linux_dsm_epyc7002/drivers/net/wireless/iwlwifi/iwl-nvm-parse.c
Eran Harary c064ddf318 iwlwifi: change max HT and VHT A-MPDU exponent
Add two new parameters to iwl_cfg:
max_ht_ampdu_exponent and max_vht_ampdu_exponent.
These parameters, if set, will set new values to the maximum of
HT and VHT A-MPDU exponent for the A-MPDU length exponent.

Signed-off-by: Eran Harary <eran.harary@intel.com>
Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2014-11-23 19:57:30 +02:00

640 lines
21 KiB
C

/******************************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/etherdevice.h>
#include <linux/pci.h>
#include "iwl-drv.h"
#include "iwl-modparams.h"
#include "iwl-nvm-parse.h"
/* NVM offsets (in words) definitions */
enum wkp_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
HW_ADDR = 0x15,
/* NVM SW-Section offset (in words) definitions */
NVM_SW_SECTION = 0x1C0,
NVM_VERSION = 0,
RADIO_CFG = 1,
SKU = 2,
N_HW_ADDRS = 3,
NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
/* NVM calibration section offset (in words) definitions */
NVM_CALIB_SECTION = 0x2B8,
XTAL_CALIB = 0x316 - NVM_CALIB_SECTION
};
enum family_8000_nvm_offsets {
/* NVM HW-Section offset (in words) definitions */
HW_ADDR0_WFPM_FAMILY_8000 = 0x12,
HW_ADDR1_WFPM_FAMILY_8000 = 0x16,
HW_ADDR0_PCIE_FAMILY_8000 = 0x8A,
HW_ADDR1_PCIE_FAMILY_8000 = 0x8E,
MAC_ADDRESS_OVERRIDE_FAMILY_8000 = 1,
/* NVM SW-Section offset (in words) definitions */
NVM_SW_SECTION_FAMILY_8000 = 0x1C0,
NVM_VERSION_FAMILY_8000 = 0,
RADIO_CFG_FAMILY_8000 = 2,
SKU_FAMILY_8000 = 4,
N_HW_ADDRS_FAMILY_8000 = 5,
/* NVM REGULATORY -Section offset (in words) definitions */
NVM_CHANNELS_FAMILY_8000 = 0,
/* NVM calibration section offset (in words) definitions */
NVM_CALIB_SECTION_FAMILY_8000 = 0x2B8,
XTAL_CALIB_FAMILY_8000 = 0x316 - NVM_CALIB_SECTION_FAMILY_8000
};
/* SKU Capabilities (actual values from NVM definition) */
enum nvm_sku_bits {
NVM_SKU_CAP_BAND_24GHZ = BIT(0),
NVM_SKU_CAP_BAND_52GHZ = BIT(1),
NVM_SKU_CAP_11N_ENABLE = BIT(2),
NVM_SKU_CAP_11AC_ENABLE = BIT(3),
};
/*
* These are the channel numbers in the order that they are stored in the NVM
*/
static const u8 iwl_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44 , 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165
};
static const u8 iwl_nvm_channels_family_8000[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181
};
#define IWL_NUM_CHANNELS ARRAY_SIZE(iwl_nvm_channels)
#define IWL_NUM_CHANNELS_FAMILY_8000 ARRAY_SIZE(iwl_nvm_channels_family_8000)
#define NUM_2GHZ_CHANNELS 14
#define NUM_2GHZ_CHANNELS_FAMILY_8000 14
#define FIRST_2GHZ_HT_MINUS 5
#define LAST_2GHZ_HT_PLUS 9
#define LAST_5GHZ_HT 161
/* rate data (static) */
static struct ieee80211_rate iwl_cfg80211_rates[] = {
{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
.flags = IEEE80211_RATE_SHORT_PREAMBLE, },
{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
};
#define RATES_24_OFFS 0
#define N_RATES_24 ARRAY_SIZE(iwl_cfg80211_rates)
#define RATES_52_OFFS 4
#define N_RATES_52 (N_RATES_24 - RATES_52_OFFS)
/**
* enum iwl_nvm_channel_flags - channel flags in NVM
* @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
* @NVM_CHANNEL_IBSS: usable as an IBSS channel
* @NVM_CHANNEL_ACTIVE: active scanning allowed
* @NVM_CHANNEL_RADAR: radar detection required
* @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
* @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
* on same channel on 2.4 or same UNII band on 5.2
* @NVM_CHANNEL_WIDE: 20 MHz channel okay (?)
* @NVM_CHANNEL_40MHZ: 40 MHz channel okay (?)
* @NVM_CHANNEL_80MHZ: 80 MHz channel okay (?)
