#endif
|
|
|
|
/*
|
|
* mips_io_port_base is the begin of the address space to which x86 style
|
|
* I/O ports are mapped.
|
|
*/
|
|
const unsigned long mips_io_port_base = -1;
|
|
EXPORT_SYMBOL(mips_io_port_base);
|
|
|
|
static struct resource code_resource = { .name = "Kernel code", };
|
|
static struct resource data_resource = { .name = "Kernel data", };
|
|
|
|
static void *detect_magic __initdata = detect_memory_region;
|
|
|
|
void __init add_memory_region(phys_t start, phys_t size, long type)
|
|
{
|
|
int x = boot_mem_map.nr_map;
|
|
int i;
|
|
|
|
/* Sanity check */
|
|
if (start + size < start) {
|
|
pr_warning("Trying to add an invalid memory region, skipped\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Try to merge with existing entry, if any.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
struct boot_mem_map_entry *entry = boot_mem_map.map + i;
|
|
unsigned long top;
|
|
|
|
if (entry->type != type)
|
|
continue;
|
|
|
|
if (start + size < entry->addr)
|
|
continue; /* no overlap */
|
|
|
|
if (entry->addr + entry->size < start)
|
|
continue; /* no overlap */
|
|
|
|
top = max(entry->addr + entry->size, start + size);
|
|
entry->addr = min(entry->addr, start);
|
|
entry->size = top - entry->addr;
|
|
|
|
return;
|
|
}
|
|
|
|
if (boot_mem_map.nr_map == BOOT_MEM_MAP_MAX) {
|
|
pr_err("Ooops! Too many entries in the memory map!\n");
|
|
return;
|
|
}
|
|
|
|
boot_mem_map.map[x].addr = start;
|
|
boot_mem_map.map[x].size = size;
|
|
boot_mem_map.map[x].type = type;
|
|
boot_mem_map.nr_map++;
|
|
}
|
|
|
|
void __init detect_memory_region(phys_t start, phys_t sz_min, phys_t sz_max)
|
|
{
|
|
void *dm = &detect_magic;
|
|
phys_t size;
|
|
|
|
for (size = sz_min; size < sz_max; size <<= 1) {
|
|
if (!memcmp(dm, dm + size, sizeof(detect_magic)))
|
|
break;
|
|
}
|
|
|
|
pr_debug("Memory: %lluMB of RAM detected at 0x%llx (min: %lluMB, max: %lluMB)\n",
|
|
((unsigned long long) size) / SZ_1M,
|
|
(unsigned long long) start,
|
|
((unsigned long long) sz_min) / SZ_1M,
|
|
((unsigned long long) sz_max) / SZ_1M);
|
|
|
|
add_memory_region(start, size, BOOT_MEM_RAM);
|
|
}
|
|
|
|
static void __init print_memory_map(void)
|
|
{
|
|
int i;
|
|
const int field = 2 * sizeof(unsigned long);
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
printk(KERN_INFO " memory: %0*Lx @ %0*Lx ",
|
|
field, (unsigned long long) boot_mem_map.map[i].size,
|
|
field, (unsigned long long) boot_mem_map.map[i].addr);
|
|
|
|
switch (boot_mem_map.map[i].type) {
|
|
case BOOT_MEM_RAM:
|
|
printk(KERN_CONT "(usable)\n");
|
|
break;
|
|
case BOOT_MEM_INIT_RAM:
|
|
printk(KERN_CONT "(usable after init)\n");
|
|
break;
|
|
case BOOT_MEM_ROM_DATA:
|
|
printk(KERN_CONT "(ROM data)\n");
|
|
break;
|
|
case BOOT_MEM_RESERVED:
|
|
printk(KERN_CONT "(reserved)\n");
|
|
break;
|
|
default:
|
|
printk(KERN_CONT "type %lu\n", boot_mem_map.map[i].type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manage initrd
|
|
*/
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
|
|
static int __init rd_start_early(char *p)
|
|
{
|
|
unsigned long start = memparse(p, &p);
|
|
|
|
#ifdef CONFIG_64BIT
|
|
/* Guess if the sign extension was forgotten by bootloader */
|
|
if (start < XKPHYS)
|
|
start = (int)start;
|
|
#endif
|
|
initrd_start = start;
|
|
initrd_end += start;
|
|
return 0;
|
|
}
|
|
early_param("rd_start", rd_start_early);
|
|
|
|
static int __init rd_size_early(char *p)
|
|
{
|
|
initrd_end += memparse(p, &p);
|
|
return 0;
|
|
}
|
|
early_param("rd_size", rd_size_early);
|
|
|
|
/* it returns the next free pfn after initrd */
|
|
static unsigned long __init init_initrd(void)
|
|
{
|
|
unsigned long end;
|
|
|
|
/*
|
|
* Board specific code or command line parser should have
|
|
* already set up initrd_start and initrd_end. In these cases
|
|
* perfom sanity checks and use them if all looks good.
