linux_dsm_epyc7002/drivers/net/ethernet/qlogic/qed/qed_sriov.c
Tomer Tayar c75860e48a qed: Add infrastructure for error detection and recovery
This patch adds the detection and handling of a parity error ("process kill
event"), including the update of the protocol drivers, and the prevention
of any HW access that will lead to device access towards the host while
recovery is in progress.
It also provides the means for the protocol drivers to trigger a recovery
process on their decision.

Signed-off-by: Tomer Tayar <tomer.tayar@cavium.com>
Signed-off-by: Ariel Elior <ariel.elior@cavium.com>
Signed-off-by: Michal Kalderon <michal.kalderon@cavium.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2019-01-22 17:30:38 -08:00

5265 lines
141 KiB
C

/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/etherdevice.h>
#include <linux/crc32.h>
#include <linux/vmalloc.h>
#include <linux/qed/qed_iov_if.h>
#include "qed_cxt.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_int.h"
#include "qed_mcp.h"
#include "qed_reg_addr.h"
#include "qed_sp.h"
#include "qed_sriov.h"
#include "qed_vf.h"
static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
u8 opcode,
__le16 echo,
union event_ring_data *data, u8 fw_return_code);
static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid);
static u8 qed_vf_calculate_legacy(struct qed_vf_info *p_vf)
{
u8 legacy = 0;
if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
ETH_HSI_VER_NO_PKT_LEN_TUNN)
legacy |= QED_QCID_LEGACY_VF_RX_PROD;
if (!(p_vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_QUEUE_QIDS))
legacy |= QED_QCID_LEGACY_VF_CID;
return legacy;
}
/* IOV ramrods */
static int qed_sp_vf_start(struct qed_hwfn *p_hwfn, struct qed_vf_info *p_vf)
{
struct vf_start_ramrod_data *p_ramrod = NULL;
struct qed_spq_entry *p_ent = NULL;
struct qed_sp_init_data init_data;
int rc = -EINVAL;
u8 fp_minor;
/* Get SPQ entry */
memset(&init_data, 0, sizeof(init_data));
init_data.cid = qed_spq_get_cid(p_hwfn);
init_data.opaque_fid = p_vf->opaque_fid;
init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
rc = qed_sp_init_request(p_hwfn, &p_ent,
COMMON_RAMROD_VF_START,
PROTOCOLID_COMMON, &init_data);
if (rc)
return rc;
p_ramrod = &p_ent->ramrod.vf_start;
p_ramrod->vf_id = GET_FIELD(p_vf->concrete_fid, PXP_CONCRETE_FID_VFID);
p_ramrod->opaque_fid = cpu_to_le16(p_vf->opaque_fid);
switch (p_hwfn->hw_info.personality) {
case QED_PCI_ETH:
p_ramrod->personality = PERSONALITY_ETH;
break;
case QED_PCI_ETH_ROCE:
p_ramrod->personality = PERSONALITY_RDMA_AND_ETH;
break;
default:
DP_NOTICE(p_hwfn, "Unknown VF personality %d\n",
p_hwfn->hw_info.personality);
qed_sp_destroy_request(p_hwfn, p_ent);
return -EINVAL;
}
fp_minor = p_vf->acquire.vfdev_info.eth_fp_hsi_minor;
if (fp_minor > ETH_HSI_VER_MINOR &&
fp_minor != ETH_HSI_VER_NO_PKT_LEN_TUNN) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF [%d] - Requested fp hsi %02x.%02x which is slightly newer than PF's %02x.%02x; Configuring PFs version\n",
p_vf->abs_vf_id,
ETH_HSI_VER_MAJOR,
fp_minor, ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
fp_minor = ETH_HSI_VER_MINOR;
}
p_ramrod->hsi_fp_ver.major_ver_arr[ETH_VER_KEY] = ETH_HSI_VER_MAJOR;
p_ramrod->hsi_fp_ver.minor_ver_arr[ETH_VER_KEY] = fp_minor;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] - Starting using HSI %02x.%02x\n",
p_vf->abs_vf_id, ETH_HSI_VER_MAJOR, fp_minor);
return qed_spq_post(p_hwfn, p_ent, NULL);
}
static int qed_sp_vf_stop(struct qed_hwfn *p_hwfn,
u32 concrete_vfid, u16 opaque_vfid)
{
struct vf_stop_ramrod_data *p_ramrod = NULL;
struct qed_spq_entry *p_ent = NULL;
struct qed_sp_init_data init_data;
int rc = -EINVAL;
/* Get SPQ entry */
memset(&init_data, 0, sizeof(init_data));
init_data.cid = qed_spq_get_cid(p_hwfn);
init_data.opaque_fid = opaque_vfid;
init_data.comp_mode = QED_SPQ_MODE_EBLOCK;
rc = qed_sp_init_request(p_hwfn, &p_ent,
COMMON_RAMROD_VF_STOP,
PROTOCOLID_COMMON, &init_data);
if (rc)
return rc;
p_ramrod = &p_ent->ramrod.vf_stop;
p_ramrod->vf_id = GET_FIELD(concrete_vfid, PXP_CONCRETE_FID_VFID);
return qed_spq_post(p_hwfn, p_ent, NULL);
}
bool qed_iov_is_valid_vfid(struct qed_hwfn *p_hwfn,
int rel_vf_id,
bool b_enabled_only, bool b_non_malicious)
{
if (!p_hwfn->pf_iov_info) {
DP_NOTICE(p_hwfn->cdev, "No iov info\n");
return false;
}
if ((rel_vf_id >= p_hwfn->cdev->p_iov_info->total_vfs) ||
(rel_vf_id < 0))
return false;
if ((!p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_init) &&
b_enabled_only)
return false;
if ((p_hwfn->pf_iov_info->vfs_array[rel_vf_id].b_malicious) &&
b_non_malicious)
return false;
return true;
}
static struct qed_vf_info *qed_iov_get_vf_info(struct qed_hwfn *p_hwfn,
u16 relative_vf_id,
bool b_enabled_only)
{
struct qed_vf_info *vf = NULL;
if (!p_hwfn->pf_iov_info) {
DP_NOTICE(p_hwfn->cdev, "No iov info\n");
return NULL;
}
if (qed_iov_is_valid_vfid(p_hwfn, relative_vf_id,
b_enabled_only, false))
vf = &p_hwfn->pf_iov_info->vfs_array[relative_vf_id];
else
DP_ERR(p_hwfn, "qed_iov_get_vf_info: VF[%d] is not enabled\n",
relative_vf_id);
return vf;
}
static struct qed_queue_cid *
qed_iov_get_vf_rx_queue_cid(struct qed_vf_queue *p_queue)
{
int i;
for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
if (p_queue->cids[i].p_cid && !p_queue->cids[i].b_is_tx)
return p_queue->cids[i].p_cid;
}
return NULL;
}
enum qed_iov_validate_q_mode {
QED_IOV_VALIDATE_Q_NA,
QED_IOV_VALIDATE_Q_ENABLE,
QED_IOV_VALIDATE_Q_DISABLE,
};
static bool qed_iov_validate_queue_mode(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
u16 qid,
enum qed_iov_validate_q_mode mode,
bool b_is_tx)
{
int i;
if (mode == QED_IOV_VALIDATE_Q_NA)
return true;
for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
struct qed_vf_queue_cid *p_qcid;
p_qcid = &p_vf->vf_queues[qid].cids[i];
if (!p_qcid->p_cid)
continue;
if (p_qcid->b_is_tx != b_is_tx)
continue;
return mode == QED_IOV_VALIDATE_Q_ENABLE;
}
/* In case we haven't found any valid cid, then its disabled */
return mode == QED_IOV_VALIDATE_Q_DISABLE;
}
static bool qed_iov_validate_rxq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
u16 rx_qid,
enum qed_iov_validate_q_mode mode)
{
if (rx_qid >= p_vf->num_rxqs) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[0x%02x] - can't touch Rx queue[%04x]; Only 0x%04x are allocated\n",
p_vf->abs_vf_id, rx_qid, p_vf->num_rxqs);
return false;
}
return qed_iov_validate_queue_mode(p_hwfn, p_vf, rx_qid, mode, false);
}
static bool qed_iov_validate_txq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
u16 tx_qid,
enum qed_iov_validate_q_mode mode)
{
if (tx_qid >= p_vf->num_txqs) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[0x%02x] - can't touch Tx queue[%04x]; Only 0x%04x are allocated\n",
p_vf->abs_vf_id, tx_qid, p_vf->num_txqs);
return false;
}
return qed_iov_validate_queue_mode(p_hwfn, p_vf, tx_qid, mode, true);
}
static bool qed_iov_validate_sb(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, u16 sb_idx)
{
int i;
for (i = 0; i < p_vf->num_sbs; i++)
if (p_vf->igu_sbs[i] == sb_idx)
return true;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[0%02x] - tried using sb_idx %04x which doesn't exist as one of its 0x%02x SBs\n",
p_vf->abs_vf_id, sb_idx, p_vf->num_sbs);
return false;
}
static bool qed_iov_validate_active_rxq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf)
{
u8 i;
for (i = 0; i < p_vf->num_rxqs; i++)
if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
QED_IOV_VALIDATE_Q_ENABLE,
false))
return true;
return false;
}
static bool qed_iov_validate_active_txq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf)
{
u8 i;
for (i = 0; i < p_vf->num_txqs; i++)
if (qed_iov_validate_queue_mode(p_hwfn, p_vf, i,
QED_IOV_VALIDATE_Q_ENABLE,
true))
return true;
return false;
}
static int qed_iov_post_vf_bulletin(struct qed_hwfn *p_hwfn,
int vfid, struct qed_ptt *p_ptt)
{
struct qed_bulletin_content *p_bulletin;
int crc_size = sizeof(p_bulletin->crc);
struct qed_dmae_params params;
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf)
return -EINVAL;
if (!p_vf->vf_bulletin)
return -EINVAL;
p_bulletin = p_vf->bulletin.p_virt;
/* Increment bulletin board version and compute crc */
p_bulletin->version++;
p_bulletin->crc = crc32(0, (u8 *)p_bulletin + crc_size,
p_vf->bulletin.size - crc_size);
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Posting Bulletin 0x%08x to VF[%d] (CRC 0x%08x)\n",
p_bulletin->version, p_vf->relative_vf_id, p_bulletin->crc);
/* propagate bulletin board via dmae to vm memory */
memset(&params, 0, sizeof(params));
params.flags = QED_DMAE_FLAG_VF_DST;
params.dst_vfid = p_vf->abs_vf_id;
return qed_dmae_host2host(p_hwfn, p_ptt, p_vf->bulletin.phys,
p_vf->vf_bulletin, p_vf->bulletin.size / 4,
&params);
}
static int qed_iov_pci_cfg_info(struct qed_dev *cdev)
{
struct qed_hw_sriov_info *iov = cdev->p_iov_info;
int pos = iov->pos;
DP_VERBOSE(cdev, QED_MSG_IOV, "sriov ext pos %d\n", pos);
pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_CTRL, &iov->ctrl);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_TOTAL_VF, &iov->total_vfs);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_INITIAL_VF, &iov->initial_vfs);
pci_read_config_word(cdev->pdev, pos + PCI_SRIOV_NUM_VF, &iov->num_vfs);
if (iov->num_vfs) {
DP_VERBOSE(cdev,
QED_MSG_IOV,
"Number of VFs are already set to non-zero value. Ignoring PCI configuration value\n");
iov->num_vfs = 0;
}
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_OFFSET, &iov->offset);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_STRIDE, &iov->stride);
pci_read_config_word(cdev->pdev,
pos + PCI_SRIOV_VF_DID, &iov->vf_device_id);
pci_read_config_dword(cdev->pdev,
pos + PCI_SRIOV_SUP_PGSIZE, &iov->pgsz);
pci_read_config_dword(cdev->pdev, pos + PCI_SRIOV_CAP, &iov->cap);
pci_read_config_byte(cdev->pdev, pos + PCI_SRIOV_FUNC_LINK, &iov->link);
DP_VERBOSE(cdev,
QED_MSG_IOV,
"IOV info: nres %d, cap 0x%x, ctrl 0x%x, total %d, initial %d, num vfs %d, offset %d, stride %d, page size 0x%x\n",
iov->nres,
iov->cap,
iov->ctrl,
iov->total_vfs,
iov->initial_vfs,
iov->nr_virtfn, iov->offset, iov->stride, iov->pgsz);
/* Some sanity checks */
if (iov->num_vfs > NUM_OF_VFS(cdev) ||
iov->total_vfs > NUM_OF_VFS(cdev)) {
/* This can happen only due to a bug. In this case we set
* num_vfs to zero to avoid memory corruption in the code that
* assumes max number of vfs
*/
DP_NOTICE(cdev,
"IOV: Unexpected number of vfs set: %d setting num_vf to zero\n",
iov->num_vfs);
iov->num_vfs = 0;
iov->total_vfs = 0;
}
return 0;
}
static void qed_iov_setup_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
struct qed_bulletin_content *p_bulletin_virt;
dma_addr_t req_p, rply_p, bulletin_p;
union pfvf_tlvs *p_reply_virt_addr;
union vfpf_tlvs *p_req_virt_addr;
u8 idx = 0;
memset(p_iov_info->vfs_array, 0, sizeof(p_iov_info->vfs_array));
p_req_virt_addr = p_iov_info->mbx_msg_virt_addr;
req_p = p_iov_info->mbx_msg_phys_addr;
p_reply_virt_addr = p_iov_info->mbx_reply_virt_addr;
rply_p = p_iov_info->mbx_reply_phys_addr;
p_bulletin_virt = p_iov_info->p_bulletins;
bulletin_p = p_iov_info->bulletins_phys;
if (!p_req_virt_addr || !p_reply_virt_addr || !p_bulletin_virt) {
DP_ERR(p_hwfn,
"qed_iov_setup_vfdb called without allocating mem first\n");
return;
}
for (idx = 0; idx < p_iov->total_vfs; idx++) {
struct qed_vf_info *vf = &p_iov_info->vfs_array[idx];
u32 concrete;
vf->vf_mbx.req_virt = p_req_virt_addr + idx;
vf->vf_mbx.req_phys = req_p + idx * sizeof(union vfpf_tlvs);
vf->vf_mbx.reply_virt = p_reply_virt_addr + idx;
vf->vf_mbx.reply_phys = rply_p + idx * sizeof(union pfvf_tlvs);
vf->state = VF_STOPPED;
vf->b_init = false;
vf->bulletin.phys = idx *
sizeof(struct qed_bulletin_content) +
bulletin_p;
vf->bulletin.p_virt = p_bulletin_virt + idx;
vf->bulletin.size = sizeof(struct qed_bulletin_content);
vf->relative_vf_id = idx;
vf->abs_vf_id = idx + p_iov->first_vf_in_pf;
concrete = qed_vfid_to_concrete(p_hwfn, vf->abs_vf_id);
vf->concrete_fid = concrete;
vf->opaque_fid = (p_hwfn->hw_info.opaque_fid & 0xff) |
(vf->abs_vf_id << 8);
vf->vport_id = idx + 1;
vf->num_mac_filters = QED_ETH_VF_NUM_MAC_FILTERS;
vf->num_vlan_filters = QED_ETH_VF_NUM_VLAN_FILTERS;
}
}
static int qed_iov_allocate_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
void **p_v_addr;
u16 num_vfs = 0;
num_vfs = p_hwfn->cdev->p_iov_info->total_vfs;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"qed_iov_allocate_vfdb for %d VFs\n", num_vfs);
/* Allocate PF Mailbox buffer (per-VF) */
p_iov_info->mbx_msg_size = sizeof(union vfpf_tlvs) * num_vfs;
