linux_dsm_epyc7002/tools/perf/tests/code-reading.c
Adrian Hunter f6c66d73bb perf test code-reading: Fix perf_env setup for PTI entry trampolines
The "Object code reading" test will not create maps for the PTI entry
trampolines unless the machine environment exists to show that the arch is
x86_64.

Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Reported-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Link: http://lkml.kernel.org/r/1528183800-21577-1-git-send-email-adrian.hunter@intel.com
[ split from a larger patch ]
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
2018-06-06 12:52:05 -03:00

740 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <errno.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <inttypes.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>
#include <sys/param.h>
#include "parse-events.h"
#include "evlist.h"
#include "evsel.h"
#include "thread_map.h"
#include "cpumap.h"
#include "machine.h"
#include "event.h"
#include "thread.h"
#include "tests.h"
#include "sane_ctype.h"
#define BUFSZ 1024
#define READLEN 128
struct state {
u64 done[1024];
size_t done_cnt;
};
static unsigned int hex(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
if (c >= 'a' && c <= 'f')
return c - 'a' + 10;
return c - 'A' + 10;
}
static size_t read_objdump_chunk(const char **line, unsigned char **buf,
size_t *buf_len)
{
size_t bytes_read = 0;
unsigned char *chunk_start = *buf;
/* Read bytes */
while (*buf_len > 0) {
char c1, c2;
/* Get 2 hex digits */
c1 = *(*line)++;
if (!isxdigit(c1))
break;
c2 = *(*line)++;
if (!isxdigit(c2))
break;
/* Store byte and advance buf */
**buf = (hex(c1) << 4) | hex(c2);
(*buf)++;
(*buf_len)--;
bytes_read++;
/* End of chunk? */
if (isspace(**line))
break;
}
/*
* objdump will display raw insn as LE if code endian
* is LE and bytes_per_chunk > 1. In that case reverse
* the chunk we just read.
*
* see disassemble_bytes() at binutils/objdump.c for details
* how objdump chooses display endian)
*/
if (bytes_read > 1 && !bigendian()) {
unsigned char *chunk_end = chunk_start + bytes_read - 1;
unsigned char tmp;
while (chunk_start < chunk_end) {
tmp = *chunk_start;
*chunk_start = *chunk_end;
*chunk_end = tmp;
chunk_start++;
chunk_end--;
}
}
return bytes_read;
}
static size_t read_objdump_line(const char *line, unsigned char *buf,
size_t buf_len)
{
const char *p;
size_t ret, bytes_read = 0;
/* Skip to a colon */
p = strchr(line, ':');
if (!p)
return 0;
p++;
/* Skip initial spaces */
while (*p) {
if (!isspace(*p))
break;
p++;
}
do {
ret = read_objdump_chunk(&p, &buf, &buf_len);
bytes_read += ret;
p++;
} while (ret > 0);
/* return number of successfully read bytes */
return bytes_read;
}
static int read_objdump_output(FILE *f, void *buf, size_t *len, u64 start_addr)
{
char *line = NULL;
size_t line_len, off_last = 0;
ssize_t ret;
int err = 0;
u64 addr, last_addr = start_addr;
while (off_last < *len) {
size_t off, read_bytes, written_bytes;
unsigned char tmp[BUFSZ];
ret = getline(&line, &line_len, f);
if (feof(f))
break;
if (ret < 0) {
pr_debug("getline failed\n");
err = -1;
break;
}
/* read objdump data into temporary buffer */
read_bytes = read_objdump_line(line, tmp, sizeof(tmp));
if (!read_bytes)
continue;
if (sscanf(line, "%"PRIx64, &addr) != 1)
continue;
if (addr < last_addr) {
pr_debug("addr going backwards, read beyond section?\n");
break;
}
last_addr = addr;
/* copy it from temporary buffer to 'buf' according
* to address on current objdump line */
off = addr - start_addr;
if (off >= *len)
break;
written_bytes = MIN(read_bytes, *len - off);
memcpy(buf + off, tmp, written_bytes);