|
|
*/
|
|
if (!initrd_start || initrd_end <= initrd_start)
|
|
goto disable;
|
|
|
|
if (initrd_start & ~PAGE_MASK) {
|
|
pr_err("initrd start must be page aligned\n");
|
|
goto disable;
|
|
}
|
|
if (initrd_start < PAGE_OFFSET) {
|
|
pr_err("initrd start < PAGE_OFFSET\n");
|
|
goto disable;
|
|
}
|
|
|
|
/*
|
|
* Sanitize initrd addresses. For example firmware
|
|
* can't guess if they need to pass them through
|
|
* 64-bits values if the kernel has been built in pure
|
|
* 32-bit. We need also to switch from KSEG0 to XKPHYS
|
|
* addresses now, so the code can now safely use __pa().
|
|
*/
|
|
end = __pa(initrd_end);
|
|
initrd_end = (unsigned long)__va(end);
|
|
initrd_start = (unsigned long)__va(__pa(initrd_start));
|
|
|
|
ROOT_DEV = Root_RAM0;
|
|
return PFN_UP(end);
|
|
disable:
|
|
initrd_start = 0;
|
|
initrd_end = 0;
|
|
return 0;
|
|
}
|
|
|
|
static void __init finalize_initrd(void)
|
|
{
|
|
unsigned long size = initrd_end - initrd_start;
|
|
|
|
if (size == 0) {
|
|
printk(KERN_INFO "Initrd not found or empty");
|
|
goto disable;
|
|
}
|
|
if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
|
|
printk(KERN_ERR "Initrd extends beyond end of memory");
|
|
goto disable;
|
|
}
|
|
|
|
reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
|
|
initrd_below_start_ok = 1;
|
|
|
|
pr_info("Initial ramdisk at: 0x%lx (%lu bytes)\n",
|
|
initrd_start, size);
|
|
return;
|
|
disable:
|
|
printk(KERN_CONT " - disabling initrd\n");
|
|
initrd_start = 0;
|
|
initrd_end = 0;
|
|
}
|
|
|
|
#else /* !CONFIG_BLK_DEV_INITRD */
|
|
|
|
static unsigned long __init init_initrd(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#define finalize_initrd() do {} while (0)
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the bootmem allocator. It also setup initrd related data
|
|
* if needed.
|
|
*/
|
|
#if defined(CONFIG_SGI_IP27) || (defined(CONFIG_CPU_LOONGSON3) && defined(CONFIG_NUMA))
|
|
|
|
static void __init bootmem_init(void)
|
|
{
|
|
init_initrd();
|
|
finalize_initrd();
|
|
}
|
|
|
|
#else /* !CONFIG_SGI_IP27 */
|
|
|
|
static void __init bootmem_init(void)
|
|
{
|
|
unsigned long reserved_end;
|
|
unsigned long mapstart = ~0UL;
|
|
unsigned long bootmap_size;
|
|
int i;
|
|
|
|
/*
|
|
* Sanity check any INITRD first. We don't take it into account
|
|
* for bootmem setup initially, rely on the end-of-kernel-code
|
|
* as our memory range starting point. Once bootmem is inited we
|
|
* will reserve the area used for the initrd.