p_v_addr = &p_iov_info->mbx_msg_virt_addr;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_msg_size,
&p_iov_info->mbx_msg_phys_addr,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
/* Allocate PF Mailbox Reply buffer (per-VF) */
p_iov_info->mbx_reply_size = sizeof(union pfvf_tlvs) * num_vfs;
p_v_addr = &p_iov_info->mbx_reply_virt_addr;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_reply_size,
&p_iov_info->mbx_reply_phys_addr,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
p_iov_info->bulletins_size = sizeof(struct qed_bulletin_content) *
num_vfs;
p_v_addr = &p_iov_info->p_bulletins;
*p_v_addr = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->bulletins_size,
&p_iov_info->bulletins_phys,
GFP_KERNEL);
if (!*p_v_addr)
return -ENOMEM;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"PF's Requests mailbox [%p virt 0x%llx phys], Response mailbox [%p virt 0x%llx phys] Bulletins [%p virt 0x%llx phys]\n",
p_iov_info->mbx_msg_virt_addr,
(u64) p_iov_info->mbx_msg_phys_addr,
p_iov_info->mbx_reply_virt_addr,
(u64) p_iov_info->mbx_reply_phys_addr,
p_iov_info->p_bulletins, (u64) p_iov_info->bulletins_phys);
return 0;
}
static void qed_iov_free_vfdb(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_iov_info = p_hwfn->pf_iov_info;
if (p_hwfn->pf_iov_info->mbx_msg_virt_addr)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_msg_size,
p_iov_info->mbx_msg_virt_addr,
p_iov_info->mbx_msg_phys_addr);
if (p_hwfn->pf_iov_info->mbx_reply_virt_addr)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->mbx_reply_size,
p_iov_info->mbx_reply_virt_addr,
p_iov_info->mbx_reply_phys_addr);
if (p_iov_info->p_bulletins)
dma_free_coherent(&p_hwfn->cdev->pdev->dev,
p_iov_info->bulletins_size,
p_iov_info->p_bulletins,
p_iov_info->bulletins_phys);
}
int qed_iov_alloc(struct qed_hwfn *p_hwfn)
{
struct qed_pf_iov *p_sriov;
if (!IS_PF_SRIOV(p_hwfn)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"No SR-IOV - no need for IOV db\n");
return 0;
}
p_sriov = kzalloc(sizeof(*p_sriov), GFP_KERNEL);
if (!p_sriov)
return -ENOMEM;
p_hwfn->pf_iov_info = p_sriov;
qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON,
qed_sriov_eqe_event);
return qed_iov_allocate_vfdb(p_hwfn);
}
void qed_iov_setup(struct qed_hwfn *p_hwfn)
{
if (!IS_PF_SRIOV(p_hwfn) || !IS_PF_SRIOV_ALLOC(p_hwfn))
return;
qed_iov_setup_vfdb(p_hwfn);
}
void qed_iov_free(struct qed_hwfn *p_hwfn)
{
qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON);
if (IS_PF_SRIOV_ALLOC(p_hwfn)) {
qed_iov_free_vfdb(p_hwfn);
kfree(p_hwfn->pf_iov_info);
}
}
void qed_iov_free_hw_info(struct qed_dev *cdev)
{
kfree(cdev->p_iov_info);
cdev->p_iov_info = NULL;
}
int qed_iov_hw_info(struct qed_hwfn *p_hwfn)
{
struct qed_dev *cdev = p_hwfn->cdev;
int pos;
int rc;
if (IS_VF(p_hwfn->cdev))
return 0;
/* Learn the PCI configuration */
pos = pci_find_ext_capability(p_hwfn->cdev->pdev,
PCI_EXT_CAP_ID_SRIOV);
if (!pos) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No PCIe IOV support\n");
return 0;
}
/* Allocate a new struct for IOV information */
cdev->p_iov_info = kzalloc(sizeof(*cdev->p_iov_info), GFP_KERNEL);
if (!cdev->p_iov_info)
return -ENOMEM;
cdev->p_iov_info->pos = pos;
rc = qed_iov_pci_cfg_info(cdev);
if (rc)
return rc;
/* We want PF IOV to be synonemous with the existance of p_iov_info;
* In case the capability is published but there are no VFs, simply
* de-allocate the struct.
*/
if (!cdev->p_iov_info->total_vfs) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"IOV capabilities, but no VFs are published\n");
kfree(cdev->p_iov_info);
cdev->p_iov_info = NULL;
return 0;
}
/* First VF index based on offset is tricky:
* - If ARI is supported [likely], offset - (16 - pf_id) would
* provide the number for eng0. 2nd engine Vfs would begin
* after the first engine's VFs.
* - If !ARI, VFs would start on next device.
* so offset - (256 - pf_id) would provide the number.
* Utilize the fact that (256 - pf_id) is achieved only by later
* to differentiate between the two.
*/
if (p_hwfn->cdev->p_iov_info->offset < (256 - p_hwfn->abs_pf_id)) {
u32 first = p_hwfn->cdev->p_iov_info->offset +
p_hwfn->abs_pf_id - 16;
cdev->p_iov_info->first_vf_in_pf = first;
if (QED_PATH_ID(p_hwfn))
cdev->p_iov_info->first_vf_in_pf -= MAX_NUM_VFS_BB;
} else {
u32 first = p_hwfn->cdev->p_iov_info->offset +
p_hwfn->abs_pf_id - 256;
cdev->p_iov_info->first_vf_in_pf = first;
}
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"First VF in hwfn 0x%08x\n",
cdev->p_iov_info->first_vf_in_pf);
return 0;
}
static bool _qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn,
int vfid, bool b_fail_malicious)
{
/* Check PF supports sriov */
if (IS_VF(p_hwfn->cdev) || !IS_QED_SRIOV(p_hwfn->cdev) ||
!IS_PF_SRIOV_ALLOC(p_hwfn))
return false;
/* Check VF validity */
if (!qed_iov_is_valid_vfid(p_hwfn, vfid, true, b_fail_malicious))
return false;
return true;
}
static bool qed_iov_pf_sanity_check(struct qed_hwfn *p_hwfn, int vfid)
{
return _qed_iov_pf_sanity_check(p_hwfn, vfid, true);
}
static void qed_iov_set_vf_to_disable(struct qed_dev *cdev,
u16 rel_vf_id, u8 to_disable)
{
struct qed_vf_info *vf;
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
if (!vf)
continue;
vf->to_disable = to_disable;
}
}
static void qed_iov_set_vfs_to_disable(struct qed_dev *cdev, u8 to_disable)
{
u16 i;
if (!IS_QED_SRIOV(cdev))
return;
for (i = 0; i < cdev->p_iov_info->total_vfs; i++)
qed_iov_set_vf_to_disable(cdev, i, to_disable);
}
static void qed_iov_vf_pglue_clear_err(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 abs_vfid)
{
qed_wr(p_hwfn, p_ptt,
PGLUE_B_REG_WAS_ERROR_VF_31_0_CLR + (abs_vfid >> 5) * 4,
1 << (abs_vfid & 0x1f));
}
static void qed_iov_vf_igu_reset(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, struct qed_vf_info *vf)
{
int i;
/* Set VF masks and configuration - pretend */
qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
qed_wr(p_hwfn, p_ptt, IGU_REG_STATISTIC_NUM_VF_MSG_SENT, 0);
/* unpretend */
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
/* iterate over all queues, clear sb consumer */
for (i = 0; i < vf->num_sbs; i++)
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
vf->igu_sbs[i],
vf->opaque_fid, true);
}
static void qed_iov_vf_igu_set_int(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf, bool enable)
{
u32 igu_vf_conf;
qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
igu_vf_conf = qed_rd(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION);
if (enable)
igu_vf_conf |= IGU_VF_CONF_MSI_MSIX_EN;
else
igu_vf_conf &= ~IGU_VF_CONF_MSI_MSIX_EN;
qed_wr(p_hwfn, p_ptt, IGU_REG_VF_CONFIGURATION, igu_vf_conf);
/* unpretend */
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
}
static int
qed_iov_enable_vf_access_msix(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 abs_vf_id, u8 num_sbs)
{
u8 current_max = 0;
int i;
/* For AH onward, configuration is per-PF. Find maximum of all
* the currently enabled child VFs, and set the number to be that.
*/
if (!QED_IS_BB(p_hwfn->cdev)) {
qed_for_each_vf(p_hwfn, i) {
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, (u16)i, true);
if (!p_vf)
continue;
current_max = max_t(u8, current_max, p_vf->num_sbs);
}
}
if (num_sbs > current_max)
return qed_mcp_config_vf_msix(p_hwfn, p_ptt,
abs_vf_id, num_sbs);
return 0;
}
static int qed_iov_enable_vf_access(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
u32 igu_vf_conf = IGU_VF_CONF_FUNC_EN;
int rc;
/* It's possible VF was previously considered malicious -
* clear the indication even if we're only going to disable VF.
*/
vf->b_malicious = false;
if (vf->to_disable)
return 0;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"Enable internal access for vf %x [abs %x]\n",
vf->abs_vf_id, QED_VF_ABS_ID(p_hwfn, vf));
qed_iov_vf_pglue_clear_err(p_hwfn, p_ptt, QED_VF_ABS_ID(p_hwfn, vf));
qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
rc = qed_iov_enable_vf_access_msix(p_hwfn, p_ptt,
vf->abs_vf_id, vf->num_sbs);
if (rc)
return rc;
qed_fid_pretend(p_hwfn, p_ptt, (u16) vf->concrete_fid);
SET_FIELD(igu_vf_conf, IGU_VF_CONF_PARENT, p_hwfn->rel_pf_id);
STORE_RT_REG(p_hwfn, IGU_REG_VF_CONFIGURATION_RT_OFFSET, igu_vf_conf);
qed_init_run(p_hwfn, p_ptt, PHASE_VF, vf->abs_vf_id,
p_hwfn->hw_info.hw_mode);
/* unpretend */
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
vf->state = VF_FREE;
return rc;
}
/**
* @brief qed_iov_config_perm_table - configure the permission
* zone table.
* In E4, queue zone permission table size is 320x9. There
* are 320 VF queues for single engine device (256 for dual
* engine device), and each entry has the following format:
* {Valid, VF[7:0]}
* @param p_hwfn
* @param p_ptt
* @param vf
* @param enable
*/
static void qed_iov_config_perm_table(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf, u8 enable)
{
u32 reg_addr, val;
u16 qzone_id = 0;
int qid;
for (qid = 0; qid < vf->num_rxqs; qid++) {
qed_fw_l2_queue(p_hwfn, vf->vf_queues[qid].fw_rx_qid,
&qzone_id);
reg_addr = PSWHST_REG_ZONE_PERMISSION_TABLE + qzone_id * 4;
val = enable ? (vf->abs_vf_id | BIT(8)) : 0;
qed_wr(p_hwfn, p_ptt, reg_addr, val);
}
}
static void qed_iov_enable_vf_traffic(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
/* Reset vf in IGU - interrupts are still disabled */
qed_iov_vf_igu_reset(p_hwfn, p_ptt, vf);
qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 1);
/* Permission Table */
qed_iov_config_perm_table(p_hwfn, p_ptt, vf, true);
}
static u8 qed_iov_alloc_vf_igu_sbs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf, u16 num_rx_queues)
{
struct qed_igu_block *p_block;
struct cau_sb_entry sb_entry;
int qid = 0;
u32 val = 0;
if (num_rx_queues > p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov)
num_rx_queues = p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov;
p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov -= num_rx_queues;
SET_FIELD(val, IGU_MAPPING_LINE_FUNCTION_NUMBER, vf->abs_vf_id);
SET_FIELD(val, IGU_MAPPING_LINE_VALID, 1);
SET_FIELD(val, IGU_MAPPING_LINE_PF_VALID, 0);
for (qid = 0; qid < num_rx_queues; qid++) {
p_block = qed_get_igu_free_sb(p_hwfn, false);
vf->igu_sbs[qid] = p_block->igu_sb_id;
p_block->status &= ~QED_IGU_STATUS_FREE;
SET_FIELD(val, IGU_MAPPING_LINE_VECTOR_NUMBER, qid);
qed_wr(p_hwfn, p_ptt,
IGU_REG_MAPPING_MEMORY +
sizeof(u32) * p_block->igu_sb_id, val);
/* Configure igu sb in CAU which were marked valid */
qed_init_cau_sb_entry(p_hwfn, &sb_entry,
p_hwfn->rel_pf_id, vf->abs_vf_id, 1);
qed_dmae_host2grc(p_hwfn, p_ptt,
(u64)(uintptr_t)&sb_entry,
CAU_REG_SB_VAR_MEMORY +
p_block->igu_sb_id * sizeof(u64), 2, 0);
}
vf->num_sbs = (u8) num_rx_queues;
return vf->num_sbs;
}
static void qed_iov_free_vf_igu_sbs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_igu_info *p_info = p_hwfn->hw_info.p_igu_info;
int idx, igu_id;
u32 addr, val;
/* Invalidate igu CAM lines and mark them as free */
for (idx = 0; idx < vf->num_sbs; idx++) {
igu_id = vf->igu_sbs[idx];
addr = IGU_REG_MAPPING_MEMORY + sizeof(u32) * igu_id;
val = qed_rd(p_hwfn, p_ptt, addr);
SET_FIELD(val, IGU_MAPPING_LINE_VALID, 0);
qed_wr(p_hwfn, p_ptt, addr, val);
p_info->entry[igu_id].status |= QED_IGU_STATUS_FREE;
p_hwfn->hw_info.p_igu_info->usage.free_cnt_iov++;
}
vf->num_sbs = 0;
}
static void qed_iov_set_link(struct qed_hwfn *p_hwfn,
u16 vfid,
struct qed_mcp_link_params *params,
struct qed_mcp_link_state *link,
struct qed_mcp_link_capabilities *p_caps)
{
struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
vfid,
false);
struct qed_bulletin_content *p_bulletin;
if (!p_vf)
return;
p_bulletin = p_vf->bulletin.p_virt;
p_bulletin->req_autoneg = params->speed.autoneg;
p_bulletin->req_adv_speed = params->speed.advertised_speeds;
p_bulletin->req_forced_speed = params->speed.forced_speed;
p_bulletin->req_autoneg_pause = params->pause.autoneg;
p_bulletin->req_forced_rx = params->pause.forced_rx;
p_bulletin->req_forced_tx = params->pause.forced_tx;
p_bulletin->req_loopback = params->loopback_mode;
p_bulletin->link_up = link->link_up;
p_bulletin->speed = link->speed;
p_bulletin->full_duplex = link->full_duplex;
p_bulletin->autoneg = link->an;
p_bulletin->autoneg_complete = link->an_complete;
p_bulletin->parallel_detection = link->parallel_detection;
p_bulletin->pfc_enabled = link->pfc_enabled;
p_bulletin->partner_adv_speed = link->partner_adv_speed;
p_bulletin->partner_tx_flow_ctrl_en = link->partner_tx_flow_ctrl_en;
p_bulletin->partner_rx_flow_ctrl_en = link->partner_rx_flow_ctrl_en;
p_bulletin->partner_adv_pause = link->partner_adv_pause;
