linux_dsm_epyc7002/drivers/media/dvb-frontends/s5h1411.c
Thomas Gleixner 74ba9207e1 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 61
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not write to the free software foundation inc
  675 mass ave cambridge ma 02139 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 441 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520071858.739733335@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:36:45 +02:00

935 lines
23 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
Samsung S5H1411 VSB/QAM demodulator driver
Copyright (C) 2008 Steven Toth <stoth@linuxtv.org>
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <media/dvb_frontend.h>
#include "s5h1411.h"
struct s5h1411_state {
struct i2c_adapter *i2c;
/* configuration settings */
const struct s5h1411_config *config;
struct dvb_frontend frontend;
enum fe_modulation current_modulation;
unsigned int first_tune:1;
u32 current_frequency;
int if_freq;
u8 inversion;
};
static int debug;
#define dprintk(arg...) do { \
if (debug) \
printk(arg); \
} while (0)
/* Register values to initialise the demod, defaults to VSB */
static struct init_tab {
u8 addr;
u8 reg;
u16 data;
} init_tab[] = {
{ S5H1411_I2C_TOP_ADDR, 0x00, 0x0071, },
{ S5H1411_I2C_TOP_ADDR, 0x08, 0x0047, },
{ S5H1411_I2C_TOP_ADDR, 0x1c, 0x0400, },
{ S5H1411_I2C_TOP_ADDR, 0x1e, 0x0370, },
{ S5H1411_I2C_TOP_ADDR, 0x1f, 0x342c, },
{ S5H1411_I2C_TOP_ADDR, 0x24, 0x0231, },
{ S5H1411_I2C_TOP_ADDR, 0x25, 0x1011, },
{ S5H1411_I2C_TOP_ADDR, 0x26, 0x0f07, },
{ S5H1411_I2C_TOP_ADDR, 0x27, 0x0f04, },
{ S5H1411_I2C_TOP_ADDR, 0x28, 0x070f, },
{ S5H1411_I2C_TOP_ADDR, 0x29, 0x2820, },
{ S5H1411_I2C_TOP_ADDR, 0x2a, 0x102e, },
{ S5H1411_I2C_TOP_ADDR, 0x2b, 0x0220, },
{ S5H1411_I2C_TOP_ADDR, 0x2e, 0x0d0e, },
{ S5H1411_I2C_TOP_ADDR, 0x2f, 0x1013, },
{ S5H1411_I2C_TOP_ADDR, 0x31, 0x171b, },
{ S5H1411_I2C_TOP_ADDR, 0x32, 0x0e0f, },
{ S5H1411_I2C_TOP_ADDR, 0x33, 0x0f10, },
{ S5H1411_I2C_TOP_ADDR, 0x34, 0x170e, },
{ S5H1411_I2C_TOP_ADDR, 0x35, 0x4b10, },
{ S5H1411_I2C_TOP_ADDR, 0x36, 0x0f17, },
{ S5H1411_I2C_TOP_ADDR, 0x3c, 0x1577, },
{ S5H1411_I2C_TOP_ADDR, 0x3d, 0x081a, },
{ S5H1411_I2C_TOP_ADDR, 0x3e, 0x77ee, },
{ S5H1411_I2C_TOP_ADDR, 0x40, 0x1e09, },
{ S5H1411_I2C_TOP_ADDR, 0x41, 0x0f0c, },
{ S5H1411_I2C_TOP_ADDR, 0x42, 0x1f10, },
{ S5H1411_I2C_TOP_ADDR, 0x4d, 0x0509, },
{ S5H1411_I2C_TOP_ADDR, 0x4e, 0x0a00, },
{ S5H1411_I2C_TOP_ADDR, 0x50, 0x0000, },
{ S5H1411_I2C_TOP_ADDR, 0x5b, 0x0000, },
{ S5H1411_I2C_TOP_ADDR, 0x5c, 0x0008, },
{ S5H1411_I2C_TOP_ADDR, 0x57, 0x1101, },
{ S5H1411_I2C_TOP_ADDR, 0x65, 0x007c, },
{ S5H1411_I2C_TOP_ADDR, 0x68, 0x0512, },
{ S5H1411_I2C_TOP_ADDR, 0x69, 0x0258, },
{ S5H1411_I2C_TOP_ADDR, 0x70, 0x0004, },
{ S5H1411_I2C_TOP_ADDR, 0x71, 0x0007, },
{ S5H1411_I2C_TOP_ADDR, 0x76, 0x00a9, },
{ S5H1411_I2C_TOP_ADDR, 0x78, 0x3141, },
{ S5H1411_I2C_TOP_ADDR, 0x7a, 0x3141, },
{ S5H1411_I2C_TOP_ADDR, 0xb3, 0x8003, },
{ S5H1411_I2C_TOP_ADDR, 0xb5, 0xa6bb, },
{ S5H1411_I2C_TOP_ADDR, 0xb6, 0x0609, },
{ S5H1411_I2C_TOP_ADDR, 0xb7, 0x2f06, },
{ S5H1411_I2C_TOP_ADDR, 0xb8, 0x003f, },
{ S5H1411_I2C_TOP_ADDR, 0xb9, 0x2700, },