off_last = off + written_bytes;
}
/* len returns number of bytes that could not be read */
*len -= off_last;
free(line);
return err;
}
static int read_via_objdump(const char *filename, u64 addr, void *buf,
size_t len)
{
char cmd[PATH_MAX * 2];
const char *fmt;
FILE *f;
int ret;
fmt = "%s -z -d --start-address=0x%"PRIx64" --stop-address=0x%"PRIx64" %s";
ret = snprintf(cmd, sizeof(cmd), fmt, "objdump", addr, addr + len,
filename);
if (ret <= 0 || (size_t)ret >= sizeof(cmd))
return -1;
pr_debug("Objdump command is: %s\n", cmd);
/* Ignore objdump errors */
strcat(cmd, " 2>/dev/null");
f = popen(cmd, "r");
if (!f) {
pr_debug("popen failed\n");
return -1;
}
ret = read_objdump_output(f, buf, &len, addr);
if (len) {
pr_debug("objdump read too few bytes: %zd\n", len);
if (!ret)
ret = len;
}
pclose(f);
return ret;
}
static void dump_buf(unsigned char *buf, size_t len)
{
size_t i;
for (i = 0; i < len; i++) {
pr_debug("0x%02x ", buf[i]);
if (i % 16 == 15)
pr_debug("\n");
}
pr_debug("\n");
}
static int read_object_code(u64 addr, size_t len, u8 cpumode,
struct thread *thread, struct state *state)
{
struct addr_location al;
unsigned char buf1[BUFSZ];
unsigned char buf2[BUFSZ];
size_t ret_len;
u64 objdump_addr;
const char *objdump_name;
char decomp_name[KMOD_DECOMP_LEN];
int ret;
pr_debug("Reading object code for memory address: %#"PRIx64"\n", addr);
if (!thread__find_map(thread, cpumode, addr, &al) || !al.map->dso) {
if (cpumode == PERF_RECORD_MISC_HYPERVISOR) {
pr_debug("Hypervisor address can not be resolved - skipping\n");
return 0;
}
pr_debug("thread__find_map failed\n");
return -1;
}
pr_debug("File is: %s\n", al.map->dso->long_name);
if (al.map->dso->symtab_type == DSO_BINARY_TYPE__KALLSYMS &&
!dso__is_kcore(al.map->dso)) {
pr_debug("Unexpected kernel address - skipping\n");
return 0;
}
pr_debug("On file address is: %#"PRIx64"\n", al.addr);
if (len > BUFSZ)
len = BUFSZ;
/* Do not go off the map */
if (addr + len > al.map->end)
len = al.map->end - addr;
/* Read the object code using perf */
ret_len = dso__data_read_offset(al.map->dso, thread->mg->machine,
al.addr, buf1, len);
if (ret_len != len) {
pr_debug("dso__data_read_offset failed\n");
return -1;
}
/*
* Converting addresses for use by objdump requires more information.
* map__load() does that. See map__rip_2objdump() for details.
*/
if (map__load(al.map))
return -1;
/* objdump struggles with kcore - try each map only once */
if (dso__is_kcore(al.map->dso)) {
size_t d;
for (d = 0; d < state->done_cnt; d++) {
if (state->done[d] == al.map->start) {
pr_debug("kcore map tested already");
pr_debug(" - skipping\n");
return 0;
}
}
if (state->done_cnt >= ARRAY_SIZE(state->done)) {
pr_debug("Too many kcore maps - skipping\n");
return 0;
}
state->done[state->done_cnt++] = al.map->start;
}
objdump_name = al.map->dso->long_name;
if (dso__needs_decompress(al.map->dso)) {
if (dso__decompress_kmodule_path(al.map->dso, objdump_name,
decomp_name,
sizeof(decomp_name)) < 0) {
pr_debug("decompression failed\n");
return -1;
}
objdump_name = decomp_name;
}
/* Read the object code using objdump */
objdump_addr = map__rip_2objdump(al.map, al.addr);
ret = read_via_objdump(objdump_name, objdump_addr, buf2, len);
if (dso__needs_decompress(al.map->dso))
unlink(objdump_name);
if (ret > 0) {
/*
* The kernel maps are inaccurate - assume objdump is right in
* that case.
*/
if (cpumode == PERF_RECORD_MISC_KERNEL ||
cpumode == PERF_RECORD_MISC_GUEST_KERNEL) {
len -= ret;
if (len) {
pr_debug("Reducing len to %zu\n", len);
} else if (dso__is_kcore(al.map->dso)) {
/*
* objdump cannot handle very large segments
* that may be found in kcore.