p_bulletin->sfp_tx_fault = link->sfp_tx_fault;
p_bulletin->capability_speed = p_caps->speed_capabilities;
}
static int qed_iov_init_hw_for_vf(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_iov_vf_init_params *p_params)
{
struct qed_mcp_link_capabilities link_caps;
struct qed_mcp_link_params link_params;
struct qed_mcp_link_state link_state;
u8 num_of_vf_avaiable_chains = 0;
struct qed_vf_info *vf = NULL;
u16 qid, num_irqs;
int rc = 0;
u32 cids;
u8 i;
vf = qed_iov_get_vf_info(p_hwfn, p_params->rel_vf_id, false);
if (!vf) {
DP_ERR(p_hwfn, "qed_iov_init_hw_for_vf : vf is NULL\n");
return -EINVAL;
}
if (vf->b_init) {
DP_NOTICE(p_hwfn, "VF[%d] is already active.\n",
p_params->rel_vf_id);
return -EINVAL;
}
/* Perform sanity checking on the requested queue_id */
for (i = 0; i < p_params->num_queues; i++) {
u16 min_vf_qzone = FEAT_NUM(p_hwfn, QED_PF_L2_QUE);
u16 max_vf_qzone = min_vf_qzone +
FEAT_NUM(p_hwfn, QED_VF_L2_QUE) - 1;
qid = p_params->req_rx_queue[i];
if (qid < min_vf_qzone || qid > max_vf_qzone) {
DP_NOTICE(p_hwfn,
"Can't enable Rx qid [%04x] for VF[%d]: qids [0x%04x,...,0x%04x] available\n",
qid,
p_params->rel_vf_id,
min_vf_qzone, max_vf_qzone);
return -EINVAL;
}
qid = p_params->req_tx_queue[i];
if (qid > max_vf_qzone) {
DP_NOTICE(p_hwfn,
"Can't enable Tx qid [%04x] for VF[%d]: max qid 0x%04x\n",
qid, p_params->rel_vf_id, max_vf_qzone);
return -EINVAL;
}
/* If client *really* wants, Tx qid can be shared with PF */
if (qid < min_vf_qzone)
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] is using PF qid [0x%04x] for Txq[0x%02x]\n",
p_params->rel_vf_id, qid, i);
}
/* Limit number of queues according to number of CIDs */
qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, &cids);
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] - requesting to initialize for 0x%04x queues [0x%04x CIDs available]\n",
vf->relative_vf_id, p_params->num_queues, (u16)cids);
num_irqs = min_t(u16, p_params->num_queues, ((u16)cids));
num_of_vf_avaiable_chains = qed_iov_alloc_vf_igu_sbs(p_hwfn,
p_ptt,
vf, num_irqs);
if (!num_of_vf_avaiable_chains) {
DP_ERR(p_hwfn, "no available igu sbs\n");
return -ENOMEM;
}
/* Choose queue number and index ranges */
vf->num_rxqs = num_of_vf_avaiable_chains;
vf->num_txqs = num_of_vf_avaiable_chains;
for (i = 0; i < vf->num_rxqs; i++) {
struct qed_vf_queue *p_queue = &vf->vf_queues[i];
p_queue->fw_rx_qid = p_params->req_rx_queue[i];
p_queue->fw_tx_qid = p_params->req_tx_queue[i];
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] - Q[%d] SB %04x, qid [Rx %04x Tx %04x]\n",
vf->relative_vf_id, i, vf->igu_sbs[i],
p_queue->fw_rx_qid, p_queue->fw_tx_qid);
}
/* Update the link configuration in bulletin */
memcpy(&link_params, qed_mcp_get_link_params(p_hwfn),
sizeof(link_params));
memcpy(&link_state, qed_mcp_get_link_state(p_hwfn), sizeof(link_state));
memcpy(&link_caps, qed_mcp_get_link_capabilities(p_hwfn),
sizeof(link_caps));
qed_iov_set_link(p_hwfn, p_params->rel_vf_id,
&link_params, &link_state, &link_caps);
rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, vf);
if (!rc) {
vf->b_init = true;
if (IS_LEAD_HWFN(p_hwfn))
p_hwfn->cdev->p_iov_info->num_vfs++;
}
return rc;
}
static int qed_iov_release_hw_for_vf(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 rel_vf_id)
{
struct qed_mcp_link_capabilities caps;
struct qed_mcp_link_params params;
struct qed_mcp_link_state link;
struct qed_vf_info *vf = NULL;
vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
if (!vf) {
DP_ERR(p_hwfn, "qed_iov_release_hw_for_vf : vf is NULL\n");
return -EINVAL;
}
if (vf->bulletin.p_virt)
memset(vf->bulletin.p_virt, 0, sizeof(*vf->bulletin.p_virt));
memset(&vf->p_vf_info, 0, sizeof(vf->p_vf_info));
/* Get the link configuration back in bulletin so
* that when VFs are re-enabled they get the actual
* link configuration.
*/
memcpy(&params, qed_mcp_get_link_params(p_hwfn), sizeof(params));
memcpy(&link, qed_mcp_get_link_state(p_hwfn), sizeof(link));
memcpy(&caps, qed_mcp_get_link_capabilities(p_hwfn), sizeof(caps));
qed_iov_set_link(p_hwfn, rel_vf_id, &params, &link, &caps);
/* Forget the VF's acquisition message */
memset(&vf->acquire, 0, sizeof(vf->acquire));
/* disablng interrupts and resetting permission table was done during
* vf-close, however, we could get here without going through vf_close
*/
/* Disable Interrupts for VF */
qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
/* Reset Permission table */
qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
vf->num_rxqs = 0;
vf->num_txqs = 0;
qed_iov_free_vf_igu_sbs(p_hwfn, p_ptt, vf);
if (vf->b_init) {
vf->b_init = false;
if (IS_LEAD_HWFN(p_hwfn))
p_hwfn->cdev->p_iov_info->num_vfs--;
}
return 0;
}
static bool qed_iov_tlv_supported(u16 tlvtype)
{
return CHANNEL_TLV_NONE < tlvtype && tlvtype < CHANNEL_TLV_MAX;
}
/* place a given tlv on the tlv buffer, continuing current tlv list */
void *qed_add_tlv(struct qed_hwfn *p_hwfn, u8 **offset, u16 type, u16 length)
{
struct channel_tlv *tl = (struct channel_tlv *)*offset;
tl->type = type;
tl->length = length;
/* Offset should keep pointing to next TLV (the end of the last) */
*offset += length;
/* Return a pointer to the start of the added tlv */
return *offset - length;
}
/* list the types and lengths of the tlvs on the buffer */
void qed_dp_tlv_list(struct qed_hwfn *p_hwfn, void *tlvs_list)
{
u16 i = 1, total_length = 0;
struct channel_tlv *tlv;
do {
tlv = (struct channel_tlv *)((u8 *)tlvs_list + total_length);
/* output tlv */
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"TLV number %d: type %d, length %d\n",
i, tlv->type, tlv->length);
if (tlv->type == CHANNEL_TLV_LIST_END)
return;
/* Validate entry - protect against malicious VFs */
if (!tlv->length) {
DP_NOTICE(p_hwfn, "TLV of length 0 found\n");
return;
}
total_length += tlv->length;
if (total_length >= sizeof(struct tlv_buffer_size)) {
DP_NOTICE(p_hwfn, "TLV ==> Buffer overflow\n");
return;
}
i++;
} while (1);
}
static void qed_iov_send_response(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
u16 length, u8 status)
{
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct qed_dmae_params params;
u8 eng_vf_id;
mbx->reply_virt->default_resp.hdr.status = status;
qed_dp_tlv_list(p_hwfn, mbx->reply_virt);
eng_vf_id = p_vf->abs_vf_id;
memset(&params, 0, sizeof(struct qed_dmae_params));
params.flags = QED_DMAE_FLAG_VF_DST;
params.dst_vfid = eng_vf_id;
qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys + sizeof(u64),
mbx->req_virt->first_tlv.reply_address +
sizeof(u64),
(sizeof(union pfvf_tlvs) - sizeof(u64)) / 4,
&params);
/* Once PF copies the rc to the VF, the latter can continue
* and send an additional message. So we have to make sure the
* channel would be re-set to ready prior to that.
*/
REG_WR(p_hwfn,
GTT_BAR0_MAP_REG_USDM_RAM +
USTORM_VF_PF_CHANNEL_READY_OFFSET(eng_vf_id), 1);
qed_dmae_host2host(p_hwfn, p_ptt, mbx->reply_phys,
mbx->req_virt->first_tlv.reply_address,
sizeof(u64) / 4, &params);
}
static u16 qed_iov_vport_to_tlv(struct qed_hwfn *p_hwfn,
enum qed_iov_vport_update_flag flag)
{
switch (flag) {
case QED_IOV_VP_UPDATE_ACTIVATE:
return CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
case QED_IOV_VP_UPDATE_VLAN_STRIP:
return CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
case QED_IOV_VP_UPDATE_TX_SWITCH:
return CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
case QED_IOV_VP_UPDATE_MCAST:
return CHANNEL_TLV_VPORT_UPDATE_MCAST;
case QED_IOV_VP_UPDATE_ACCEPT_PARAM:
return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
case QED_IOV_VP_UPDATE_RSS:
return CHANNEL_TLV_VPORT_UPDATE_RSS;
case QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN:
return CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
case QED_IOV_VP_UPDATE_SGE_TPA:
return CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
default:
return 0;
}
}
static u16 qed_iov_prep_vp_update_resp_tlvs(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
struct qed_iov_vf_mbx *p_mbx,
u8 status,
u16 tlvs_mask, u16 tlvs_accepted)
{
struct pfvf_def_resp_tlv *resp;
u16 size, total_len, i;
memset(p_mbx->reply_virt, 0, sizeof(union pfvf_tlvs));
p_mbx->offset = (u8 *)p_mbx->reply_virt;
size = sizeof(struct pfvf_def_resp_tlv);
total_len = size;
qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_VPORT_UPDATE, size);
/* Prepare response for all extended tlvs if they are found by PF */
for (i = 0; i < QED_IOV_VP_UPDATE_MAX; i++) {
if (!(tlvs_mask & BIT(i)))
continue;
resp = qed_add_tlv(p_hwfn, &p_mbx->offset,
qed_iov_vport_to_tlv(p_hwfn, i), size);
if (tlvs_accepted & BIT(i))
resp->hdr.status = status;
else
resp->hdr.status = PFVF_STATUS_NOT_SUPPORTED;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] - vport_update response: TLV %d, status %02x\n",
p_vf->relative_vf_id,
qed_iov_vport_to_tlv(p_hwfn, i), resp->hdr.status);
total_len += size;
}
qed_add_tlv(p_hwfn, &p_mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
return total_len;
}
static void qed_iov_prepare_resp(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf_info,
u16 type, u16 length, u8 status)
{
struct qed_iov_vf_mbx *mbx = &vf_info->vf_mbx;
mbx->offset = (u8 *)mbx->reply_virt;
qed_add_tlv(p_hwfn, &mbx->offset, type, length);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
qed_iov_send_response(p_hwfn, p_ptt, vf_info, length, status);
}
static struct
qed_public_vf_info *qed_iov_get_public_vf_info(struct qed_hwfn *p_hwfn,
u16 relative_vf_id,
bool b_enabled_only)
{
struct qed_vf_info *vf = NULL;
vf = qed_iov_get_vf_info(p_hwfn, relative_vf_id, b_enabled_only);
if (!vf)
return NULL;
return &vf->p_vf_info;
}
static void qed_iov_clean_vf(struct qed_hwfn *p_hwfn, u8 vfid)
{
struct qed_public_vf_info *vf_info;
vf_info = qed_iov_get_public_vf_info(p_hwfn, vfid, false);
if (!vf_info)
return;
/* Clear the VF mac */
eth_zero_addr(vf_info->mac);
vf_info->rx_accept_mode = 0;
vf_info->tx_accept_mode = 0;
}
static void qed_iov_vf_cleanup(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf)
{
u32 i, j;
p_vf->vf_bulletin = 0;
p_vf->vport_instance = 0;
p_vf->configured_features = 0;
/* If VF previously requested less resources, go back to default */
p_vf->num_rxqs = p_vf->num_sbs;
p_vf->num_txqs = p_vf->num_sbs;
p_vf->num_active_rxqs = 0;
for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
for (j = 0; j < MAX_QUEUES_PER_QZONE; j++) {
if (!p_queue->cids[j].p_cid)
continue;
qed_eth_queue_cid_release(p_hwfn,
p_queue->cids[j].p_cid);
p_queue->cids[j].p_cid = NULL;
}
}
memset(&p_vf->shadow_config, 0, sizeof(p_vf->shadow_config));
memset(&p_vf->acquire, 0, sizeof(p_vf->acquire));
qed_iov_clean_vf(p_hwfn, p_vf->relative_vf_id);
}
/* Returns either 0, or log(size) */
static u32 qed_iov_vf_db_bar_size(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_VF_BAR1_SIZE);
if (val)
return val + 11;
return 0;
}
static void
qed_iov_vf_mbx_acquire_resc_cids(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
struct vf_pf_resc_request *p_req,
struct pf_vf_resc *p_resp)
{
u8 num_vf_cons = p_hwfn->pf_params.eth_pf_params.num_vf_cons;
u8 db_size = qed_db_addr_vf(1, DQ_DEMS_LEGACY) -
qed_db_addr_vf(0, DQ_DEMS_LEGACY);
u32 bar_size;
p_resp->num_cids = min_t(u8, p_req->num_cids, num_vf_cons);
/* If VF didn't bother asking for QIDs than don't bother limiting
* number of CIDs. The VF doesn't care about the number, and this
* has the likely result of causing an additional acquisition.
*/
if (!(p_vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_QUEUE_QIDS))
return;
/* If doorbell bar was mapped by VF, limit the VF CIDs to an amount
* that would make sure doorbells for all CIDs fall within the bar.
* If it doesn't, make sure regview window is sufficient.
*/
if (p_vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_PHYSICAL_BAR) {
bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
if (bar_size)
bar_size = 1 << bar_size;
if (p_hwfn->cdev->num_hwfns > 1)
bar_size /= 2;
} else {
bar_size = PXP_VF_BAR0_DQ_LENGTH;
}
if (bar_size / db_size < 256)
p_resp->num_cids = min_t(u8, p_resp->num_cids,
(u8)(bar_size / db_size));
}
static u8 qed_iov_vf_mbx_acquire_resc(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
struct vf_pf_resc_request *p_req,
struct pf_vf_resc *p_resp)
{
u8 i;
/* Queue related information */
p_resp->num_rxqs = p_vf->num_rxqs;
p_resp->num_txqs = p_vf->num_txqs;
p_resp->num_sbs = p_vf->num_sbs;
for (i = 0; i < p_resp->num_sbs; i++) {
p_resp->hw_sbs[i].hw_sb_id = p_vf->igu_sbs[i];
p_resp->hw_sbs[i].sb_qid = 0;
}
/* These fields are filled for backward compatibility.