|
|
*/
|
|
init_initrd();
|
|
reserved_end = (unsigned long) PFN_UP(__pa_symbol(&_end));
|
|
|
|
/*
|
|
* max_low_pfn is not a number of pages. The number of pages
|
|
* of the system is given by 'max_low_pfn - min_low_pfn'.
|
|
*/
|
|
min_low_pfn = ~0UL;
|
|
max_low_pfn = 0;
|
|
|
|
/*
|
|
* Find the highest page frame number we have available.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start, end;
|
|
|
|
if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
|
|
continue;
|
|
|
|
start = PFN_UP(boot_mem_map.map[i].addr);
|
|
end = PFN_DOWN(boot_mem_map.map[i].addr
|
|
+ boot_mem_map.map[i].size);
|
|
|
|
if (end > max_low_pfn)
|
|
max_low_pfn = end;
|
|
if (start < min_low_pfn)
|
|
min_low_pfn = start;
|
|
if (end <= reserved_end)
|
|
continue;
|
|
if (start >= mapstart)
|
|
continue;
|
|
mapstart = max(reserved_end, start);
|
|
}
|
|
|
|
if (min_low_pfn >= max_low_pfn)
|
|
panic("Incorrect memory mapping !!!");
|
|
if (min_low_pfn > ARCH_PFN_OFFSET) {
|
|
pr_info("Wasting %lu bytes for tracking %lu unused pages\n",
|
|
(min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
|
|
min_low_pfn - ARCH_PFN_OFFSET);
|
|
} else if (min_low_pfn < ARCH_PFN_OFFSET) {
|
|
pr_info("%lu free pages won't be used\n",
|
|
ARCH_PFN_OFFSET - min_low_pfn);
|
|
}
|
|
min_low_pfn = ARCH_PFN_OFFSET;
|
|
|
|
/*
|
|
* Determine low and high memory ranges
|
|
*/
|
|
max_pfn = max_low_pfn;
|
|
if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
|
|
#ifdef CONFIG_HIGHMEM
|
|
highstart_pfn = PFN_DOWN(HIGHMEM_START);
|
|
highend_pfn = max_low_pfn;
|
|
#endif
|
|
max_low_pfn = PFN_DOWN(HIGHMEM_START);
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
/*
|
|
* mapstart should be after initrd_end
|
|
*/
|
|
if (initrd_end)
|
|
mapstart = max(mapstart, (unsigned long)PFN_UP(__pa(initrd_end)));
|
|
#endif
|
|
|
|
/*
|
|
* Initialize the boot-time allocator with low memory only.
|
|
*/
|
|
bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
|
|
min_low_pfn, max_low_pfn);
|
|
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start, end;
|
|
|
|
start = PFN_UP(boot_mem_map.map[i].addr);
|
|
end = PFN_DOWN(boot_mem_map.map[i].addr
|
|
+ boot_mem_map.map[i].size);
|
|
|
|
if (start <= min_low_pfn)
|
|
start = min_low_pfn;
|
|
if (start >= end)
|
|
continue;
|
|
|
|
#ifndef CONFIG_HIGHMEM
|
|
if (end > max_low_pfn)
|
|
end = max_low_pfn;
|
|
|
|
/*
|
|
* ... finally, is the area going away?
|
|
*/
|
|
if (end <= start)
|
|
continue;
|
|
#endif
|
|
|
|
memblock_add_node(PFN_PHYS(start), PFN_PHYS(end - start), 0);
|
|
}
|
|
|
|
/*
|
|
* Register fully available low RAM pages with the bootmem allocator.
|
|
*/
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start, end, size;
|
|
|
|
start = PFN_UP(boot_mem_map.map[i].addr);
|
|
end = PFN_DOWN(boot_mem_map.map[i].addr
|
|
+ boot_mem_map.map[i].size);
|
|
|
|
/*
|
|
* Reserve usable memory.
|
|
*/
|
|
switch (boot_mem_map.map[i].type) {
|
|
case BOOT_MEM_RAM:
|
|
break;
|
|
case BOOT_MEM_INIT_RAM:
|
|
memory_present(0, start, end);
|
|
continue;
|
|
default:
|
|
/* Not usable memory */
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We are rounding up the start address of usable memory
|
|
* and at the end of the usable range downwards.