* @NVM_CHANNEL_160MHZ: 160 MHz channel okay (?)
*/
enum iwl_nvm_channel_flags {
NVM_CHANNEL_VALID = BIT(0),
NVM_CHANNEL_IBSS = BIT(1),
NVM_CHANNEL_ACTIVE = BIT(3),
NVM_CHANNEL_RADAR = BIT(4),
NVM_CHANNEL_INDOOR_ONLY = BIT(5),
NVM_CHANNEL_GO_CONCURRENT = BIT(6),
NVM_CHANNEL_WIDE = BIT(8),
NVM_CHANNEL_40MHZ = BIT(9),
NVM_CHANNEL_80MHZ = BIT(10),
NVM_CHANNEL_160MHZ = BIT(11),
};
#define CHECK_AND_PRINT_I(x) \
((ch_flags & NVM_CHANNEL_##x) ? # x " " : "")
static int iwl_init_channel_map(struct device *dev, const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 * const nvm_ch_flags)
{
int ch_idx;
int n_channels = 0;
struct ieee80211_channel *channel;
u16 ch_flags;
bool is_5ghz;
int num_of_ch, num_2ghz_channels;
const u8 *nvm_chan;
if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
num_of_ch = IWL_NUM_CHANNELS;
nvm_chan = &iwl_nvm_channels[0];
num_2ghz_channels = NUM_2GHZ_CHANNELS;
} else {
num_of_ch = IWL_NUM_CHANNELS_FAMILY_8000;
nvm_chan = &iwl_nvm_channels_family_8000[0];
num_2ghz_channels = NUM_2GHZ_CHANNELS_FAMILY_8000;
}
for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
ch_flags = __le16_to_cpup(nvm_ch_flags + ch_idx);
if (ch_idx >= num_2ghz_channels &&
!data->sku_cap_band_52GHz_enable)
ch_flags &= ~NVM_CHANNEL_VALID;
if (!(ch_flags & NVM_CHANNEL_VALID)) {
IWL_DEBUG_EEPROM(dev,
"Ch. %d Flags %x [%sGHz] - No traffic\n",
nvm_chan[ch_idx],
ch_flags,
(ch_idx >= num_2ghz_channels) ?
"5.2" : "2.4");
continue;
}
channel = &data->channels[n_channels];
n_channels++;
channel->hw_value = nvm_chan[ch_idx];
channel->band = (ch_idx < num_2ghz_channels) ?
IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
channel->center_freq =
ieee80211_channel_to_frequency(
channel->hw_value, channel->band);
/* TODO: Need to be dependent to the NVM */
channel->flags = IEEE80211_CHAN_NO_HT40;
if (ch_idx < num_2ghz_channels &&
(ch_flags & NVM_CHANNEL_40MHZ)) {
if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
} else if (nvm_chan[ch_idx] <= LAST_5GHZ_HT &&
(ch_flags & NVM_CHANNEL_40MHZ)) {
if ((ch_idx - num_2ghz_channels) % 2 == 0)
channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
else
channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
}
if (!(ch_flags & NVM_CHANNEL_80MHZ))
channel->flags |= IEEE80211_CHAN_NO_80MHZ;
if (!(ch_flags & NVM_CHANNEL_160MHZ))
channel->flags |= IEEE80211_CHAN_NO_160MHZ;
if (!(ch_flags & NVM_CHANNEL_IBSS))
channel->flags |= IEEE80211_CHAN_NO_IR;
if (!(ch_flags & NVM_CHANNEL_ACTIVE))
channel->flags |= IEEE80211_CHAN_NO_IR;
if (ch_flags & NVM_CHANNEL_RADAR)
channel->flags |= IEEE80211_CHAN_RADAR;
if (ch_flags & NVM_CHANNEL_INDOOR_ONLY)
channel->flags |= IEEE80211_CHAN_INDOOR_ONLY;
/* Set the GO concurrent flag only in case that NO_IR is set.