*/
pr_debug("objdump failed for kcore");
pr_debug(" - skipping\n");
return 0;
} else {
return -1;
}
}
}
if (ret < 0) {
pr_debug("read_via_objdump failed\n");
return -1;
}
/* The results should be identical */
if (memcmp(buf1, buf2, len)) {
pr_debug("Bytes read differ from those read by objdump\n");
pr_debug("buf1 (dso):\n");
dump_buf(buf1, len);
pr_debug("buf2 (objdump):\n");
dump_buf(buf2, len);
return -1;
}
pr_debug("Bytes read match those read by objdump\n");
return 0;
}
static int process_sample_event(struct machine *machine,
struct perf_evlist *evlist,
union perf_event *event, struct state *state)
{
struct perf_sample sample;
struct thread *thread;
int ret;
if (perf_evlist__parse_sample(evlist, event, &sample)) {
pr_debug("perf_evlist__parse_sample failed\n");
return -1;
}
thread = machine__findnew_thread(machine, sample.pid, sample.tid);
if (!thread) {
pr_debug("machine__findnew_thread failed\n");
return -1;
}
ret = read_object_code(sample.ip, READLEN, sample.cpumode, thread, state);
thread__put(thread);
return ret;
}
static int process_event(struct machine *machine, struct perf_evlist *evlist,
union perf_event *event, struct state *state)
{
if (event->header.type == PERF_RECORD_SAMPLE)
return process_sample_event(machine, evlist, event, state);
if (event->header.type == PERF_RECORD_THROTTLE ||
event->header.type == PERF_RECORD_UNTHROTTLE)
return 0;
if (event->header.type < PERF_RECORD_MAX) {
int ret;
ret = machine__process_event(machine, event, NULL);
if (ret < 0)
pr_debug("machine__process_event failed, event type %u\n",
event->header.type);
return ret;
}
return 0;
}
static int process_events(struct machine *machine, struct perf_evlist *evlist,
struct state *state)
{
union perf_event *event;
struct perf_mmap *md;
int i, ret;
for (i = 0; i < evlist->nr_mmaps; i++) {
md = &evlist->mmap[i];
if (perf_mmap__read_init(md) < 0)
continue;
while ((event = perf_mmap__read_event(md)) != NULL) {
ret = process_event(machine, evlist, event, state);
perf_mmap__consume(md);
if (ret < 0)
return ret;
}
perf_mmap__read_done(md);
}
return 0;
}
static int comp(const void *a, const void *b)
{
return *(int *)a - *(int *)b;
}
static void do_sort_something(void)
{
int buf[40960], i;
for (i = 0; i < (int)ARRAY_SIZE(buf); i++)
buf[i] = ARRAY_SIZE(buf) - i - 1;
qsort(buf, ARRAY_SIZE(buf), sizeof(int), comp);
for (i = 0; i < (int)ARRAY_SIZE(buf); i++) {
if (buf[i] != i) {
pr_debug("qsort failed\n");
break;
}
}
}
static void sort_something(void)
{
int i;
for (i = 0; i < 10; i++)
do_sort_something();
}
static void syscall_something(void)
{
int pipefd[2];
int i;
for (i = 0; i < 1000; i++) {
if (pipe(pipefd) < 0) {
pr_debug("pipe failed\n");
break;
}
close(pipefd[1]);
close(pipefd[0]);
}
}
static void fs_something(void)
{
const char *test_file_name = "temp-perf-code-reading-test-file--";
FILE *f;
int i;
for (i = 0; i < 1000; i++) {
f = fopen(test_file_name, "w+");
if (f) {
fclose(f);
unlink(test_file_name);
}
}
}
static const char *do_determine_event(bool excl_kernel)
{
const char *event = excl_kernel ? "cycles:u" : "cycles";
#ifdef __s390x__
char cpuid[128], model[16], model_c[16], cpum_cf_v[16];
unsigned int family;
int ret, cpum_cf_a;
if (get_cpuid(cpuid, sizeof(cpuid)))
goto out_clocks;
ret = sscanf(cpuid, "%*[^,],%u,%[^,],%[^,],%[^,],%x", &family, model_c,
model, cpum_cf_v, &cpum_cf_a);
if (ret != 5) /* Not available */
goto out_clocks;
if (excl_kernel && (cpum_cf_a & 4))
return event;
if (!excl_kernel && (cpum_cf_a & 2))
return event;
/* Fall through: missing authorization */
out_clocks:
event = excl_kernel ? "cpu-clock:u" : "cpu-clock";
#endif
return event;
}
static void do_something(void)
{
fs_something();
sort_something();
syscall_something();
}
enum {
TEST_CODE_READING_OK,
TEST_CODE_READING_NO_VMLINUX,
TEST_CODE_READING_NO_KCORE,
TEST_CODE_READING_NO_ACCESS,
TEST_CODE_READING_NO_KERNEL_OBJ,
};
static int do_test_code_reading(bool try_kcore)
{
struct machine *machine;
struct thread *thread;
struct record_opts opts = {
.mmap_pages = UINT_MAX,