* Unused by modern vfs.
*/
for (i = 0; i < p_resp->num_rxqs; i++) {
qed_fw_l2_queue(p_hwfn, p_vf->vf_queues[i].fw_rx_qid,
(u16 *)&p_resp->hw_qid[i]);
p_resp->cid[i] = i;
}
/* Filter related information */
p_resp->num_mac_filters = min_t(u8, p_vf->num_mac_filters,
p_req->num_mac_filters);
p_resp->num_vlan_filters = min_t(u8, p_vf->num_vlan_filters,
p_req->num_vlan_filters);
qed_iov_vf_mbx_acquire_resc_cids(p_hwfn, p_ptt, p_vf, p_req, p_resp);
/* This isn't really needed/enforced, but some legacy VFs might depend
* on the correct filling of this field.
*/
p_resp->num_mc_filters = QED_MAX_MC_ADDRS;
/* Validate sufficient resources for VF */
if (p_resp->num_rxqs < p_req->num_rxqs ||
p_resp->num_txqs < p_req->num_txqs ||
p_resp->num_sbs < p_req->num_sbs ||
p_resp->num_mac_filters < p_req->num_mac_filters ||
p_resp->num_vlan_filters < p_req->num_vlan_filters ||
p_resp->num_mc_filters < p_req->num_mc_filters ||
p_resp->num_cids < p_req->num_cids) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] - Insufficient resources: rxq [%02x/%02x] txq [%02x/%02x] sbs [%02x/%02x] mac [%02x/%02x] vlan [%02x/%02x] mc [%02x/%02x] cids [%02x/%02x]\n",
p_vf->abs_vf_id,
p_req->num_rxqs,
p_resp->num_rxqs,
p_req->num_rxqs,
p_resp->num_txqs,
p_req->num_sbs,
p_resp->num_sbs,
p_req->num_mac_filters,
p_resp->num_mac_filters,
p_req->num_vlan_filters,
p_resp->num_vlan_filters,
p_req->num_mc_filters,
p_resp->num_mc_filters,
p_req->num_cids, p_resp->num_cids);
/* Some legacy OSes are incapable of correctly handling this
* failure.
*/
if ((p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
ETH_HSI_VER_NO_PKT_LEN_TUNN) &&
(p_vf->acquire.vfdev_info.os_type ==
VFPF_ACQUIRE_OS_WINDOWS))
return PFVF_STATUS_SUCCESS;
return PFVF_STATUS_NO_RESOURCE;
}
return PFVF_STATUS_SUCCESS;
}
static void qed_iov_vf_mbx_acquire_stats(struct qed_hwfn *p_hwfn,
struct pfvf_stats_info *p_stats)
{
p_stats->mstats.address = PXP_VF_BAR0_START_MSDM_ZONE_B +
offsetof(struct mstorm_vf_zone,
non_trigger.eth_queue_stat);
p_stats->mstats.len = sizeof(struct eth_mstorm_per_queue_stat);
p_stats->ustats.address = PXP_VF_BAR0_START_USDM_ZONE_B +
offsetof(struct ustorm_vf_zone,
non_trigger.eth_queue_stat);
p_stats->ustats.len = sizeof(struct eth_ustorm_per_queue_stat);
p_stats->pstats.address = PXP_VF_BAR0_START_PSDM_ZONE_B +
offsetof(struct pstorm_vf_zone,
non_trigger.eth_queue_stat);
p_stats->pstats.len = sizeof(struct eth_pstorm_per_queue_stat);
p_stats->tstats.address = 0;
p_stats->tstats.len = 0;
}
static void qed_iov_vf_mbx_acquire(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct pfvf_acquire_resp_tlv *resp = &mbx->reply_virt->acquire_resp;
struct pf_vf_pfdev_info *pfdev_info = &resp->pfdev_info;
struct vfpf_acquire_tlv *req = &mbx->req_virt->acquire;
u8 vfpf_status = PFVF_STATUS_NOT_SUPPORTED;
struct pf_vf_resc *resc = &resp->resc;
int rc;
memset(resp, 0, sizeof(*resp));
/* Write the PF version so that VF would know which version
* is supported - might be later overriden. This guarantees that
* VF could recognize legacy PF based on lack of versions in reply.
*/
pfdev_info->major_fp_hsi = ETH_HSI_VER_MAJOR;
pfdev_info->minor_fp_hsi = ETH_HSI_VER_MINOR;
if (vf->state != VF_FREE && vf->state != VF_STOPPED) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] sent ACQUIRE but is already in state %d - fail request\n",
vf->abs_vf_id, vf->state);
goto out;
}
/* Validate FW compatibility */
if (req->vfdev_info.eth_fp_hsi_major != ETH_HSI_VER_MAJOR) {
if (req->vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_PRE_FP_HSI) {
struct vf_pf_vfdev_info *p_vfdev = &req->vfdev_info;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] is pre-fastpath HSI\n",
vf->abs_vf_id);
p_vfdev->eth_fp_hsi_major = ETH_HSI_VER_MAJOR;
p_vfdev->eth_fp_hsi_minor = ETH_HSI_VER_NO_PKT_LEN_TUNN;
} else {
DP_INFO(p_hwfn,
"VF[%d] needs fastpath HSI %02x.%02x, which is incompatible with loaded FW's faspath HSI %02x.%02x\n",
vf->abs_vf_id,
req->vfdev_info.eth_fp_hsi_major,
req->vfdev_info.eth_fp_hsi_minor,
ETH_HSI_VER_MAJOR, ETH_HSI_VER_MINOR);
goto out;
}
}
/* On 100g PFs, prevent old VFs from loading */
if ((p_hwfn->cdev->num_hwfns > 1) &&
!(req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_100G)) {
DP_INFO(p_hwfn,
"VF[%d] is running an old driver that doesn't support 100g\n",
vf->abs_vf_id);
goto out;
}
/* Store the acquire message */
memcpy(&vf->acquire, req, sizeof(vf->acquire));
vf->opaque_fid = req->vfdev_info.opaque_fid;
vf->vf_bulletin = req->bulletin_addr;
vf->bulletin.size = (vf->bulletin.size < req->bulletin_size) ?
vf->bulletin.size : req->bulletin_size;
/* fill in pfdev info */
pfdev_info->chip_num = p_hwfn->cdev->chip_num;
pfdev_info->db_size = 0;
pfdev_info->indices_per_sb = PIS_PER_SB_E4;
pfdev_info->capabilities = PFVF_ACQUIRE_CAP_DEFAULT_UNTAGGED |
PFVF_ACQUIRE_CAP_POST_FW_OVERRIDE;
if (p_hwfn->cdev->num_hwfns > 1)
pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_100G;
/* Share our ability to use multiple queue-ids only with VFs
* that request it.
*/
if (req->vfdev_info.capabilities & VFPF_ACQUIRE_CAP_QUEUE_QIDS)
pfdev_info->capabilities |= PFVF_ACQUIRE_CAP_QUEUE_QIDS;
/* Share the sizes of the bars with VF */
resp->pfdev_info.bar_size = qed_iov_vf_db_bar_size(p_hwfn, p_ptt);
qed_iov_vf_mbx_acquire_stats(p_hwfn, &pfdev_info->stats_info);
memcpy(pfdev_info->port_mac, p_hwfn->hw_info.hw_mac_addr, ETH_ALEN);
pfdev_info->fw_major = FW_MAJOR_VERSION;
pfdev_info->fw_minor = FW_MINOR_VERSION;
pfdev_info->fw_rev = FW_REVISION_VERSION;
pfdev_info->fw_eng = FW_ENGINEERING_VERSION;
/* Incorrect when legacy, but doesn't matter as legacy isn't reading
* this field.
*/
pfdev_info->minor_fp_hsi = min_t(u8, ETH_HSI_VER_MINOR,
req->vfdev_info.eth_fp_hsi_minor);
pfdev_info->os_type = VFPF_ACQUIRE_OS_LINUX;
qed_mcp_get_mfw_ver(p_hwfn, p_ptt, &pfdev_info->mfw_ver, NULL);
pfdev_info->dev_type = p_hwfn->cdev->type;
pfdev_info->chip_rev = p_hwfn->cdev->chip_rev;
/* Fill resources available to VF; Make sure there are enough to
* satisfy the VF's request.
*/
vfpf_status = qed_iov_vf_mbx_acquire_resc(p_hwfn, p_ptt, vf,
&req->resc_request, resc);
if (vfpf_status != PFVF_STATUS_SUCCESS)
goto out;
/* Start the VF in FW */
rc = qed_sp_vf_start(p_hwfn, vf);
if (rc) {
DP_NOTICE(p_hwfn, "Failed to start VF[%02x]\n", vf->abs_vf_id);
vfpf_status = PFVF_STATUS_FAILURE;
goto out;
}
/* Fill agreed size of bulletin board in response */
resp->bulletin_size = vf->bulletin.size;
qed_iov_post_vf_bulletin(p_hwfn, vf->relative_vf_id, p_ptt);
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] ACQUIRE_RESPONSE: pfdev_info- chip_num=0x%x, db_size=%d, idx_per_sb=%d, pf_cap=0x%llx\n"
"resources- n_rxq-%d, n_txq-%d, n_sbs-%d, n_macs-%d, n_vlans-%d\n",
vf->abs_vf_id,
resp->pfdev_info.chip_num,
resp->pfdev_info.db_size,
resp->pfdev_info.indices_per_sb,
resp->pfdev_info.capabilities,
resc->num_rxqs,
resc->num_txqs,
resc->num_sbs,
resc->num_mac_filters,
resc->num_vlan_filters);
vf->state = VF_ACQUIRED;
/* Prepare Response */
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_ACQUIRE,
sizeof(struct pfvf_acquire_resp_tlv), vfpf_status);
}
static int __qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, bool val)
{
struct qed_sp_vport_update_params params;
int rc;
if (val == p_vf->spoof_chk) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Spoofchk value[%d] is already configured\n", val);
return 0;
}
memset(&params, 0, sizeof(struct qed_sp_vport_update_params));
params.opaque_fid = p_vf->opaque_fid;
params.vport_id = p_vf->vport_id;
params.update_anti_spoofing_en_flg = 1;
params.anti_spoofing_en = val;
rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
if (!rc) {
p_vf->spoof_chk = val;
p_vf->req_spoofchk_val = p_vf->spoof_chk;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Spoofchk val[%d] configured\n", val);
} else {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Spoofchk configuration[val:%d] failed for VF[%d]\n",
val, p_vf->relative_vf_id);
}
return rc;
}
static int qed_iov_reconfigure_unicast_vlan(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf)
{
struct qed_filter_ucast filter;
int rc = 0;
int i;
memset(&filter, 0, sizeof(filter));
filter.is_rx_filter = 1;
filter.is_tx_filter = 1;
filter.vport_to_add_to = p_vf->vport_id;
filter.opcode = QED_FILTER_ADD;
/* Reconfigure vlans */
for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
if (!p_vf->shadow_config.vlans[i].used)
continue;
filter.type = QED_FILTER_VLAN;
filter.vlan = p_vf->shadow_config.vlans[i].vid;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Reconfiguring VLAN [0x%04x] for VF [%04x]\n",
filter.vlan, p_vf->relative_vf_id);
rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
&filter, QED_SPQ_MODE_CB, NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to configure VLAN [%04x] to VF [%04x]\n",
filter.vlan, p_vf->relative_vf_id);
break;
}
}
return rc;
}
static int
qed_iov_reconfigure_unicast_shadow(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, u64 events)
{
int rc = 0;
if ((events & BIT(VLAN_ADDR_FORCED)) &&
!(p_vf->configured_features & (1 << VLAN_ADDR_FORCED)))
rc = qed_iov_reconfigure_unicast_vlan(p_hwfn, p_vf);
return rc;
}
static int qed_iov_configure_vport_forced(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, u64 events)
{
int rc = 0;
struct qed_filter_ucast filter;
if (!p_vf->vport_instance)
return -EINVAL;
if ((events & BIT(MAC_ADDR_FORCED)) ||
p_vf->p_vf_info.is_trusted_configured) {
/* Since there's no way [currently] of removing the MAC,
* we can always assume this means we need to force it.
*/
memset(&filter, 0, sizeof(filter));
filter.type = QED_FILTER_MAC;
filter.opcode = QED_FILTER_REPLACE;
filter.is_rx_filter = 1;
filter.is_tx_filter = 1;
filter.vport_to_add_to = p_vf->vport_id;
ether_addr_copy(filter.mac, p_vf->bulletin.p_virt->mac);
rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
&filter, QED_SPQ_MODE_CB, NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"PF failed to configure MAC for VF\n");
return rc;
}
if (p_vf->p_vf_info.is_trusted_configured)
p_vf->configured_features |=
BIT(VFPF_BULLETIN_MAC_ADDR);
else
p_vf->configured_features |=
BIT(MAC_ADDR_FORCED);
}
if (events & BIT(VLAN_ADDR_FORCED)) {
struct qed_sp_vport_update_params vport_update;
u8 removal;
int i;
memset(&filter, 0, sizeof(filter));
filter.type = QED_FILTER_VLAN;
filter.is_rx_filter = 1;
filter.is_tx_filter = 1;
filter.vport_to_add_to = p_vf->vport_id;
filter.vlan = p_vf->bulletin.p_virt->pvid;
filter.opcode = filter.vlan ? QED_FILTER_REPLACE :
QED_FILTER_FLUSH;
/* Send the ramrod */
rc = qed_sp_eth_filter_ucast(p_hwfn, p_vf->opaque_fid,
&filter, QED_SPQ_MODE_CB, NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"PF failed to configure VLAN for VF\n");
return rc;
}
/* Update the default-vlan & silent vlan stripping */
memset(&vport_update, 0, sizeof(vport_update));
vport_update.opaque_fid = p_vf->opaque_fid;
vport_update.vport_id = p_vf->vport_id;
vport_update.update_default_vlan_enable_flg = 1;
vport_update.default_vlan_enable_flg = filter.vlan ? 1 : 0;
vport_update.update_default_vlan_flg = 1;
vport_update.default_vlan = filter.vlan;
vport_update.update_inner_vlan_removal_flg = 1;
removal = filter.vlan ? 1
: p_vf->shadow_config.inner_vlan_removal;
vport_update.inner_vlan_removal_flg = removal;
vport_update.silent_vlan_removal_flg = filter.vlan ? 1 : 0;
rc = qed_sp_vport_update(p_hwfn,
&vport_update,
QED_SPQ_MODE_EBLOCK, NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"PF failed to configure VF vport for vlan\n");
return rc;
}
/* Update all the Rx queues */
for (i = 0; i < QED_MAX_VF_CHAINS_PER_PF; i++) {
struct qed_vf_queue *p_queue = &p_vf->vf_queues[i];
struct qed_queue_cid *p_cid = NULL;
/* There can be at most 1 Rx queue on qzone. Find it */
p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
if (!p_cid)
continue;
rc = qed_sp_eth_rx_queues_update(p_hwfn,
(void **)&p_cid,
1, 0, 1,
QED_SPQ_MODE_EBLOCK,
NULL);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to send Rx update fo queue[0x%04x]\n",
p_cid->rel.queue_id);
return rc;
}
}
if (filter.vlan)
p_vf->configured_features |= 1 << VLAN_ADDR_FORCED;
else
p_vf->configured_features &= ~BIT(VLAN_ADDR_FORCED);
}
/* If forced features are terminated, we need to configure the shadow
* configuration back again.