* Otherwise it is meaningless
*/
if ((ch_flags & NVM_CHANNEL_GO_CONCURRENT) &&
(channel->flags & IEEE80211_CHAN_NO_IR))
channel->flags |= IEEE80211_CHAN_GO_CONCURRENT;
/* Initialize regulatory-based run-time data */
/*
* Default value - highest tx power value. max_power
* is not used in mvm, and is used for backwards compatibility
*/
channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
is_5ghz = channel->band == IEEE80211_BAND_5GHZ;
IWL_DEBUG_EEPROM(dev,
"Ch. %d [%sGHz] %s%s%s%s%s%s%s(0x%02x %ddBm): Ad-Hoc %ssupported\n",
channel->hw_value,
is_5ghz ? "5.2" : "2.4",
CHECK_AND_PRINT_I(VALID),
CHECK_AND_PRINT_I(IBSS),
CHECK_AND_PRINT_I(ACTIVE),
CHECK_AND_PRINT_I(RADAR),
CHECK_AND_PRINT_I(WIDE),
CHECK_AND_PRINT_I(INDOOR_ONLY),
CHECK_AND_PRINT_I(GO_CONCURRENT),
ch_flags,
channel->max_power,
((ch_flags & NVM_CHANNEL_IBSS) &&
!(ch_flags & NVM_CHANNEL_RADAR))
? "" : "not ");
}
return n_channels;
}
static void iwl_init_vht_hw_capab(const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
struct ieee80211_sta_vht_cap *vht_cap,
u8 tx_chains, u8 rx_chains)
{
int num_rx_ants = num_of_ant(rx_chains);
int num_tx_ants = num_of_ant(tx_chains);
unsigned int max_ampdu_exponent = (cfg->max_vht_ampdu_exponent ?:
IEEE80211_VHT_MAX_AMPDU_1024K);
vht_cap->vht_supported = true;
vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
IEEE80211_VHT_CAP_RXSTBC_1 |
IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
max_ampdu_exponent <<
IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
if (cfg->ht_params->ldpc)
vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
if (num_tx_ants > 1)
vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
else
vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
if (iwlwifi_mod_params.amsdu_size_8K)
vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
vht_cap->vht_mcs.rx_mcs_map =
cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
/* this works because NOT_SUPPORTED == 3 */
vht_cap->vht_mcs.rx_mcs_map |=
cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
}
vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
}
static void iwl_init_sbands(struct device *dev, const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 *ch_section, bool enable_vht,
u8 tx_chains, u8 rx_chains)
{
int n_channels;
int n_used = 0;
struct ieee80211_supported_band *sband;
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
n_channels = iwl_init_channel_map(
dev, cfg, data,
&ch_section[NVM_CHANNELS]);
else
n_channels = iwl_init_channel_map(
dev, cfg, data,
&ch_section[NVM_CHANNELS_FAMILY_8000]);
sband = &data->bands[IEEE80211_BAND_2GHZ];
sband->band = IEEE80211_BAND_2GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
sband->n_bitrates = N_RATES_24;
n_used += iwl_init_sband_channels(data, sband, n_channels,
IEEE80211_BAND_2GHZ);
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_2GHZ,
tx_chains, rx_chains);
sband = &data->bands[IEEE80211_BAND_5GHZ];
sband->band = IEEE80211_BAND_5GHZ;
sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
sband->n_bitrates = N_RATES_52;
n_used += iwl_init_sband_channels(data, sband, n_channels,
IEEE80211_BAND_5GHZ);
iwl_init_ht_hw_capab(cfg, data, &sband->ht_cap, IEEE80211_BAND_5GHZ,
tx_chains, rx_chains);
if (enable_vht)
iwl_init_vht_hw_capab(cfg, data, &sband->vht_cap,
tx_chains, rx_chains);
if (n_channels != n_used)
IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
n_used, n_channels);
}
static int iwl_get_sku(const struct iwl_cfg *cfg,
const __le16 *nvm_sw)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + SKU);
else
return le32_to_cpup((__le32 *)(nvm_sw + SKU_FAMILY_8000));
}
static int iwl_get_nvm_version(const struct iwl_cfg *cfg,
const __le16 *nvm_sw)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + NVM_VERSION);
else
return le32_to_cpup((__le32 *)(nvm_sw +
NVM_VERSION_FAMILY_8000));
}
static int iwl_get_radio_cfg(const struct iwl_cfg *cfg,
const __le16 *nvm_sw)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + RADIO_CFG);
else
return le32_to_cpup((__le32 *)(nvm_sw + RADIO_CFG_FAMILY_8000));
}
#define N_HW_ADDRS_MASK_FAMILY_8000 0xF
static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg,
const __le16 *nvm_sw)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
return le16_to_cpup(nvm_sw + N_HW_ADDRS);
else
return le32_to_cpup((__le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000))
& N_HW_ADDRS_MASK_FAMILY_8000;
}
static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
u32 radio_cfg)
{
if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
return;