{ S5H1411_I2C_TOP_ADDR, 0xba, 0xfac8, },
{ S5H1411_I2C_TOP_ADDR, 0xbe, 0x1003, },
{ S5H1411_I2C_TOP_ADDR, 0xbf, 0x103f, },
{ S5H1411_I2C_TOP_ADDR, 0xce, 0x2000, },
{ S5H1411_I2C_TOP_ADDR, 0xcf, 0x0800, },
{ S5H1411_I2C_TOP_ADDR, 0xd0, 0x0800, },
{ S5H1411_I2C_TOP_ADDR, 0xd1, 0x0400, },
{ S5H1411_I2C_TOP_ADDR, 0xd2, 0x0800, },
{ S5H1411_I2C_TOP_ADDR, 0xd3, 0x2000, },
{ S5H1411_I2C_TOP_ADDR, 0xd4, 0x3000, },
{ S5H1411_I2C_TOP_ADDR, 0xdb, 0x4a9b, },
{ S5H1411_I2C_TOP_ADDR, 0xdc, 0x1000, },
{ S5H1411_I2C_TOP_ADDR, 0xde, 0x0001, },
{ S5H1411_I2C_TOP_ADDR, 0xdf, 0x0000, },
{ S5H1411_I2C_TOP_ADDR, 0xe3, 0x0301, },
{ S5H1411_I2C_QAM_ADDR, 0xf3, 0x0000, },
{ S5H1411_I2C_QAM_ADDR, 0xf3, 0x0001, },
{ S5H1411_I2C_QAM_ADDR, 0x08, 0x0600, },
{ S5H1411_I2C_QAM_ADDR, 0x18, 0x4201, },
{ S5H1411_I2C_QAM_ADDR, 0x1e, 0x6476, },
{ S5H1411_I2C_QAM_ADDR, 0x21, 0x0830, },
{ S5H1411_I2C_QAM_ADDR, 0x0c, 0x5679, },
{ S5H1411_I2C_QAM_ADDR, 0x0d, 0x579b, },
{ S5H1411_I2C_QAM_ADDR, 0x24, 0x0102, },
{ S5H1411_I2C_QAM_ADDR, 0x31, 0x7488, },
{ S5H1411_I2C_QAM_ADDR, 0x32, 0x0a08, },
{ S5H1411_I2C_QAM_ADDR, 0x3d, 0x8689, },
{ S5H1411_I2C_QAM_ADDR, 0x49, 0x0048, },
{ S5H1411_I2C_QAM_ADDR, 0x57, 0x2012, },
{ S5H1411_I2C_QAM_ADDR, 0x5d, 0x7676, },
{ S5H1411_I2C_QAM_ADDR, 0x04, 0x0400, },
{ S5H1411_I2C_QAM_ADDR, 0x58, 0x00c0, },
{ S5H1411_I2C_QAM_ADDR, 0x5b, 0x0100, },
};
/* VSB SNR lookup table */
static struct vsb_snr_tab {
u16 val;
u16 data;
} vsb_snr_tab[] = {
{ 0x39f, 300, },
{ 0x39b, 295, },
{ 0x397, 290, },
{ 0x394, 285, },
{ 0x38f, 280, },
{ 0x38b, 275, },
{ 0x387, 270, },
{ 0x382, 265, },
{ 0x37d, 260, },
{ 0x377, 255, },
{ 0x370, 250, },
{ 0x36a, 245, },
{ 0x364, 240, },
{ 0x35b, 235, },
{ 0x353, 230, },
{ 0x349, 225, },
{ 0x340, 320, },
{ 0x337, 215, },
{ 0x327, 210, },
{ 0x31b, 205, },
{ 0x310, 200, },
{ 0x302, 195, },
{ 0x2f3, 190, },
{ 0x2e4, 185, },
{ 0x2d7, 180, },
{ 0x2cd, 175, },
{ 0x2bb, 170, },
{ 0x2a9, 165, },
{ 0x29e, 160, },
{ 0x284, 155, },
{ 0x27a, 150, },
{ 0x260, 145, },
{ 0x23a, 140, },
{ 0x224, 135, },
{ 0x213, 130, },
{ 0x204, 125, },
{ 0x1fe, 120, },
{ 0, 0, },
};
/* QAM64 SNR lookup table */
static struct qam64_snr_tab {
u16 val;
u16 data;
} qam64_snr_tab[] = {
{ 0x0001, 0, },
{ 0x0af0, 300, },
{ 0x0d80, 290, },
{ 0x10a0, 280, },
{ 0x14b5, 270, },
{ 0x1590, 268, },
{ 0x1680, 266, },
{ 0x17b0, 264, },
{ 0x18c0, 262, },
{ 0x19b0, 260, },
{ 0x1ad0, 258, },
{ 0x1d00, 256, },
{ 0x1da0, 254, },
{ 0x1ef0, 252, },
{ 0x2050, 250, },
{ 0x20f0, 249, },
{ 0x21d0, 248, },
{ 0x22b0, 247, },
{ 0x23a0, 246, },
{ 0x2470, 245, },
{ 0x24f0, 244, },
{ 0x25a0, 243, },
{ 0x26c0, 242, },
{ 0x27b0, 241, },
{ 0x28d0, 240, },
{ 0x29b0, 239, },
{ 0x2ad0, 238, },
{ 0x2ba0, 237, },
{ 0x2c80, 236, },
{ 0x2d20, 235, },
{ 0x2e00, 234, },
{ 0x2f10, 233, },
{ 0x3050, 232, },
{ 0x3190, 231, },
{ 0x3300, 230, },
{ 0x3340, 229, },
{ 0x3200, 228, },
{ 0x3550, 227, },
{ 0x3610, 226, },
{ 0x3600, 225, },
{ 0x3700, 224, },
{ 0x3800, 223, },
{ 0x3920, 222, },
{ 0x3a20, 221, },
{ 0x3b30, 220, },
{ 0x3d00, 219, },
{ 0x3e00, 218, },
{ 0x4000, 217, },
{ 0x4100, 216, },
{ 0x4300, 215, },
{ 0x4400, 214, },
{ 0x4600, 213, },
{ 0x4700, 212, },
{ 0x4800, 211, },
{ 0x4a00, 210, },