|
|
*/
|
|
if (start >= max_low_pfn)
|
|
continue;
|
|
if (start < reserved_end)
|
|
start = reserved_end;
|
|
if (end > max_low_pfn)
|
|
end = max_low_pfn;
|
|
|
|
/*
|
|
* ... finally, is the area going away?
|
|
*/
|
|
if (end <= start)
|
|
continue;
|
|
size = end - start;
|
|
|
|
/* Register lowmem ranges */
|
|
free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
|
|
memory_present(0, start, end);
|
|
}
|
|
|
|
/*
|
|
* Reserve the bootmap memory.
|
|
*/
|
|
reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
|
|
|
|
/*
|
|
* Reserve initrd memory if needed.
|
|
*/
|
|
finalize_initrd();
|
|
}
|
|
|
|
#endif /* CONFIG_SGI_IP27 */
|
|
|
|
/*
|
|
* arch_mem_init - initialize memory management subsystem
|
|
*
|
|
* o plat_mem_setup() detects the memory configuration and will record detected
|
|
* memory areas using add_memory_region.
|
|
*
|
|
* At this stage the memory configuration of the system is known to the
|
|
* kernel but generic memory management system is still entirely uninitialized.
|
|
*
|
|
* o bootmem_init()
|
|
* o sparse_init()
|
|
* o paging_init()
|
|
*
|
|
* At this stage the bootmem allocator is ready to use.
|
|
*
|
|
* NOTE: historically plat_mem_setup did the entire platform initialization.
|
|
* This was rather impractical because it meant plat_mem_setup had to
|
|
* get away without any kind of memory allocator. To keep old code from
|
|
* breaking plat_setup was just renamed to plat_setup and a second platform
|
|
* initialization hook for anything else was introduced.
|
|
*/
|
|
|
|
static int usermem __initdata;
|
|
|
|
static int __init early_parse_mem(char *p)
|
|
{
|
|
unsigned long start, size;
|
|
|
|
/*
|
|
* If a user specifies memory size, we
|
|
* blow away any automatically generated
|
|
* size.
|
|
*/
|
|
if (usermem == 0) {
|
|
boot_mem_map.nr_map = 0;
|
|
usermem = 1;
|
|
}
|
|
start = 0;
|
|
size = memparse(p, &p);
|
|
if (*p == '@')
|
|
start = memparse(p + 1, &p);
|
|
|
|
add_memory_region(start, size, BOOT_MEM_RAM);
|
|
return 0;
|
|
}
|
|
early_param("mem", early_parse_mem);
|
|
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
unsigned long setup_elfcorehdr, setup_elfcorehdr_size;
|
|
static int __init early_parse_elfcorehdr(char *p)
|
|
{
|
|
int i;
|
|
|
|
setup_elfcorehdr = memparse(p, &p);
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
unsigned long start = boot_mem_map.map[i].addr;
|
|
unsigned long end = (boot_mem_map.map[i].addr +
|
|
boot_mem_map.map[i].size);
|
|
if (setup_elfcorehdr >= start && setup_elfcorehdr < end) {
|
|
/*
|
|
* Reserve from the elf core header to the end of
|
|
* the memory segment, that should all be kdump
|
|
* reserved memory.
|
|
*/
|
|
setup_elfcorehdr_size = end - setup_elfcorehdr;
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* If we don't find it in the memory map, then we shouldn't
|
|
* have to worry about it, as the new kernel won't use it.