*/
if (events)
qed_iov_reconfigure_unicast_shadow(p_hwfn, p_vf, events);
return rc;
}
static void qed_iov_vf_mbx_start_vport(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_sp_vport_start_params params = { 0 };
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct vfpf_vport_start_tlv *start;
u8 status = PFVF_STATUS_SUCCESS;
struct qed_vf_info *vf_info;
u64 *p_bitmap;
int sb_id;
int rc;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vf->relative_vf_id, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev,
"Failed to get VF info, invalid vfid [%d]\n",
vf->relative_vf_id);
return;
}
vf->state = VF_ENABLED;
start = &mbx->req_virt->start_vport;
qed_iov_enable_vf_traffic(p_hwfn, p_ptt, vf);
/* Initialize Status block in CAU */
for (sb_id = 0; sb_id < vf->num_sbs; sb_id++) {
if (!start->sb_addr[sb_id]) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] did not fill the address of SB %d\n",
vf->relative_vf_id, sb_id);
break;
}
qed_int_cau_conf_sb(p_hwfn, p_ptt,
start->sb_addr[sb_id],
vf->igu_sbs[sb_id], vf->abs_vf_id, 1);
}
vf->mtu = start->mtu;
vf->shadow_config.inner_vlan_removal = start->inner_vlan_removal;
/* Take into consideration configuration forced by hypervisor;
* If none is configured, use the supplied VF values [for old
* vfs that would still be fine, since they passed '0' as padding].
*/
p_bitmap = &vf_info->bulletin.p_virt->valid_bitmap;
if (!(*p_bitmap & BIT(VFPF_BULLETIN_UNTAGGED_DEFAULT_FORCED))) {
u8 vf_req = start->only_untagged;
vf_info->bulletin.p_virt->default_only_untagged = vf_req;
*p_bitmap |= 1 << VFPF_BULLETIN_UNTAGGED_DEFAULT;
}
params.tpa_mode = start->tpa_mode;
params.remove_inner_vlan = start->inner_vlan_removal;
params.tx_switching = true;
params.only_untagged = vf_info->bulletin.p_virt->default_only_untagged;
params.drop_ttl0 = false;
params.concrete_fid = vf->concrete_fid;
params.opaque_fid = vf->opaque_fid;
params.vport_id = vf->vport_id;
params.max_buffers_per_cqe = start->max_buffers_per_cqe;
params.mtu = vf->mtu;
params.check_mac = true;
rc = qed_sp_eth_vport_start(p_hwfn, &params);
if (rc) {
DP_ERR(p_hwfn,
"qed_iov_vf_mbx_start_vport returned error %d\n", rc);
status = PFVF_STATUS_FAILURE;
} else {
vf->vport_instance++;
/* Force configuration if needed on the newly opened vport */
qed_iov_configure_vport_forced(p_hwfn, vf, *p_bitmap);
__qed_iov_spoofchk_set(p_hwfn, vf, vf->req_spoofchk_val);
}
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_START,
sizeof(struct pfvf_def_resp_tlv), status);
}
static void qed_iov_vf_mbx_stop_vport(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
u8 status = PFVF_STATUS_SUCCESS;
int rc;
vf->vport_instance--;
vf->spoof_chk = false;
if ((qed_iov_validate_active_rxq(p_hwfn, vf)) ||
(qed_iov_validate_active_txq(p_hwfn, vf))) {
vf->b_malicious = true;
DP_NOTICE(p_hwfn,
"VF [%02x] - considered malicious; Unable to stop RX/TX queuess\n",
vf->abs_vf_id);
status = PFVF_STATUS_MALICIOUS;
goto out;
}
rc = qed_sp_vport_stop(p_hwfn, vf->opaque_fid, vf->vport_id);
if (rc) {
DP_ERR(p_hwfn, "qed_iov_vf_mbx_stop_vport returned error %d\n",
rc);
status = PFVF_STATUS_FAILURE;
}
/* Forget the configuration on the vport */
vf->configured_features = 0;
memset(&vf->shadow_config, 0, sizeof(vf->shadow_config));
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_VPORT_TEARDOWN,
sizeof(struct pfvf_def_resp_tlv), status);
}
static void qed_iov_vf_mbx_start_rxq_resp(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf,
u8 status, bool b_legacy)
{
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct pfvf_start_queue_resp_tlv *p_tlv;
struct vfpf_start_rxq_tlv *req;
u16 length;
mbx->offset = (u8 *)mbx->reply_virt;
/* Taking a bigger struct instead of adding a TLV to list was a
* mistake, but one which we're now stuck with, as some older
* clients assume the size of the previous response.
*/
if (!b_legacy)
length = sizeof(*p_tlv);
else
length = sizeof(struct pfvf_def_resp_tlv);
p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_RXQ,
length);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
/* Update the TLV with the response */
if ((status == PFVF_STATUS_SUCCESS) && !b_legacy) {
req = &mbx->req_virt->start_rxq;
p_tlv->offset = PXP_VF_BAR0_START_MSDM_ZONE_B +
offsetof(struct mstorm_vf_zone,
non_trigger.eth_rx_queue_producers) +
sizeof(struct eth_rx_prod_data) * req->rx_qid;
}
qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
}
static u8 qed_iov_vf_mbx_qid(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, bool b_is_tx)
{
struct qed_iov_vf_mbx *p_mbx = &p_vf->vf_mbx;
struct vfpf_qid_tlv *p_qid_tlv;
/* Search for the qid if the VF published its going to provide it */
if (!(p_vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_QUEUE_QIDS)) {
if (b_is_tx)
return QED_IOV_LEGACY_QID_TX;
else
return QED_IOV_LEGACY_QID_RX;
}
p_qid_tlv = (struct vfpf_qid_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
CHANNEL_TLV_QID);
if (!p_qid_tlv) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%2x]: Failed to provide qid\n",
p_vf->relative_vf_id);
return QED_IOV_QID_INVALID;
}
if (p_qid_tlv->qid >= MAX_QUEUES_PER_QZONE) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%02x]: Provided qid out-of-bounds %02x\n",
p_vf->relative_vf_id, p_qid_tlv->qid);
return QED_IOV_QID_INVALID;
}
return p_qid_tlv->qid;
}
static void qed_iov_vf_mbx_start_rxq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_queue_start_common_params params;
struct qed_queue_cid_vf_params vf_params;
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
u8 status = PFVF_STATUS_NO_RESOURCE;
u8 qid_usage_idx, vf_legacy = 0;
struct vfpf_start_rxq_tlv *req;
struct qed_vf_queue *p_queue;
struct qed_queue_cid *p_cid;
struct qed_sb_info sb_dummy;
int rc;
req = &mbx->req_virt->start_rxq;
if (!qed_iov_validate_rxq(p_hwfn, vf, req->rx_qid,
QED_IOV_VALIDATE_Q_DISABLE) ||
!qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
goto out;
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
p_queue = &vf->vf_queues[req->rx_qid];
if (p_queue->cids[qid_usage_idx].p_cid)
goto out;
vf_legacy = qed_vf_calculate_legacy(vf);
/* Acquire a new queue-cid */
memset(&params, 0, sizeof(params));
params.queue_id = p_queue->fw_rx_qid;
params.vport_id = vf->vport_id;
params.stats_id = vf->abs_vf_id + 0x10;
/* Since IGU index is passed via sb_info, construct a dummy one */
memset(&sb_dummy, 0, sizeof(sb_dummy));
sb_dummy.igu_sb_id = req->hw_sb;
params.p_sb = &sb_dummy;
params.sb_idx = req->sb_index;
memset(&vf_params, 0, sizeof(vf_params));
vf_params.vfid = vf->relative_vf_id;
vf_params.vf_qid = (u8)req->rx_qid;
vf_params.vf_legacy = vf_legacy;
vf_params.qid_usage_idx = qid_usage_idx;
p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
&params, true, &vf_params);
if (!p_cid)
goto out;
/* Legacy VFs have their Producers in a different location, which they
* calculate on their own and clean the producer prior to this.
*/
if (!(vf_legacy & QED_QCID_LEGACY_VF_RX_PROD))
REG_WR(p_hwfn,
GTT_BAR0_MAP_REG_MSDM_RAM +
MSTORM_ETH_VF_PRODS_OFFSET(vf->abs_vf_id, req->rx_qid),
0);
rc = qed_eth_rxq_start_ramrod(p_hwfn, p_cid,
req->bd_max_bytes,
req->rxq_addr,
req->cqe_pbl_addr, req->cqe_pbl_size);
if (rc) {
status = PFVF_STATUS_FAILURE;
qed_eth_queue_cid_release(p_hwfn, p_cid);
} else {
p_queue->cids[qid_usage_idx].p_cid = p_cid;
p_queue->cids[qid_usage_idx].b_is_tx = false;
status = PFVF_STATUS_SUCCESS;
vf->num_active_rxqs++;
}
out:
qed_iov_vf_mbx_start_rxq_resp(p_hwfn, p_ptt, vf, status,
!!(vf_legacy &
QED_QCID_LEGACY_VF_RX_PROD));
}
static void
qed_iov_pf_update_tun_response(struct pfvf_update_tunn_param_tlv *p_resp,
struct qed_tunnel_info *p_tun,
u16 tunn_feature_mask)
{
p_resp->tunn_feature_mask = tunn_feature_mask;
p_resp->vxlan_mode = p_tun->vxlan.b_mode_enabled;
p_resp->l2geneve_mode = p_tun->l2_geneve.b_mode_enabled;
p_resp->ipgeneve_mode = p_tun->ip_geneve.b_mode_enabled;
p_resp->l2gre_mode = p_tun->l2_gre.b_mode_enabled;
p_resp->ipgre_mode = p_tun->l2_gre.b_mode_enabled;
p_resp->vxlan_clss = p_tun->vxlan.tun_cls;
p_resp->l2gre_clss = p_tun->l2_gre.tun_cls;
p_resp->ipgre_clss = p_tun->ip_gre.tun_cls;
p_resp->l2geneve_clss = p_tun->l2_geneve.tun_cls;
p_resp->ipgeneve_clss = p_tun->ip_geneve.tun_cls;
p_resp->geneve_udp_port = p_tun->geneve_port.port;
p_resp->vxlan_udp_port = p_tun->vxlan_port.port;
}
static void
__qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
struct qed_tunn_update_type *p_tun,
enum qed_tunn_mode mask, u8 tun_cls)
{
if (p_req->tun_mode_update_mask & BIT(mask)) {
p_tun->b_update_mode = true;
if (p_req->tunn_mode & BIT(mask))
p_tun->b_mode_enabled = true;
}
p_tun->tun_cls = tun_cls;
}
static void
qed_iov_pf_update_tun_param(struct vfpf_update_tunn_param_tlv *p_req,
struct qed_tunn_update_type *p_tun,
struct qed_tunn_update_udp_port *p_port,
enum qed_tunn_mode mask,
u8 tun_cls, u8 update_port, u16 port)
{
if (update_port) {
p_port->b_update_port = true;
p_port->port = port;
}
__qed_iov_pf_update_tun_param(p_req, p_tun, mask, tun_cls);
}
static bool
qed_iov_pf_validate_tunn_param(struct vfpf_update_tunn_param_tlv *p_req)
{
bool b_update_requested = false;
if (p_req->tun_mode_update_mask || p_req->update_tun_cls ||
p_req->update_geneve_port || p_req->update_vxlan_port)
b_update_requested = true;
return b_update_requested;
}
static void qed_pf_validate_tunn_mode(struct qed_tunn_update_type *tun, int *rc)
{
if (tun->b_update_mode && !tun->b_mode_enabled) {
tun->b_update_mode = false;
*rc = -EINVAL;
}
}
static int
qed_pf_validate_modify_tunn_config(struct qed_hwfn *p_hwfn,
u16 *tun_features, bool *update,
struct qed_tunnel_info *tun_src)
{
struct qed_eth_cb_ops *ops = p_hwfn->cdev->protocol_ops.eth;
struct qed_tunnel_info *tun = &p_hwfn->cdev->tunnel;
u16 bultn_vxlan_port, bultn_geneve_port;
void *cookie = p_hwfn->cdev->ops_cookie;
int i, rc = 0;
*tun_features = p_hwfn->cdev->tunn_feature_mask;
bultn_vxlan_port = tun->vxlan_port.port;
bultn_geneve_port = tun->geneve_port.port;
qed_pf_validate_tunn_mode(&tun_src->vxlan, &rc);
qed_pf_validate_tunn_mode(&tun_src->l2_geneve, &rc);
qed_pf_validate_tunn_mode(&tun_src->ip_geneve, &rc);
qed_pf_validate_tunn_mode(&tun_src->l2_gre, &rc);
qed_pf_validate_tunn_mode(&tun_src->ip_gre, &rc);
if ((tun_src->b_update_rx_cls || tun_src->b_update_tx_cls) &&
(tun_src->vxlan.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
tun_src->l2_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
tun_src->ip_geneve.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
tun_src->l2_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN ||
tun_src->ip_gre.tun_cls != QED_TUNN_CLSS_MAC_VLAN)) {
tun_src->b_update_rx_cls = false;
tun_src->b_update_tx_cls = false;
rc = -EINVAL;
}
if (tun_src->vxlan_port.b_update_port) {
if (tun_src->vxlan_port.port == tun->vxlan_port.port) {
tun_src->vxlan_port.b_update_port = false;
} else {
*update = true;
bultn_vxlan_port = tun_src->vxlan_port.port;
}
}
if (tun_src->geneve_port.b_update_port) {
if (tun_src->geneve_port.port == tun->geneve_port.port) {
tun_src->geneve_port.b_update_port = false;
} else {
*update = true;
bultn_geneve_port = tun_src->geneve_port.port;
}
}
qed_for_each_vf(p_hwfn, i) {
qed_iov_bulletin_set_udp_ports(p_hwfn, i, bultn_vxlan_port,
bultn_geneve_port);
}
qed_schedule_iov(p_hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
ops->ports_update(cookie, bultn_vxlan_port, bultn_geneve_port);
return rc;
}
static void qed_iov_vf_mbx_update_tunn_param(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
struct qed_tunnel_info *p_tun = &p_hwfn->cdev->tunnel;
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct pfvf_update_tunn_param_tlv *p_resp;
struct vfpf_update_tunn_param_tlv *p_req;
u8 status = PFVF_STATUS_SUCCESS;
bool b_update_required = false;
struct qed_tunnel_info tunn;
u16 tunn_feature_mask = 0;
int i, rc = 0;
mbx->offset = (u8 *)mbx->reply_virt;
memset(&tunn, 0, sizeof(tunn));
p_req = &mbx->req_virt->tunn_param_update;
if (!qed_iov_pf_validate_tunn_param(p_req)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"No tunnel update requested by VF\n");
status = PFVF_STATUS_FAILURE;
goto send_resp;
}
tunn.b_update_rx_cls = p_req->update_tun_cls;
tunn.b_update_tx_cls = p_req->update_tun_cls;
qed_iov_pf_update_tun_param(p_req, &tunn.vxlan, &tunn.vxlan_port,
QED_MODE_VXLAN_TUNN, p_req->vxlan_clss,
p_req->update_vxlan_port,
p_req->vxlan_port);
qed_iov_pf_update_tun_param(p_req, &tunn.l2_geneve, &tunn.geneve_port,
QED_MODE_L2GENEVE_TUNN,
p_req->l2geneve_clss,
p_req->update_geneve_port,
p_req->geneve_port);
__qed_iov_pf_update_tun_param(p_req, &tunn.ip_geneve,
QED_MODE_IPGENEVE_TUNN,
p_req->ipgeneve_clss);
__qed_iov_pf_update_tun_param(p_req, &tunn.l2_gre,
QED_MODE_L2GRE_TUNN, p_req->l2gre_clss);
__qed_iov_pf_update_tun_param(p_req, &tunn.ip_gre,
QED_MODE_IPGRE_TUNN, p_req->ipgre_clss);
/* If PF modifies VF's req then it should
* still return an error in case of partial configuration
* or modified configuration as opposed to requested one.