{ 0x4b00, 209, },
{ 0x4d00, 208, },
{ 0x4f00, 207, },
{ 0x5050, 206, },
{ 0x5200, 205, },
{ 0x53c0, 204, },
{ 0x5450, 203, },
{ 0x5650, 202, },
{ 0x5820, 201, },
{ 0x6000, 200, },
{ 0xffff, 0, },
};
/* QAM256 SNR lookup table */
static struct qam256_snr_tab {
u16 val;
u16 data;
} qam256_snr_tab[] = {
{ 0x0001, 0, },
{ 0x0970, 400, },
{ 0x0a90, 390, },
{ 0x0b90, 380, },
{ 0x0d90, 370, },
{ 0x0ff0, 360, },
{ 0x1240, 350, },
{ 0x1345, 348, },
{ 0x13c0, 346, },
{ 0x14c0, 344, },
{ 0x1500, 342, },
{ 0x1610, 340, },
{ 0x1700, 338, },
{ 0x1800, 336, },
{ 0x18b0, 334, },
{ 0x1900, 332, },
{ 0x1ab0, 330, },
{ 0x1bc0, 328, },
{ 0x1cb0, 326, },
{ 0x1db0, 324, },
{ 0x1eb0, 322, },
{ 0x2030, 320, },
{ 0x2200, 318, },
{ 0x2280, 316, },
{ 0x2410, 314, },
{ 0x25b0, 312, },
{ 0x27a0, 310, },
{ 0x2840, 308, },
{ 0x29d0, 306, },
{ 0x2b10, 304, },
{ 0x2d30, 302, },
{ 0x2f20, 300, },
{ 0x30c0, 298, },
{ 0x3260, 297, },
{ 0x32c0, 296, },
{ 0x3300, 295, },
{ 0x33b0, 294, },
{ 0x34b0, 293, },
{ 0x35a0, 292, },
{ 0x3650, 291, },
{ 0x3800, 290, },
{ 0x3900, 289, },
{ 0x3a50, 288, },
{ 0x3b30, 287, },
{ 0x3cb0, 286, },
{ 0x3e20, 285, },
{ 0x3fa0, 284, },
{ 0x40a0, 283, },
{ 0x41c0, 282, },
{ 0x42f0, 281, },
{ 0x44a0, 280, },
{ 0x4600, 279, },
{ 0x47b0, 278, },
{ 0x4900, 277, },
{ 0x4a00, 276, },
{ 0x4ba0, 275, },
{ 0x4d00, 274, },
{ 0x4f00, 273, },
{ 0x5000, 272, },
{ 0x51f0, 272, },
{ 0x53a0, 270, },
{ 0x5520, 269, },
{ 0x5700, 268, },
{ 0x5800, 267, },
{ 0x5a00, 266, },
{ 0x5c00, 265, },
{ 0x5d00, 264, },
{ 0x5f00, 263, },
{ 0x6000, 262, },
{ 0x6200, 261, },
{ 0x6400, 260, },
{ 0xffff, 0, },
};
/* 8 bit registers, 16 bit values */
static int s5h1411_writereg(struct s5h1411_state *state,
u8 addr, u8 reg, u16 data)
{
int ret;
u8 buf[] = { reg, data >> 8, data & 0xff };
struct i2c_msg msg = { .addr = addr, .flags = 0, .buf = buf, .len = 3 };
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1)
printk(KERN_ERR "%s: writereg error 0x%02x 0x%02x 0x%04x, ret == %i)\n",
__func__, addr, reg, data, ret);
return (ret != 1) ? -1 : 0;
}
static u16 s5h1411_readreg(struct s5h1411_state *state, u8 addr, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0, 0 };
struct i2c_msg msg[] = {
{ .addr = addr, .flags = 0, .buf = b0, .len = 1 },
{ .addr = addr, .flags = I2C_M_RD, .buf = b1, .len = 2 } };
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2)
printk(KERN_ERR "%s: readreg error (ret == %i)\n",
__func__, ret);
return (b1[0] << 8) | b1[1];
}
static int s5h1411_softreset(struct dvb_frontend *fe)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s()\n", __func__);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 0);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf7, 1);
return 0;
}
static int s5h1411_set_if_freq(struct dvb_frontend *fe, int KHz)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(%d KHz)\n", __func__, KHz);
switch (KHz) {
case 3250:
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x10d5);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x5342);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x10d9);
break;
case 3500:
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1225);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x1e96);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1225);
break;
case 4000:
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x14bc);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0xb53e);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x14bd);
break;
default:
dprintk("%s(%d KHz) Invalid, defaulting to 5380\n",
__func__, KHz);
/* fall through */
case 5380:
case 44000:
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x38, 0x1be4);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x39, 0x3655);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x2c, 0x1be4);
break;
}
state->if_freq = KHz;
return 0;
}
static int s5h1411_set_mpeg_timing(struct dvb_frontend *fe, int mode)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, mode);
val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbe) & 0xcfff;
switch (mode) {
case S5H1411_MPEGTIMING_CONTINUOUS_INVERTING_CLOCK:
val |= 0x0000;
break;
case S5H1411_MPEGTIMING_CONTINUOUS_NONINVERTING_CLOCK:
dprintk("%s(%d) Mode1 or Defaulting\n", __func__, mode);
val |= 0x1000;
break;
case S5H1411_MPEGTIMING_NONCONTINUOUS_INVERTING_CLOCK:
val |= 0x2000;
break;
case S5H1411_MPEGTIMING_NONCONTINUOUS_NONINVERTING_CLOCK:
val |= 0x3000;
break;
default:
return -EINVAL;
}
/* Configure MPEG Signal Timing charactistics */
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbe, val);
}
static int s5h1411_set_spectralinversion(struct dvb_frontend *fe, int inversion)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, inversion);
val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x24) & ~0x1000;
if (inversion == 1)
val |= 0x1000; /* Inverted */
state->inversion = inversion;
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x24, val);
}
static int s5h1411_set_serialmode(struct dvb_frontend *fe, int serial)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, serial);
val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xbd) & ~0x100;
if (serial == 1)
val |= 0x100;
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xbd, val);
}
static int s5h1411_enable_modulation(struct dvb_frontend *fe,
enum fe_modulation m)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(0x%08x)\n", __func__, m);
if ((state->first_tune == 0) && (m == state->current_modulation)) {
dprintk("%s() Already at desired modulation. Skipping...\n",
__func__);
return 0;
}
switch (m) {
case VSB_8:
dprintk("%s() VSB_8\n", __func__);
s5h1411_set_if_freq(fe, state->config->vsb_if);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x71);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x00);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0xf1);
break;
case QAM_64:
case QAM_256:
case QAM_AUTO:
dprintk("%s() QAM_AUTO (64/256)\n", __func__);
s5h1411_set_if_freq(fe, state->config->qam_if);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0x00, 0x0171);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf6, 0x0001);
s5h1411_writereg(state, S5H1411_I2C_QAM_ADDR, 0x16, 0x1101);
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xcd, 0x00f0);
break;
default:
dprintk("%s() Invalid modulation\n", __func__);
return -EINVAL;
}
state->current_modulation = m;