|
|
*/
|
|
return 0;
|
|
}
|
|
early_param("elfcorehdr", early_parse_elfcorehdr);
|
|
#endif
|
|
|
|
static void __init arch_mem_addpart(phys_t mem, phys_t end, int type)
|
|
{
|
|
phys_t size;
|
|
int i;
|
|
|
|
size = end - mem;
|
|
if (!size)
|
|
return;
|
|
|
|
/* Make sure it is in the boot_mem_map */
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
if (mem >= boot_mem_map.map[i].addr &&
|
|
mem < (boot_mem_map.map[i].addr +
|
|
boot_mem_map.map[i].size))
|
|
return;
|
|
}
|
|
add_memory_region(mem, size, type);
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
static inline unsigned long long get_total_mem(void)
|
|
{
|
|
unsigned long long total;
|
|
|
|
total = max_pfn - min_low_pfn;
|
|
return total << PAGE_SHIFT;
|
|
}
|
|
|
|
static void __init mips_parse_crashkernel(void)
|
|
{
|
|
unsigned long long total_mem;
|
|
unsigned long long crash_size, crash_base;
|
|
int ret;
|
|
|
|
total_mem = get_total_mem();
|
|
ret = parse_crashkernel(boot_command_line, total_mem,
|
|
&crash_size, &crash_base);
|
|
if (ret != 0 || crash_size <= 0)
|
|
return;
|
|
|
|
crashk_res.start = crash_base;
|
|
crashk_res.end = crash_base + crash_size - 1;
|
|
}
|
|
|
|
static void __init request_crashkernel(struct resource *res)
|
|
{
|
|
int ret;
|
|
|
|
ret = request_resource(res, &crashk_res);
|
|
if (!ret)
|
|
pr_info("Reserving %ldMB of memory at %ldMB for crashkernel\n",
|
|
(unsigned long)((crashk_res.end -
|
|
crashk_res.start + 1) >> 20),
|
|
(unsigned long)(crashk_res.start >> 20));
|
|
}
|
|
#else /* !defined(CONFIG_KEXEC) */
|
|
static void __init mips_parse_crashkernel(void)
|
|
{
|
|
}
|
|
|
|
static void __init request_crashkernel(struct resource *res)
|
|
{
|
|
}
|
|
#endif /* !defined(CONFIG_KEXEC) */
|
|
|
|
static void __init arch_mem_init(char **cmdline_p)
|
|
{
|
|
extern void plat_mem_setup(void);
|
|
|
|
/* call board setup routine */
|
|
plat_mem_setup();
|
|
|
|
/*
|
|
* Make sure all kernel memory is in the maps. The "UP" and
|
|
* "DOWN" are opposite for initdata since if it crosses over
|
|
* into another memory section you don't want that to be
|
|
* freed when the initdata is freed.
|
|
*/
|
|
arch_mem_addpart(PFN_DOWN(__pa_symbol(&_text)) << PAGE_SHIFT,
|
|
PFN_UP(__pa_symbol(&_edata)) << PAGE_SHIFT,
|
|
BOOT_MEM_RAM);
|
|
arch_mem_addpart(PFN_UP(__pa_symbol(&__init_begin)) << PAGE_SHIFT,
|
|
PFN_DOWN(__pa_symbol(&__init_end)) << PAGE_SHIFT,
|
|
BOOT_MEM_INIT_RAM);
|
|
|
|
pr_info("Determined physical RAM map:\n");
|
|
print_memory_map();
|
|
|
|
#ifdef CONFIG_CMDLINE_BOOL
|
|
#ifdef CONFIG_CMDLINE_OVERRIDE
|
|
strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
|
|
#else
|
|
if (builtin_cmdline[0]) {
|
|
strlcat(arcs_cmdline, " ", COMMAND_LINE_SIZE);
|
|
strlcat(arcs_cmdline, builtin_cmdline, COMMAND_LINE_SIZE);
|
|
}
|
|
strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
|
|
#endif
|
|
#else
|
|
strlcpy(boot_command_line, arcs_cmdline, COMMAND_LINE_SIZE);
|
|
#endif
|
|
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
|
|
|
|
*cmdline_p = command_line;
|
|
|
|
parse_early_param();
|
|
|
|
if (usermem) {
|
|
pr_info("User-defined physical RAM map:\n");
|
|
print_memory_map();
|
|
}
|
|
|
|
bootmem_init();
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