.user_freq = UINT_MAX,
.user_interval = ULLONG_MAX,
.freq = 500,
.target = {
.uses_mmap = true,
},
};
struct state state = {
.done_cnt = 0,
};
struct thread_map *threads = NULL;
struct cpu_map *cpus = NULL;
struct perf_evlist *evlist = NULL;
struct perf_evsel *evsel = NULL;
int err = -1, ret;
pid_t pid;
struct map *map;
bool have_vmlinux, have_kcore, excl_kernel = false;
pid = getpid();
machine = machine__new_host();
machine->env = &perf_env;
ret = machine__create_kernel_maps(machine);
if (ret < 0) {
pr_debug("machine__create_kernel_maps failed\n");
goto out_err;
}
/* Force the use of kallsyms instead of vmlinux to try kcore */
if (try_kcore)
symbol_conf.kallsyms_name = "/proc/kallsyms";
/* Load kernel map */
map = machine__kernel_map(machine);
ret = map__load(map);
if (ret < 0) {
pr_debug("map__load failed\n");
goto out_err;
}
have_vmlinux = dso__is_vmlinux(map->dso);
have_kcore = dso__is_kcore(map->dso);
/* 2nd time through we just try kcore */
if (try_kcore && !have_kcore)
return TEST_CODE_READING_NO_KCORE;
/* No point getting kernel events if there is no kernel object */
if (!have_vmlinux && !have_kcore)
excl_kernel = true;
threads = thread_map__new_by_tid(pid);
if (!threads) {
pr_debug("thread_map__new_by_tid failed\n");
goto out_err;
}
ret = perf_event__synthesize_thread_map(NULL, threads,
perf_event__process, machine, false, 500);
if (ret < 0) {
pr_debug("perf_event__synthesize_thread_map failed\n");
goto out_err;
}
thread = machine__findnew_thread(machine, pid, pid);
if (!thread) {
pr_debug("machine__findnew_thread failed\n");
goto out_put;
}
cpus = cpu_map__new(NULL);
if (!cpus) {
pr_debug("cpu_map__new failed\n");
goto out_put;
}
while (1) {
const char *str;
evlist = perf_evlist__new();
if (!evlist) {
pr_debug("perf_evlist__new failed\n");
goto out_put;
}
perf_evlist__set_maps(evlist, cpus, threads);
str = do_determine_event(excl_kernel);
pr_debug("Parsing event '%s'\n", str);
ret = parse_events(evlist, str, NULL);
if (ret < 0) {
pr_debug("parse_events failed\n");
goto out_put;
}
perf_evlist__config(evlist, &opts, NULL);
evsel = perf_evlist__first(evlist);
evsel->attr.comm = 1;
evsel->attr.disabled = 1;
evsel->attr.enable_on_exec = 0;
ret = perf_evlist__open(evlist);
if (ret < 0) {
if (!excl_kernel) {
excl_kernel = true;
/*
* Both cpus and threads are now owned by evlist
* and will be freed by following perf_evlist__set_maps
* call. Getting refference to keep them alive.
*/
cpu_map__get(cpus);
thread_map__get(threads);
perf_evlist__set_maps(evlist, NULL, NULL);
perf_evlist__delete(evlist);
evlist = NULL;
continue;
}
if (verbose > 0) {
char errbuf[512];
perf_evlist__strerror_open(evlist, errno, errbuf, sizeof(errbuf));
pr_debug("perf_evlist__open() failed!\n%s\n", errbuf);
}
goto out_put;
}
break;
}
ret = perf_evlist__mmap(evlist, UINT_MAX);
if (ret < 0) {
pr_debug("perf_evlist__mmap failed\n");
goto out_put;
}
perf_evlist__enable(evlist);
do_something();
perf_evlist__disable(evlist);
ret = process_events(machine, evlist, &state);
if (ret < 0)
goto out_put;
if (!have_vmlinux && !have_kcore && !try_kcore)
err = TEST_CODE_READING_NO_KERNEL_OBJ;
else if (!have_vmlinux && !try_kcore)
err = TEST_CODE_READING_NO_VMLINUX;
else if (excl_kernel)
err = TEST_CODE_READING_NO_ACCESS;
else
err = TEST_CODE_READING_OK;
out_put:
thread__put(thread);
out_err:
if (evlist) {
perf_evlist__delete(evlist);
} else {
cpu_map__put(cpus);
thread_map__put(threads);
}
machine__delete_threads(machine);
machine__delete(machine);
return err;
}
int test__code_reading(struct test *test __maybe_unused, int subtest __maybe_unused)
{
int ret;
ret = do_test_code_reading(false);
if (!ret)
ret = do_test_code_reading(true);
switch (ret) {
case TEST_CODE_READING_OK:
return 0;
case TEST_CODE_READING_NO_VMLINUX:
pr_debug("no vmlinux\n");
return 0;
case TEST_CODE_READING_NO_KCORE:
pr_debug("no kcore\n");
return 0;
case TEST_CODE_READING_NO_ACCESS:
pr_debug("no access\n");
return 0;
case TEST_CODE_READING_NO_KERNEL_OBJ:
pr_debug("no kernel obj\n");
return 0;
default:
return -1;
};
}