state->first_tune = 0;
s5h1411_softreset(fe);
return 0;
}
static int s5h1411_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(%d)\n", __func__, enable);
if (enable)
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
else
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 0);
}
static int s5h1411_set_gpio(struct dvb_frontend *fe, int enable)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 val;
dprintk("%s(%d)\n", __func__, enable);
val = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xe0) & ~0x02;
if (enable)
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0,
val | 0x02);
else
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xe0, val);
}
static int s5h1411_set_powerstate(struct dvb_frontend *fe, int enable)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(%d)\n", __func__, enable);
if (enable)
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 1);
else {
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf4, 0);
s5h1411_softreset(fe);
}
return 0;
}
static int s5h1411_sleep(struct dvb_frontend *fe)
{
return s5h1411_set_powerstate(fe, 1);
}
static int s5h1411_register_reset(struct dvb_frontend *fe)
{
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s()\n", __func__);
return s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf3, 0);
}
/* Talk to the demod, set the FEC, GUARD, QAM settings etc */
static int s5h1411_set_frontend(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
struct s5h1411_state *state = fe->demodulator_priv;
dprintk("%s(frequency=%d)\n", __func__, p->frequency);
s5h1411_softreset(fe);
state->current_frequency = p->frequency;
s5h1411_enable_modulation(fe, p->modulation);
if (fe->ops.tuner_ops.set_params) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.set_params(fe);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
/* Issue a reset to the demod so it knows to resync against the
newly tuned frequency */
s5h1411_softreset(fe);
return 0;
}
/* Reset the demod hardware and reset all of the configuration registers
to a default state. */
static int s5h1411_init(struct dvb_frontend *fe)
{
struct s5h1411_state *state = fe->demodulator_priv;
int i;
dprintk("%s()\n", __func__);
s5h1411_set_powerstate(fe, 0);
s5h1411_register_reset(fe);
for (i = 0; i < ARRAY_SIZE(init_tab); i++)
s5h1411_writereg(state, init_tab[i].addr,
init_tab[i].reg,
init_tab[i].data);
/* The datasheet says that after initialisation, VSB is default */
state->current_modulation = VSB_8;
/* Although the datasheet says it's in VSB, empirical evidence
shows problems getting lock on the first tuning request. Make
sure we call enable_modulation the first time around */
state->first_tune = 1;
if (state->config->output_mode == S5H1411_SERIAL_OUTPUT)
/* Serial */
s5h1411_set_serialmode(fe, 1);
else
/* Parallel */
s5h1411_set_serialmode(fe, 0);
s5h1411_set_spectralinversion(fe, state->config->inversion);
s5h1411_set_if_freq(fe, state->config->vsb_if);
s5h1411_set_gpio(fe, state->config->gpio);
s5h1411_set_mpeg_timing(fe, state->config->mpeg_timing);
s5h1411_softreset(fe);
/* Note: Leaving the I2C gate closed. */
s5h1411_i2c_gate_ctrl(fe, 0);
return 0;
}