*/
rc = qed_pf_validate_modify_tunn_config(p_hwfn, &tunn_feature_mask,
&b_update_required, &tunn);
if (rc)
status = PFVF_STATUS_FAILURE;
/* If QED client is willing to update anything ? */
if (b_update_required) {
u16 geneve_port;
rc = qed_sp_pf_update_tunn_cfg(p_hwfn, p_ptt, &tunn,
QED_SPQ_MODE_EBLOCK, NULL);
if (rc)
status = PFVF_STATUS_FAILURE;
geneve_port = p_tun->geneve_port.port;
qed_for_each_vf(p_hwfn, i) {
qed_iov_bulletin_set_udp_ports(p_hwfn, i,
p_tun->vxlan_port.port,
geneve_port);
}
}
send_resp:
p_resp = qed_add_tlv(p_hwfn, &mbx->offset,
CHANNEL_TLV_UPDATE_TUNN_PARAM, sizeof(*p_resp));
qed_iov_pf_update_tun_response(p_resp, p_tun, tunn_feature_mask);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
}
static void qed_iov_vf_mbx_start_txq_resp(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf,
u32 cid, u8 status)
{
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct pfvf_start_queue_resp_tlv *p_tlv;
bool b_legacy = false;
u16 length;
mbx->offset = (u8 *)mbx->reply_virt;
/* Taking a bigger struct instead of adding a TLV to list was a
* mistake, but one which we're now stuck with, as some older
* clients assume the size of the previous response.
*/
if (p_vf->acquire.vfdev_info.eth_fp_hsi_minor ==
ETH_HSI_VER_NO_PKT_LEN_TUNN)
b_legacy = true;
if (!b_legacy)
length = sizeof(*p_tlv);
else
length = sizeof(struct pfvf_def_resp_tlv);
p_tlv = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_START_TXQ,
length);
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
/* Update the TLV with the response */
if ((status == PFVF_STATUS_SUCCESS) && !b_legacy)
p_tlv->offset = qed_db_addr_vf(cid, DQ_DEMS_LEGACY);
qed_iov_send_response(p_hwfn, p_ptt, p_vf, length, status);
}
static void qed_iov_vf_mbx_start_txq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_queue_start_common_params params;
struct qed_queue_cid_vf_params vf_params;
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
u8 status = PFVF_STATUS_NO_RESOURCE;
struct vfpf_start_txq_tlv *req;
struct qed_vf_queue *p_queue;
struct qed_queue_cid *p_cid;
struct qed_sb_info sb_dummy;
u8 qid_usage_idx, vf_legacy;
u32 cid = 0;
int rc;
u16 pq;
memset(&params, 0, sizeof(params));
req = &mbx->req_virt->start_txq;
if (!qed_iov_validate_txq(p_hwfn, vf, req->tx_qid,
QED_IOV_VALIDATE_Q_NA) ||
!qed_iov_validate_sb(p_hwfn, vf, req->hw_sb))
goto out;
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
p_queue = &vf->vf_queues[req->tx_qid];
if (p_queue->cids[qid_usage_idx].p_cid)
goto out;
vf_legacy = qed_vf_calculate_legacy(vf);
/* Acquire a new queue-cid */
params.queue_id = p_queue->fw_tx_qid;
params.vport_id = vf->vport_id;
params.stats_id = vf->abs_vf_id + 0x10;
/* Since IGU index is passed via sb_info, construct a dummy one */
memset(&sb_dummy, 0, sizeof(sb_dummy));
sb_dummy.igu_sb_id = req->hw_sb;
params.p_sb = &sb_dummy;
params.sb_idx = req->sb_index;
memset(&vf_params, 0, sizeof(vf_params));
vf_params.vfid = vf->relative_vf_id;
vf_params.vf_qid = (u8)req->tx_qid;
vf_params.vf_legacy = vf_legacy;
vf_params.qid_usage_idx = qid_usage_idx;
p_cid = qed_eth_queue_to_cid(p_hwfn, vf->opaque_fid,
&params, false, &vf_params);
if (!p_cid)
goto out;
pq = qed_get_cm_pq_idx_vf(p_hwfn, vf->relative_vf_id);
rc = qed_eth_txq_start_ramrod(p_hwfn, p_cid,
req->pbl_addr, req->pbl_size, pq);
if (rc) {
status = PFVF_STATUS_FAILURE;
qed_eth_queue_cid_release(p_hwfn, p_cid);
} else {
status = PFVF_STATUS_SUCCESS;
p_queue->cids[qid_usage_idx].p_cid = p_cid;
p_queue->cids[qid_usage_idx].b_is_tx = true;
cid = p_cid->cid;
}
out:
qed_iov_vf_mbx_start_txq_resp(p_hwfn, p_ptt, vf, cid, status);
}
static int qed_iov_vf_stop_rxqs(struct qed_hwfn *p_hwfn,
struct qed_vf_info *vf,
u16 rxq_id,
u8 qid_usage_idx, bool cqe_completion)
{
struct qed_vf_queue *p_queue;
int rc = 0;
if (!qed_iov_validate_rxq(p_hwfn, vf, rxq_id, QED_IOV_VALIDATE_Q_NA)) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] Tried Closing Rx 0x%04x.%02x which is inactive\n",
vf->relative_vf_id, rxq_id, qid_usage_idx);
return -EINVAL;
}
p_queue = &vf->vf_queues[rxq_id];
/* We've validated the index and the existence of the active RXQ -
* now we need to make sure that it's using the correct qid.
*/
if (!p_queue->cids[qid_usage_idx].p_cid ||
p_queue->cids[qid_usage_idx].b_is_tx) {
struct qed_queue_cid *p_cid;
p_cid = qed_iov_get_vf_rx_queue_cid(p_queue);
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d] - Tried Closing Rx 0x%04x.%02x, but Rx is at %04x.%02x\n",
vf->relative_vf_id,
rxq_id, qid_usage_idx, rxq_id, p_cid->qid_usage_idx);
return -EINVAL;
}
/* Now that we know we have a valid Rx-queue - close it */
rc = qed_eth_rx_queue_stop(p_hwfn,
p_queue->cids[qid_usage_idx].p_cid,
false, cqe_completion);
if (rc)
return rc;
p_queue->cids[qid_usage_idx].p_cid = NULL;
vf->num_active_rxqs--;
return 0;
}
static int qed_iov_vf_stop_txqs(struct qed_hwfn *p_hwfn,
struct qed_vf_info *vf,
u16 txq_id, u8 qid_usage_idx)
{
struct qed_vf_queue *p_queue;
int rc = 0;
if (!qed_iov_validate_txq(p_hwfn, vf, txq_id, QED_IOV_VALIDATE_Q_NA))
return -EINVAL;
p_queue = &vf->vf_queues[txq_id];
if (!p_queue->cids[qid_usage_idx].p_cid ||
!p_queue->cids[qid_usage_idx].b_is_tx)
return -EINVAL;
rc = qed_eth_tx_queue_stop(p_hwfn, p_queue->cids[qid_usage_idx].p_cid);
if (rc)
return rc;
p_queue->cids[qid_usage_idx].p_cid = NULL;
return 0;
}
static void qed_iov_vf_mbx_stop_rxqs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
u16 length = sizeof(struct pfvf_def_resp_tlv);
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
u8 status = PFVF_STATUS_FAILURE;
struct vfpf_stop_rxqs_tlv *req;
u8 qid_usage_idx;
int rc;
/* There has never been an official driver that used this interface
* for stopping multiple queues, and it is now considered deprecated.
* Validate this isn't used here.
*/
req = &mbx->req_virt->stop_rxqs;
if (req->num_rxqs != 1) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Odd; VF[%d] tried stopping multiple Rx queues\n",
vf->relative_vf_id);
status = PFVF_STATUS_NOT_SUPPORTED;
goto out;
}
/* Find which qid-index is associated with the queue */
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
rc = qed_iov_vf_stop_rxqs(p_hwfn, vf, req->rx_qid,
qid_usage_idx, req->cqe_completion);
if (!rc)
status = PFVF_STATUS_SUCCESS;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_RXQS,
length, status);
}
static void qed_iov_vf_mbx_stop_txqs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
u16 length = sizeof(struct pfvf_def_resp_tlv);
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
u8 status = PFVF_STATUS_FAILURE;
struct vfpf_stop_txqs_tlv *req;
u8 qid_usage_idx;
int rc;
/* There has never been an official driver that used this interface
* for stopping multiple queues, and it is now considered deprecated.
* Validate this isn't used here.
*/
req = &mbx->req_virt->stop_txqs;
if (req->num_txqs != 1) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Odd; VF[%d] tried stopping multiple Tx queues\n",
vf->relative_vf_id);
status = PFVF_STATUS_NOT_SUPPORTED;
goto out;
}
/* Find which qid-index is associated with the queue */
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, true);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
rc = qed_iov_vf_stop_txqs(p_hwfn, vf, req->tx_qid, qid_usage_idx);
if (!rc)
status = PFVF_STATUS_SUCCESS;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_STOP_TXQS,
length, status);
}
static void qed_iov_vf_mbx_update_rxqs(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_queue_cid *handlers[QED_MAX_VF_CHAINS_PER_PF];
u16 length = sizeof(struct pfvf_def_resp_tlv);
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct vfpf_update_rxq_tlv *req;
u8 status = PFVF_STATUS_FAILURE;
u8 complete_event_flg;
u8 complete_cqe_flg;
u8 qid_usage_idx;
int rc;
u8 i;
req = &mbx->req_virt->update_rxq;
complete_cqe_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_CQE_FLAG);
complete_event_flg = !!(req->flags & VFPF_RXQ_UPD_COMPLETE_EVENT_FLAG);
qid_usage_idx = qed_iov_vf_mbx_qid(p_hwfn, vf, false);
if (qid_usage_idx == QED_IOV_QID_INVALID)
goto out;
/* There shouldn't exist a VF that uses queue-qids yet uses this
* API with multiple Rx queues. Validate this.
*/
if ((vf->acquire.vfdev_info.capabilities &
VFPF_ACQUIRE_CAP_QUEUE_QIDS) && req->num_rxqs != 1) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] supports QIDs but sends multiple queues\n",
vf->relative_vf_id);
goto out;
}
/* Validate inputs - for the legacy case this is still true since
* qid_usage_idx for each Rx queue would be LEGACY_QID_RX.