if (setup_elfcorehdr && setup_elfcorehdr_size) {
|
|
printk(KERN_INFO "kdump reserved memory at %lx-%lx\n",
|
|
setup_elfcorehdr, setup_elfcorehdr_size);
|
|
reserve_bootmem(setup_elfcorehdr, setup_elfcorehdr_size,
|
|
BOOTMEM_DEFAULT);
|
|
}
|
|
#endif
|
|
|
|
mips_parse_crashkernel();
|
|
#ifdef CONFIG_KEXEC
|
|
if (crashk_res.start != crashk_res.end)
|
|
reserve_bootmem(crashk_res.start,
|
|
crashk_res.end - crashk_res.start + 1,
|
|
BOOTMEM_DEFAULT);
|
|
#endif
|
|
device_tree_init();
|
|
sparse_init();
|
|
plat_swiotlb_setup();
|
|
paging_init();
|
|
}
|
|
|
|
static void __init resource_init(void)
|
|
{
|
|
int i;
|
|
|
|
if (UNCAC_BASE != IO_BASE)
|
|
return;
|
|
|
|
code_resource.start = __pa_symbol(&_text);
|
|
code_resource.end = __pa_symbol(&_etext) - 1;
|
|
data_resource.start = __pa_symbol(&_etext);
|
|
data_resource.end = __pa_symbol(&_edata) - 1;
|
|
|
|
for (i = 0; i < boot_mem_map.nr_map; i++) {
|
|
struct resource *res;
|
|
unsigned long start, end;
|
|
|
|
start = boot_mem_map.map[i].addr;
|
|
end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
|
|
if (start >= HIGHMEM_START)
|
|
continue;
|
|
if (end >= HIGHMEM_START)
|
|
end = HIGHMEM_START - 1;
|
|
|
|
res = alloc_bootmem(sizeof(struct resource));
|
|
switch (boot_mem_map.map[i].type) {
|
|
case BOOT_MEM_RAM:
|
|
case BOOT_MEM_INIT_RAM:
|
|
case BOOT_MEM_ROM_DATA:
|
|
res->name = "System RAM";
|
|
break;
|
|
case BOOT_MEM_RESERVED:
|
|
default:
|
|
res->name = "reserved";
|
|
}
|
|
|
|
res->start = start;
|
|
res->end = end;
|
|
|
|
res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
|
|
request_resource(&iomem_resource, res);
|
|
|
|
/*
|
|
* We don't know which RAM region contains kernel data,
|
|
* so we try it repeatedly and let the resource manager
|
|
* test it.
|
|
*/
|
|
request_resource(res, &code_resource);
|
|
request_resource(res, &data_resource);
|
|
request_crashkernel(res);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void __init prefill_possible_map(void)
|
|
{
|
|
int i, possible = num_possible_cpus();
|
|
|
|
if (possible > nr_cpu_ids)
|
|
possible = nr_cpu_ids;
|
|
|
|
for (i = 0; i < possible; i++)
|
|
set_cpu_possible(i, true);
|
|
for (; i < NR_CPUS; i++)
|
|
set_cpu_possible(i, false);
|
|
|
|
nr_cpu_ids = possible;
|
|
}
|
|
#else
|
|
static inline void prefill_possible_map(void) {}
|
|
#endif
|
|
|
|
void __init setup_arch(char **cmdline_p)
|
|
{
|
|
cpu_probe();
|
|
prom_init();
|
|
|
|
#ifdef CONFIG_EARLY_PRINTK
|
|
setup_early_printk();
|
|
#endif
|
|
cpu_report();
|
|
check_bugs_early();
|
|
|
|
#if defined(CONFIG_VT)
|
|
#if defined(CONFIG_VGA_CONSOLE)
|
|
conswitchp = &vga_con;
|
|
#elif defined(CONFIG_DUMMY_CONSOLE)
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
#endif
|
|
|
|
arch_mem_init(cmdline_p);
|
|
|
|
resource_init();
|
|
plat_smp_setup();
|
|
prefill_possible_map();
|
|
|
|
cpu_cache_init();
|
|
}
|
|
|
|
unsigned long kernelsp[NR_CPUS];
|
|
unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
struct dentry *mips_debugfs_dir;
|
|
static int __init debugfs_mips(void)
|
|
{
|
|
struct dentry *d;
|
|
|
|
d = debugfs_create_dir("mips", NULL);
|
|
if (!d)
|
|
return -ENOMEM;
|
|
mips_debugfs_dir = d;
|
|
return 0;
|
|
}
|
|
arch_initcall(debugfs_mips);
|
|
#endif
|