static int s5h1411_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 reg;
u32 tuner_status = 0;
*status = 0;
/* Register F2 bit 15 = Master Lock, removed */
switch (state->current_modulation) {
case QAM_64:
case QAM_256:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf0);
if (reg & 0x10) /* QAM FEC Lock */
*status |= FE_HAS_SYNC | FE_HAS_LOCK;
if (reg & 0x100) /* QAM EQ Lock */
*status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
break;
case VSB_8:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf2);
if (reg & 0x1000) /* FEC Lock */
*status |= FE_HAS_SYNC | FE_HAS_LOCK;
if (reg & 0x2000) /* EQ Lock */
*status |= FE_HAS_VITERBI | FE_HAS_CARRIER | FE_HAS_SIGNAL;
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x53);
if (reg & 0x1) /* AFC Lock */
*status |= FE_HAS_SIGNAL;
break;
default:
return -EINVAL;
}
switch (state->config->status_mode) {
case S5H1411_DEMODLOCKING:
if (*status & FE_HAS_VITERBI)
*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
break;
case S5H1411_TUNERLOCKING:
/* Get the tuner status */
if (fe->ops.tuner_ops.get_status) {
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
fe->ops.tuner_ops.get_status(fe, &tuner_status);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
}
if (tuner_status)
*status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
break;
}
dprintk("%s() status 0x%08x\n", __func__, *status);
return 0;
}
static int s5h1411_qam256_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(qam256_snr_tab); i++) {
if (v < qam256_snr_tab[i].val) {
*snr = qam256_snr_tab[i].data;
ret = 0;
break;
}
}
return ret;
}
static int s5h1411_qam64_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(qam64_snr_tab); i++) {
if (v < qam64_snr_tab[i].val) {
*snr = qam64_snr_tab[i].data;
ret = 0;
break;
}
}
return ret;
}
static int s5h1411_vsb_lookup_snr(struct dvb_frontend *fe, u16 *snr, u16 v)
{
int i, ret = -EINVAL;
dprintk("%s()\n", __func__);
for (i = 0; i < ARRAY_SIZE(vsb_snr_tab); i++) {
if (v > vsb_snr_tab[i].val) {
*snr = vsb_snr_tab[i].data;
ret = 0;
break;
}
}
dprintk("%s() snr=%d\n", __func__, *snr);
return ret;
}
static int s5h1411_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct s5h1411_state *state = fe->demodulator_priv;
u16 reg;
dprintk("%s()\n", __func__);
switch (state->current_modulation) {
case QAM_64:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
return s5h1411_qam64_lookup_snr(fe, snr, reg);
case QAM_256:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xf1);
return s5h1411_qam256_lookup_snr(fe, snr, reg);
case VSB_8:
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR,
0xf2) & 0x3ff;
return s5h1411_vsb_lookup_snr(fe, snr, reg);
default:
break;
}
return -EINVAL;
}
static int s5h1411_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
/* borrowed from lgdt330x.c
*
* Calculate strength from SNR up to 35dB
* Even though the SNR can go higher than 35dB,
* there is some comfort factor in having a range of
* strong signals that can show at 100%
*/
u16 snr;
u32 tmp;
int ret = s5h1411_read_snr(fe, &snr);
*signal_strength = 0;
if (0 == ret) {
/* The following calculation method was chosen
* purely for the sake of code re-use from the