*/
for (i = req->rx_qid; i < req->rx_qid + req->num_rxqs; i++) {
if (!qed_iov_validate_rxq(p_hwfn, vf, i,
QED_IOV_VALIDATE_Q_NA) ||
!vf->vf_queues[i].cids[qid_usage_idx].p_cid ||
vf->vf_queues[i].cids[qid_usage_idx].b_is_tx) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Incorrect Rxqs [%04x, %02x]\n",
vf->relative_vf_id, req->rx_qid,
req->num_rxqs);
goto out;
}
}
/* Prepare the handlers */
for (i = 0; i < req->num_rxqs; i++) {
u16 qid = req->rx_qid + i;
handlers[i] = vf->vf_queues[qid].cids[qid_usage_idx].p_cid;
}
rc = qed_sp_eth_rx_queues_update(p_hwfn, (void **)&handlers,
req->num_rxqs,
complete_cqe_flg,
complete_event_flg,
QED_SPQ_MODE_EBLOCK, NULL);
if (rc)
goto out;
status = PFVF_STATUS_SUCCESS;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UPDATE_RXQ,
length, status);
}
void *qed_iov_search_list_tlvs(struct qed_hwfn *p_hwfn,
void *p_tlvs_list, u16 req_type)
{
struct channel_tlv *p_tlv = (struct channel_tlv *)p_tlvs_list;
int len = 0;
do {
if (!p_tlv->length) {
DP_NOTICE(p_hwfn, "Zero length TLV found\n");
return NULL;
}
if (p_tlv->type == req_type) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Extended tlv type %d, length %d found\n",
p_tlv->type, p_tlv->length);
return p_tlv;
}
len += p_tlv->length;
p_tlv = (struct channel_tlv *)((u8 *)p_tlv + p_tlv->length);
if ((len + p_tlv->length) > TLV_BUFFER_SIZE) {
DP_NOTICE(p_hwfn, "TLVs has overrun the buffer size\n");
return NULL;
}
} while (p_tlv->type != CHANNEL_TLV_LIST_END);
return NULL;
}
static void
qed_iov_vp_update_act_param(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_activate_tlv *p_act_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACTIVATE;
p_act_tlv = (struct vfpf_vport_update_activate_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_act_tlv)
return;
p_data->update_vport_active_rx_flg = p_act_tlv->update_rx;
p_data->vport_active_rx_flg = p_act_tlv->active_rx;
p_data->update_vport_active_tx_flg = p_act_tlv->update_tx;
p_data->vport_active_tx_flg = p_act_tlv->active_tx;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACTIVATE;
}
static void
qed_iov_vp_update_vlan_param(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_vf_info *p_vf,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_vlan_strip_tlv *p_vlan_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_VLAN_STRIP;
p_vlan_tlv = (struct vfpf_vport_update_vlan_strip_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_vlan_tlv)
return;
p_vf->shadow_config.inner_vlan_removal = p_vlan_tlv->remove_vlan;
/* Ignore the VF request if we're forcing a vlan */
if (!(p_vf->configured_features & BIT(VLAN_ADDR_FORCED))) {
p_data->update_inner_vlan_removal_flg = 1;
p_data->inner_vlan_removal_flg = p_vlan_tlv->remove_vlan;
}
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_VLAN_STRIP;
}
static void
qed_iov_vp_update_tx_switch(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_tx_switch_tlv *p_tx_switch_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_TX_SWITCH;
p_tx_switch_tlv = (struct vfpf_vport_update_tx_switch_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
tlv);
if (!p_tx_switch_tlv)
return;
p_data->update_tx_switching_flg = 1;
p_data->tx_switching_flg = p_tx_switch_tlv->tx_switching;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_TX_SWITCH;
}
static void
qed_iov_vp_update_mcast_bin_param(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_mcast_bin_tlv *p_mcast_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_MCAST;
p_mcast_tlv = (struct vfpf_vport_update_mcast_bin_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_mcast_tlv)
return;
p_data->update_approx_mcast_flg = 1;
memcpy(p_data->bins, p_mcast_tlv->bins,
sizeof(u32) * ETH_MULTICAST_MAC_BINS_IN_REGS);
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_MCAST;
}
static void
qed_iov_vp_update_accept_flag(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct qed_filter_accept_flags *p_flags = &p_data->accept_flags;
struct vfpf_vport_update_accept_param_tlv *p_accept_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_PARAM;
p_accept_tlv = (struct vfpf_vport_update_accept_param_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_accept_tlv)
return;
p_flags->update_rx_mode_config = p_accept_tlv->update_rx_mode;
p_flags->rx_accept_filter = p_accept_tlv->rx_accept_filter;
p_flags->update_tx_mode_config = p_accept_tlv->update_tx_mode;
p_flags->tx_accept_filter = p_accept_tlv->tx_accept_filter;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_PARAM;
}
static void
qed_iov_vp_update_accept_any_vlan(struct qed_hwfn *p_hwfn,
struct qed_sp_vport_update_params *p_data,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_accept_any_vlan_tlv *p_accept_any_vlan;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_ACCEPT_ANY_VLAN;
p_accept_any_vlan = (struct vfpf_vport_update_accept_any_vlan_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt,
tlv);
if (!p_accept_any_vlan)
return;
p_data->accept_any_vlan = p_accept_any_vlan->accept_any_vlan;
p_data->update_accept_any_vlan_flg =
p_accept_any_vlan->update_accept_any_vlan_flg;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_ACCEPT_ANY_VLAN;
}
static void
qed_iov_vp_update_rss_param(struct qed_hwfn *p_hwfn,
struct qed_vf_info *vf,
struct qed_sp_vport_update_params *p_data,
struct qed_rss_params *p_rss,
struct qed_iov_vf_mbx *p_mbx,
u16 *tlvs_mask, u16 *tlvs_accepted)
{
struct vfpf_vport_update_rss_tlv *p_rss_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_RSS;
bool b_reject = false;
u16 table_size;
u16 i, q_idx;
p_rss_tlv = (struct vfpf_vport_update_rss_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_rss_tlv) {
p_data->rss_params = NULL;
return;
}
memset(p_rss, 0, sizeof(struct qed_rss_params));
p_rss->update_rss_config = !!(p_rss_tlv->update_rss_flags &
VFPF_UPDATE_RSS_CONFIG_FLAG);
p_rss->update_rss_capabilities = !!(p_rss_tlv->update_rss_flags &
VFPF_UPDATE_RSS_CAPS_FLAG);
p_rss->update_rss_ind_table = !!(p_rss_tlv->update_rss_flags &
VFPF_UPDATE_RSS_IND_TABLE_FLAG);
p_rss->update_rss_key = !!(p_rss_tlv->update_rss_flags &
VFPF_UPDATE_RSS_KEY_FLAG);
p_rss->rss_enable = p_rss_tlv->rss_enable;
p_rss->rss_eng_id = vf->relative_vf_id + 1;
p_rss->rss_caps = p_rss_tlv->rss_caps;
p_rss->rss_table_size_log = p_rss_tlv->rss_table_size_log;
memcpy(p_rss->rss_key, p_rss_tlv->rss_key, sizeof(p_rss->rss_key));
table_size = min_t(u16, ARRAY_SIZE(p_rss->rss_ind_table),
(1 << p_rss_tlv->rss_table_size_log));
for (i = 0; i < table_size; i++) {
struct qed_queue_cid *p_cid;
q_idx = p_rss_tlv->rss_ind_table[i];
if (!qed_iov_validate_rxq(p_hwfn, vf, q_idx,
QED_IOV_VALIDATE_Q_ENABLE)) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: Omitting RSS due to wrong queue %04x\n",
vf->relative_vf_id, q_idx);
b_reject = true;
goto out;
}
p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[q_idx]);
p_rss->rss_ind_table[i] = p_cid;
}
p_data->rss_params = p_rss;
out:
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_RSS;
if (!b_reject)
*tlvs_accepted |= 1 << QED_IOV_VP_UPDATE_RSS;
}
static void
qed_iov_vp_update_sge_tpa_param(struct qed_hwfn *p_hwfn,
struct qed_vf_info *vf,
struct qed_sp_vport_update_params *p_data,
struct qed_sge_tpa_params *p_sge_tpa,
struct qed_iov_vf_mbx *p_mbx, u16 *tlvs_mask)
{
struct vfpf_vport_update_sge_tpa_tlv *p_sge_tpa_tlv;
u16 tlv = CHANNEL_TLV_VPORT_UPDATE_SGE_TPA;
p_sge_tpa_tlv = (struct vfpf_vport_update_sge_tpa_tlv *)
qed_iov_search_list_tlvs(p_hwfn, p_mbx->req_virt, tlv);
if (!p_sge_tpa_tlv) {
p_data->sge_tpa_params = NULL;
return;
}
memset(p_sge_tpa, 0, sizeof(struct qed_sge_tpa_params));
p_sge_tpa->update_tpa_en_flg =
!!(p_sge_tpa_tlv->update_sge_tpa_flags & VFPF_UPDATE_TPA_EN_FLAG);
p_sge_tpa->update_tpa_param_flg =
!!(p_sge_tpa_tlv->update_sge_tpa_flags &
VFPF_UPDATE_TPA_PARAM_FLAG);
p_sge_tpa->tpa_ipv4_en_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV4_EN_FLAG);
p_sge_tpa->tpa_ipv6_en_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_IPV6_EN_FLAG);
p_sge_tpa->tpa_pkt_split_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_PKT_SPLIT_FLAG);
p_sge_tpa->tpa_hdr_data_split_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_HDR_DATA_SPLIT_FLAG);
p_sge_tpa->tpa_gro_consistent_flg =
!!(p_sge_tpa_tlv->sge_tpa_flags & VFPF_TPA_GRO_CONSIST_FLAG);
p_sge_tpa->tpa_max_aggs_num = p_sge_tpa_tlv->tpa_max_aggs_num;
p_sge_tpa->tpa_max_size = p_sge_tpa_tlv->tpa_max_size;
p_sge_tpa->tpa_min_size_to_start = p_sge_tpa_tlv->tpa_min_size_to_start;
p_sge_tpa->tpa_min_size_to_cont = p_sge_tpa_tlv->tpa_min_size_to_cont;
p_sge_tpa->max_buffers_per_cqe = p_sge_tpa_tlv->max_buffers_per_cqe;
p_data->sge_tpa_params = p_sge_tpa;
*tlvs_mask |= 1 << QED_IOV_VP_UPDATE_SGE_TPA;
}
static int qed_iov_pre_update_vport(struct qed_hwfn *hwfn,
u8 vfid,
struct qed_sp_vport_update_params *params,
u16 *tlvs)
{
u8 mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
struct qed_filter_accept_flags *flags = &params->accept_flags;
struct qed_public_vf_info *vf_info;
/* Untrusted VFs can't even be trusted to know that fact.
* Simply indicate everything is configured fine, and trace
* configuration 'behind their back'.
*/
if (!(*tlvs & BIT(QED_IOV_VP_UPDATE_ACCEPT_PARAM)))
return 0;
vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (flags->update_rx_mode_config) {
vf_info->rx_accept_mode = flags->rx_accept_filter;
if (!vf_info->is_trusted_configured)
flags->rx_accept_filter &= ~mask;
}
if (flags->update_tx_mode_config) {
vf_info->tx_accept_mode = flags->tx_accept_filter;
if (!vf_info->is_trusted_configured)
flags->tx_accept_filter &= ~mask;
}
return 0;
}
static void qed_iov_vf_mbx_vport_update(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_rss_params *p_rss_params = NULL;
struct qed_sp_vport_update_params params;
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct qed_sge_tpa_params sge_tpa_params;
u16 tlvs_mask = 0, tlvs_accepted = 0;
u8 status = PFVF_STATUS_SUCCESS;
u16 length;
int rc;
/* Valiate PF can send such a request */
if (!vf->vport_instance) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"No VPORT instance available for VF[%d], failing vport update\n",
vf->abs_vf_id);
status = PFVF_STATUS_FAILURE;
goto out;
}
p_rss_params = vzalloc(sizeof(*p_rss_params));
if (p_rss_params == NULL) {
status = PFVF_STATUS_FAILURE;
goto out;
}
memset(&params, 0, sizeof(params));
params.opaque_fid = vf->opaque_fid;
params.vport_id = vf->vport_id;
params.rss_params = NULL;
/* Search for extended tlvs list and update values
* from VF in struct qed_sp_vport_update_params.
*/
qed_iov_vp_update_act_param(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_vlan_param(p_hwfn, &params, vf, mbx, &tlvs_mask);
qed_iov_vp_update_tx_switch(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_mcast_bin_param(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_accept_flag(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_accept_any_vlan(p_hwfn, &params, mbx, &tlvs_mask);
qed_iov_vp_update_sge_tpa_param(p_hwfn, vf, &params,
&sge_tpa_params, mbx, &tlvs_mask);
tlvs_accepted = tlvs_mask;
/* Some of the extended TLVs need to be validated first; In that case,
* they can update the mask without updating the accepted [so that
* PF could communicate to VF it has rejected request].
*/
qed_iov_vp_update_rss_param(p_hwfn, vf, &params, p_rss_params,
mbx, &tlvs_mask, &tlvs_accepted);
if (qed_iov_pre_update_vport(p_hwfn, vf->relative_vf_id,
&params, &tlvs_accepted)) {
tlvs_accepted = 0;
status = PFVF_STATUS_NOT_SUPPORTED;
goto out;
}
if (!tlvs_accepted) {
if (tlvs_mask)
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Upper-layer prevents VF vport configuration\n");
else
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"No feature tlvs found for vport update\n");
status = PFVF_STATUS_NOT_SUPPORTED;
goto out;
}
rc = qed_sp_vport_update(p_hwfn, &params, QED_SPQ_MODE_EBLOCK, NULL);
if (rc)
status = PFVF_STATUS_FAILURE;
out:
vfree(p_rss_params);
length = qed_iov_prep_vp_update_resp_tlvs(p_hwfn, vf, mbx, status,
tlvs_mask, tlvs_accepted);
qed_iov_send_response(p_hwfn, p_ptt, vf, length, status);
}
static int qed_iov_vf_update_vlan_shadow(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
struct qed_filter_ucast *p_params)
{
int i;
/* First remove entries and then add new ones */
if (p_params->opcode == QED_FILTER_REMOVE) {
for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
if (p_vf->shadow_config.vlans[i].used &&
p_vf->shadow_config.vlans[i].vid ==
p_params->vlan) {
p_vf->shadow_config.vlans[i].used = false;
break;
}
if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF [%d] - Tries to remove a non-existing vlan\n",
p_vf->relative_vf_id);
return -EINVAL;
}
} else if (p_params->opcode == QED_FILTER_REPLACE ||
p_params->opcode == QED_FILTER_FLUSH) {
for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++)
p_vf->shadow_config.vlans[i].used = false;
}
/* In forced mode, we're willing to remove entries - but we don't add
* new ones.
*/
if (p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED))
return 0;
if (p_params->opcode == QED_FILTER_ADD ||
p_params->opcode == QED_FILTER_REPLACE) {
for (i = 0; i < QED_ETH_VF_NUM_VLAN_FILTERS + 1; i++) {
if (p_vf->shadow_config.vlans[i].used)
continue;
p_vf->shadow_config.vlans[i].used = true;
p_vf->shadow_config.vlans[i].vid = p_params->vlan;
break;
}
if (i == QED_ETH_VF_NUM_VLAN_FILTERS + 1) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF [%d] - Tries to configure more than %d vlan filters\n",
p_vf->relative_vf_id,
QED_ETH_VF_NUM_VLAN_FILTERS + 1);
return -EINVAL;
}
}
return 0;
}
static int qed_iov_vf_update_mac_shadow(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
struct qed_filter_ucast *p_params)
{
int i;
/* If we're in forced-mode, we don't allow any change */
if (p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))
return 0;
/* Don't keep track of shadow copy since we don't intend to restore. */
if (p_vf->p_vf_info.is_trusted_configured)
return 0;
/* First remove entries and then add new ones */
if (p_params->opcode == QED_FILTER_REMOVE) {
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
if (ether_addr_equal(p_vf->shadow_config.macs[i],
p_params->mac)) {
eth_zero_addr(p_vf->shadow_config.macs[i]);
break;
}
}
if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"MAC isn't configured\n");
return -EINVAL;
}
} else if (p_params->opcode == QED_FILTER_REPLACE ||
p_params->opcode == QED_FILTER_FLUSH) {
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++)
eth_zero_addr(p_vf->shadow_config.macs[i]);
}
/* List the new MAC address */
if (p_params->opcode != QED_FILTER_ADD &&
p_params->opcode != QED_FILTER_REPLACE)
return 0;
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
if (is_zero_ether_addr(p_vf->shadow_config.macs[i])) {
ether_addr_copy(p_vf->shadow_config.macs[i],
p_params->mac);
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Added MAC at %d entry in shadow\n", i);
break;
}
}
if (i == QED_ETH_VF_NUM_MAC_FILTERS) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV, "No available place for MAC\n");
return -EINVAL;
}
return 0;
}
static int
qed_iov_vf_update_unicast_shadow(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf,
struct qed_filter_ucast *p_params)
{
int rc = 0;
if (p_params->type == QED_FILTER_MAC) {
rc = qed_iov_vf_update_mac_shadow(p_hwfn, p_vf, p_params);
if (rc)
return rc;
}
if (p_params->type == QED_FILTER_VLAN)
rc = qed_iov_vf_update_vlan_shadow(p_hwfn, p_vf, p_params);
return rc;
}
static int qed_iov_chk_ucast(struct qed_hwfn *hwfn,
int vfid, struct qed_filter_ucast *params)
{
struct qed_public_vf_info *vf;
vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (!vf)
return -EINVAL;
/* No real decision to make; Store the configured MAC */
if (params->type == QED_FILTER_MAC ||
params->type == QED_FILTER_MAC_VLAN) {
ether_addr_copy(vf->mac, params->mac);
if (vf->is_trusted_configured) {
qed_iov_bulletin_set_mac(hwfn, vf->mac, vfid);
/* Update and post bulleitin again */
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
}
return 0;
}
static void qed_iov_vf_mbx_ucast_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_bulletin_content *p_bulletin = vf->bulletin.p_virt;
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct vfpf_ucast_filter_tlv *req;
u8 status = PFVF_STATUS_SUCCESS;
struct qed_filter_ucast params;
int rc;
/* Prepare the unicast filter params */
memset(&params, 0, sizeof(struct qed_filter_ucast));
req = &mbx->req_virt->ucast_filter;
params.opcode = (enum qed_filter_opcode)req->opcode;
params.type = (enum qed_filter_ucast_type)req->type;
params.is_rx_filter = 1;
params.is_tx_filter = 1;
params.vport_to_remove_from = vf->vport_id;
params.vport_to_add_to = vf->vport_id;
memcpy(params.mac, req->mac, ETH_ALEN);
params.vlan = req->vlan;
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: opcode 0x%02x type 0x%02x [%s %s] [vport 0x%02x] MAC %02x:%02x:%02x:%02x:%02x:%02x, vlan 0x%04x\n",
vf->abs_vf_id, params.opcode, params.type,
params.is_rx_filter ? "RX" : "",
params.is_tx_filter ? "TX" : "",
params.vport_to_add_to,
params.mac[0], params.mac[1],
params.mac[2], params.mac[3],
params.mac[4], params.mac[5], params.vlan);
if (!vf->vport_instance) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"No VPORT instance available for VF[%d], failing ucast MAC configuration\n",
vf->abs_vf_id);
status = PFVF_STATUS_FAILURE;
goto out;
}
/* Update shadow copy of the VF configuration */
if (qed_iov_vf_update_unicast_shadow(p_hwfn, vf, &params)) {
status = PFVF_STATUS_FAILURE;
goto out;
}
/* Determine if the unicast filtering is acceptible by PF */
if ((p_bulletin->valid_bitmap & BIT(VLAN_ADDR_FORCED)) &&
(params.type == QED_FILTER_VLAN ||
params.type == QED_FILTER_MAC_VLAN)) {
/* Once VLAN is forced or PVID is set, do not allow
* to add/replace any further VLANs.