}
/* set the radio configuration for family 8000 */
data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK_FAMILY_8000(radio_cfg);
data->radio_cfg_step = NVM_RF_CFG_STEP_MSK_FAMILY_8000(radio_cfg);
data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK_FAMILY_8000(radio_cfg);
data->radio_cfg_pnum = NVM_RF_CFG_FLAVOR_MSK_FAMILY_8000(radio_cfg);
}
static void iwl_set_hw_address(const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 *nvm_sec)
{
const u8 *hw_addr = (const u8 *)(nvm_sec + HW_ADDR);
/* The byte order is little endian 16 bit, meaning 214365 */
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
}
static void iwl_set_hw_address_family_8000(struct device *dev,
const struct iwl_cfg *cfg,
struct iwl_nvm_data *data,
const __le16 *mac_override,
const __le16 *nvm_hw)
{
const u8 *hw_addr;
if (mac_override) {
hw_addr = (const u8 *)(mac_override +
MAC_ADDRESS_OVERRIDE_FAMILY_8000);
/* The byte order is little endian 16 bit, meaning 214365 */
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
if (is_valid_ether_addr(data->hw_addr))
return;
IWL_ERR_DEV(dev,
"mac address from nvm override section is not valid\n");
}
if (nvm_hw) {
/* read the MAC address from OTP */
if (!dev_is_pci(dev) || (data->nvm_version < 0xE08)) {
/* read the mac address from the WFPM location */
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR0_WFPM_FAMILY_8000);
data->hw_addr[0] = hw_addr[3];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[2] = hw_addr[1];
data->hw_addr[3] = hw_addr[0];
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR1_WFPM_FAMILY_8000);
data->hw_addr[4] = hw_addr[1];
data->hw_addr[5] = hw_addr[0];
} else if ((data->nvm_version >= 0xE08) &&
(data->nvm_version < 0xE0B)) {
/* read "reverse order" from the PCIe location */
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR0_PCIE_FAMILY_8000);
data->hw_addr[5] = hw_addr[2];
data->hw_addr[4] = hw_addr[1];
data->hw_addr[3] = hw_addr[0];
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR1_PCIE_FAMILY_8000);
data->hw_addr[2] = hw_addr[3];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[0] = hw_addr[1];
} else {
/* read from the PCIe location */
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR0_PCIE_FAMILY_8000);
data->hw_addr[5] = hw_addr[0];
data->hw_addr[4] = hw_addr[1];
data->hw_addr[3] = hw_addr[2];
hw_addr = (const u8 *)(nvm_hw +
HW_ADDR1_PCIE_FAMILY_8000);
data->hw_addr[2] = hw_addr[1];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[0] = hw_addr[3];
}
if (!is_valid_ether_addr(data->hw_addr))
IWL_ERR_DEV(dev,
"mac address from hw section is not valid\n");
return;
}
IWL_ERR_DEV(dev, "mac address is not found\n");
}
struct iwl_nvm_data *
iwl_parse_nvm_data(struct device *dev, const struct iwl_cfg *cfg,
const __le16 *nvm_hw, const __le16 *nvm_sw,
const __le16 *nvm_calib, const __le16 *regulatory,
const __le16 *mac_override, u8 tx_chains, u8 rx_chains)
{
struct iwl_nvm_data *data;
u32 sku;
u32 radio_cfg;
if (cfg->device_family != IWL_DEVICE_FAMILY_8000)
data = kzalloc(sizeof(*data) +
sizeof(struct ieee80211_channel) *
IWL_NUM_CHANNELS,
GFP_KERNEL);
else
data = kzalloc(sizeof(*data) +
sizeof(struct ieee80211_channel) *
IWL_NUM_CHANNELS_FAMILY_8000,
GFP_KERNEL);
if (!data)
return NULL;
data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw);
iwl_set_radio_cfg(cfg, data, radio_cfg);
sku = iwl_get_sku(cfg, nvm_sw);
data->sku_cap_band_24GHz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52GHz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
data->sku_cap_11ac_enable = sku & NVM_SKU_CAP_11AC_ENABLE;
if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
data->sku_cap_11n_enable = false;
data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
/* Checking for required sections */
if (!nvm_calib) {
IWL_ERR_DEV(dev,
"Can't parse empty Calib NVM sections\n");
kfree(data);
return NULL;
}
/* in family 8000 Xtal calibration values moved to OTP */
data->xtal_calib[0] = *(nvm_calib + XTAL_CALIB);
data->xtal_calib[1] = *(nvm_calib + XTAL_CALIB + 1);
}
if (cfg->device_family != IWL_DEVICE_FAMILY_8000) {
iwl_set_hw_address(cfg, data, nvm_hw);
iwl_init_sbands(dev, cfg, data, nvm_sw,
sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
rx_chains);
} else {
/* MAC address in family 8000 */
iwl_set_hw_address_family_8000(dev, cfg, data, mac_override,
nvm_hw);
iwl_init_sbands(dev, cfg, data, regulatory,
sku & NVM_SKU_CAP_11AC_ENABLE, tx_chains,
rx_chains);
}
data->calib_version = 255;
return data;
}
IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);