* other demod drivers that use this method */
/* Convert from SNR in dB * 10 to 8.24 fixed-point */
tmp = (snr * ((1 << 24) / 10));
/* Convert from 8.24 fixed-point to
* scale the range 0 - 35*2^24 into 0 - 65535*/
if (tmp >= 8960 * 0x10000)
*signal_strength = 0xffff;
else
*signal_strength = tmp / 8960;
}
return ret;
}
static int s5h1411_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct s5h1411_state *state = fe->demodulator_priv;
*ucblocks = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0xc9);
return 0;
}
static int s5h1411_read_ber(struct dvb_frontend *fe, u32 *ber)
{
return s5h1411_read_ucblocks(fe, ber);
}
static int s5h1411_get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *p)
{
struct s5h1411_state *state = fe->demodulator_priv;
p->frequency = state->current_frequency;
p->modulation = state->current_modulation;
return 0;
}
static int s5h1411_get_tune_settings(struct dvb_frontend *fe,
struct dvb_frontend_tune_settings *tune)
{
tune->min_delay_ms = 1000;
return 0;
}
static void s5h1411_release(struct dvb_frontend *fe)
{
struct s5h1411_state *state = fe->demodulator_priv;
kfree(state);
}
static const struct dvb_frontend_ops s5h1411_ops;
struct dvb_frontend *s5h1411_attach(const struct s5h1411_config *config,
struct i2c_adapter *i2c)
{
struct s5h1411_state *state = NULL;
u16 reg;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct s5h1411_state), GFP_KERNEL);
if (state == NULL)
goto error;
/* setup the state */
state->config = config;
state->i2c = i2c;
state->current_modulation = VSB_8;
state->inversion = state->config->inversion;
/* check if the demod exists */
reg = s5h1411_readreg(state, S5H1411_I2C_TOP_ADDR, 0x05);
if (reg != 0x0066)
goto error;
/* create dvb_frontend */
memcpy(&state->frontend.ops, &s5h1411_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
if (s5h1411_init(&state->frontend) != 0) {
printk(KERN_ERR "%s: Failed to initialize correctly\n",
__func__);
goto error;
}
/* Note: Leaving the I2C gate open here. */
s5h1411_writereg(state, S5H1411_I2C_TOP_ADDR, 0xf5, 1);
/* Put the device into low-power mode until first use */
s5h1411_set_powerstate(&state->frontend, 1);
return &state->frontend;
error:
kfree(state);
return NULL;
}
EXPORT_SYMBOL(s5h1411_attach);
static const struct dvb_frontend_ops s5h1411_ops = {
.delsys = { SYS_ATSC, SYS_DVBC_ANNEX_B },
.info = {
.name = "Samsung S5H1411 QAM/8VSB Frontend",
.frequency_min_hz = 54 * MHz,
.frequency_max_hz = 858 * MHz,
.frequency_stepsize_hz = 62500,
.caps = FE_CAN_QAM_64 | FE_CAN_QAM_256 | FE_CAN_8VSB
},
.init = s5h1411_init,
.sleep = s5h1411_sleep,
.i2c_gate_ctrl = s5h1411_i2c_gate_ctrl,
.set_frontend = s5h1411_set_frontend,
.get_frontend = s5h1411_get_frontend,
.get_tune_settings = s5h1411_get_tune_settings,
.read_status = s5h1411_read_status,
.read_ber = s5h1411_read_ber,
.read_signal_strength = s5h1411_read_signal_strength,
.read_snr = s5h1411_read_snr,
.read_ucblocks = s5h1411_read_ucblocks,
.release = s5h1411_release,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Enable verbose debug messages");
MODULE_DESCRIPTION("Samsung S5H1411 QAM-B/ATSC Demodulator driver");
MODULE_AUTHOR("Steven Toth");
MODULE_LICENSE("GPL");