*/
if (params.opcode == QED_FILTER_ADD ||
params.opcode == QED_FILTER_REPLACE)
status = PFVF_STATUS_FORCED;
goto out;
}
if ((p_bulletin->valid_bitmap & BIT(MAC_ADDR_FORCED)) &&
(params.type == QED_FILTER_MAC ||
params.type == QED_FILTER_MAC_VLAN)) {
if (!ether_addr_equal(p_bulletin->mac, params.mac) ||
(params.opcode != QED_FILTER_ADD &&
params.opcode != QED_FILTER_REPLACE))
status = PFVF_STATUS_FORCED;
goto out;
}
rc = qed_iov_chk_ucast(p_hwfn, vf->relative_vf_id, &params);
if (rc) {
status = PFVF_STATUS_FAILURE;
goto out;
}
rc = qed_sp_eth_filter_ucast(p_hwfn, vf->opaque_fid, &params,
QED_SPQ_MODE_CB, NULL);
if (rc)
status = PFVF_STATUS_FAILURE;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_UCAST_FILTER,
sizeof(struct pfvf_def_resp_tlv), status);
}
static void qed_iov_vf_mbx_int_cleanup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
int i;
/* Reset the SBs */
for (i = 0; i < vf->num_sbs; i++)
qed_int_igu_init_pure_rt_single(p_hwfn, p_ptt,
vf->igu_sbs[i],
vf->opaque_fid, false);
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_INT_CLEANUP,
sizeof(struct pfvf_def_resp_tlv),
PFVF_STATUS_SUCCESS);
}
static void qed_iov_vf_mbx_close(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, struct qed_vf_info *vf)
{
u16 length = sizeof(struct pfvf_def_resp_tlv);
u8 status = PFVF_STATUS_SUCCESS;
/* Disable Interrupts for VF */
qed_iov_vf_igu_set_int(p_hwfn, p_ptt, vf, 0);
/* Reset Permission table */
qed_iov_config_perm_table(p_hwfn, p_ptt, vf, 0);
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_CLOSE,
length, status);
}
static void qed_iov_vf_mbx_release(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
u16 length = sizeof(struct pfvf_def_resp_tlv);
u8 status = PFVF_STATUS_SUCCESS;
int rc = 0;
qed_iov_vf_cleanup(p_hwfn, p_vf);
if (p_vf->state != VF_STOPPED && p_vf->state != VF_FREE) {
/* Stopping the VF */
rc = qed_sp_vf_stop(p_hwfn, p_vf->concrete_fid,
p_vf->opaque_fid);
if (rc) {
DP_ERR(p_hwfn, "qed_sp_vf_stop returned error %d\n",
rc);
status = PFVF_STATUS_FAILURE;
}
p_vf->state = VF_STOPPED;
}
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf, CHANNEL_TLV_RELEASE,
length, status);
}
static void qed_iov_vf_pf_get_coalesce(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct pfvf_read_coal_resp_tlv *p_resp;
struct vfpf_read_coal_req_tlv *req;
u8 status = PFVF_STATUS_FAILURE;
struct qed_vf_queue *p_queue;
struct qed_queue_cid *p_cid;
u16 coal = 0, qid, i;
bool b_is_rx;
int rc = 0;
mbx->offset = (u8 *)mbx->reply_virt;
req = &mbx->req_virt->read_coal_req;
qid = req->qid;
b_is_rx = req->is_rx ? true : false;
if (b_is_rx) {
if (!qed_iov_validate_rxq(p_hwfn, p_vf, qid,
QED_IOV_VALIDATE_Q_ENABLE)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Invalid Rx queue_id = %d\n",
p_vf->abs_vf_id, qid);
goto send_resp;
}
p_cid = qed_iov_get_vf_rx_queue_cid(&p_vf->vf_queues[qid]);
rc = qed_get_rxq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
if (rc)
goto send_resp;
} else {
if (!qed_iov_validate_txq(p_hwfn, p_vf, qid,
QED_IOV_VALIDATE_Q_ENABLE)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Invalid Tx queue_id = %d\n",
p_vf->abs_vf_id, qid);
goto send_resp;
}
for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
p_queue = &p_vf->vf_queues[qid];
if ((!p_queue->cids[i].p_cid) ||
(!p_queue->cids[i].b_is_tx))
continue;
p_cid = p_queue->cids[i].p_cid;
rc = qed_get_txq_coalesce(p_hwfn, p_ptt, p_cid, &coal);
if (rc)
goto send_resp;
break;
}
}
status = PFVF_STATUS_SUCCESS;
send_resp:
p_resp = qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_COALESCE_READ,
sizeof(*p_resp));
p_resp->coal = coal;
qed_add_tlv(p_hwfn, &mbx->offset, CHANNEL_TLV_LIST_END,
sizeof(struct channel_list_end_tlv));
qed_iov_send_response(p_hwfn, p_ptt, p_vf, sizeof(*p_resp), status);
}
static void qed_iov_vf_pf_set_coalesce(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *vf)
{
struct qed_iov_vf_mbx *mbx = &vf->vf_mbx;
struct vfpf_update_coalesce *req;
u8 status = PFVF_STATUS_FAILURE;
struct qed_queue_cid *p_cid;
u16 rx_coal, tx_coal;
int rc = 0, i;
u16 qid;
req = &mbx->req_virt->update_coalesce;
rx_coal = req->rx_coal;
tx_coal = req->tx_coal;
qid = req->qid;
if (!qed_iov_validate_rxq(p_hwfn, vf, qid,
QED_IOV_VALIDATE_Q_ENABLE) && rx_coal) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Invalid Rx queue_id = %d\n",
vf->abs_vf_id, qid);
goto out;
}
if (!qed_iov_validate_txq(p_hwfn, vf, qid,
QED_IOV_VALIDATE_Q_ENABLE) && tx_coal) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d]: Invalid Tx queue_id = %d\n",
vf->abs_vf_id, qid);
goto out;
}
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: Setting coalesce for VF rx_coal = %d, tx_coal = %d at queue = %d\n",
vf->abs_vf_id, rx_coal, tx_coal, qid);
if (rx_coal) {
p_cid = qed_iov_get_vf_rx_queue_cid(&vf->vf_queues[qid]);
rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
if (rc) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: Unable to set rx queue = %d coalesce\n",
vf->abs_vf_id, vf->vf_queues[qid].fw_rx_qid);
goto out;
}
vf->rx_coal = rx_coal;
}
if (tx_coal) {
struct qed_vf_queue *p_queue = &vf->vf_queues[qid];
for (i = 0; i < MAX_QUEUES_PER_QZONE; i++) {
if (!p_queue->cids[i].p_cid)
continue;
if (!p_queue->cids[i].b_is_tx)
continue;
rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal,
p_queue->cids[i].p_cid);
if (rc) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%d]: Unable to set tx queue coalesce\n",
vf->abs_vf_id);
goto out;
}
}
vf->tx_coal = tx_coal;
}
status = PFVF_STATUS_SUCCESS;
out:
qed_iov_prepare_resp(p_hwfn, p_ptt, vf, CHANNEL_TLV_COALESCE_UPDATE,
sizeof(struct pfvf_def_resp_tlv), status);
}
static int
qed_iov_vf_flr_poll_dorq(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
{
int cnt;
u32 val;
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_vf->concrete_fid);
for (cnt = 0; cnt < 50; cnt++) {
val = qed_rd(p_hwfn, p_ptt, DORQ_REG_VF_USAGE_CNT);
if (!val)
break;
msleep(20);
}
qed_fid_pretend(p_hwfn, p_ptt, (u16) p_hwfn->hw_info.concrete_fid);
if (cnt == 50) {
DP_ERR(p_hwfn,
"VF[%d] - dorq failed to cleanup [usage 0x%08x]\n",
p_vf->abs_vf_id, val);
return -EBUSY;
}
return 0;
}
static int
qed_iov_vf_flr_poll_pbf(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
{
u32 cons[MAX_NUM_VOQS_E4], distance[MAX_NUM_VOQS_E4];
int i, cnt;
/* Read initial consumers & producers */
for (i = 0; i < MAX_NUM_VOQS_E4; i++) {
u32 prod;
cons[i] = qed_rd(p_hwfn, p_ptt,
PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
i * 0x40);
prod = qed_rd(p_hwfn, p_ptt,
PBF_REG_NUM_BLOCKS_ALLOCATED_PROD_VOQ0 +
i * 0x40);
distance[i] = prod - cons[i];
}
/* Wait for consumers to pass the producers */
i = 0;
for (cnt = 0; cnt < 50; cnt++) {
for (; i < MAX_NUM_VOQS_E4; i++) {
u32 tmp;
tmp = qed_rd(p_hwfn, p_ptt,
PBF_REG_NUM_BLOCKS_ALLOCATED_CONS_VOQ0 +
i * 0x40);
if (distance[i] > tmp - cons[i])
break;
}
if (i == MAX_NUM_VOQS_E4)
break;
msleep(20);
}
if (cnt == 50) {
DP_ERR(p_hwfn, "VF[%d] - pbf polling failed on VOQ %d\n",
p_vf->abs_vf_id, i);
return -EBUSY;
}
return 0;
}
static int qed_iov_vf_flr_poll(struct qed_hwfn *p_hwfn,
struct qed_vf_info *p_vf, struct qed_ptt *p_ptt)
{
int rc;
rc = qed_iov_vf_flr_poll_dorq(p_hwfn, p_vf, p_ptt);
if (rc)
return rc;
rc = qed_iov_vf_flr_poll_pbf(p_hwfn, p_vf, p_ptt);
if (rc)
return rc;
return 0;
}
static int
qed_iov_execute_vf_flr_cleanup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 rel_vf_id, u32 *ack_vfs)
{
struct qed_vf_info *p_vf;
int rc = 0;
p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, false);
if (!p_vf)
return 0;
if (p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &
(1ULL << (rel_vf_id % 64))) {
u16 vfid = p_vf->abs_vf_id;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] - Handling FLR\n", vfid);
qed_iov_vf_cleanup(p_hwfn, p_vf);
/* If VF isn't active, no need for anything but SW */
if (!p_vf->b_init)
goto cleanup;
rc = qed_iov_vf_flr_poll(p_hwfn, p_vf, p_ptt);
if (rc)
goto cleanup;
rc = qed_final_cleanup(p_hwfn, p_ptt, vfid, true);
if (rc) {
DP_ERR(p_hwfn, "Failed handle FLR of VF[%d]\n", vfid);
return rc;
}
/* Workaround to make VF-PF channel ready, as FW
* doesn't do that as a part of FLR.
*/
REG_WR(p_hwfn,
GTT_BAR0_MAP_REG_USDM_RAM +
USTORM_VF_PF_CHANNEL_READY_OFFSET(vfid), 1);
/* VF_STOPPED has to be set only after final cleanup
* but prior to re-enabling the VF.
*/
p_vf->state = VF_STOPPED;
rc = qed_iov_enable_vf_access(p_hwfn, p_ptt, p_vf);
if (rc) {
DP_ERR(p_hwfn, "Failed to re-enable VF[%d] acces\n",
vfid);
return rc;
}
cleanup:
/* Mark VF for ack and clean pending state */
if (p_vf->state == VF_RESET)
p_vf->state = VF_STOPPED;
ack_vfs[vfid / 32] |= BIT((vfid % 32));
p_hwfn->pf_iov_info->pending_flr[rel_vf_id / 64] &=
~(1ULL << (rel_vf_id % 64));
p_vf->vf_mbx.b_pending_msg = false;
}
return rc;
}
static int
qed_iov_vf_flr_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 ack_vfs[VF_MAX_STATIC / 32];
int rc = 0;
u16 i;
memset(ack_vfs, 0, sizeof(u32) * (VF_MAX_STATIC / 32));
/* Since BRB <-> PRS interface can't be tested as part of the flr
* polling due to HW limitations, simply sleep a bit. And since
* there's no need to wait per-vf, do it before looping.
*/
msleep(100);
for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++)
qed_iov_execute_vf_flr_cleanup(p_hwfn, p_ptt, i, ack_vfs);
rc = qed_mcp_ack_vf_flr(p_hwfn, p_ptt, ack_vfs);
return rc;
}
bool qed_iov_mark_vf_flr(struct qed_hwfn *p_hwfn, u32 *p_disabled_vfs)
{
bool found = false;
u16 i;
DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Marking FLR-ed VFs\n");
for (i = 0; i < (VF_MAX_STATIC / 32); i++)
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"[%08x,...,%08x]: %08x\n",
i * 32, (i + 1) * 32 - 1, p_disabled_vfs[i]);
if (!p_hwfn->cdev->p_iov_info) {
DP_NOTICE(p_hwfn, "VF flr but no IOV\n");
return false;
}
/* Mark VFs */
for (i = 0; i < p_hwfn->cdev->p_iov_info->total_vfs; i++) {
struct qed_vf_info *p_vf;
u8 vfid;
p_vf = qed_iov_get_vf_info(p_hwfn, i, false);
if (!p_vf)
continue;
vfid = p_vf->abs_vf_id;
if (BIT((vfid % 32)) & p_disabled_vfs[vfid / 32]) {
u64 *p_flr = p_hwfn->pf_iov_info->pending_flr;
u16 rel_vf_id = p_vf->relative_vf_id;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%d] [rel %d] got FLR-ed\n",
vfid, rel_vf_id);
p_vf->state = VF_RESET;
/* No need to lock here, since pending_flr should
* only change here and before ACKing MFw. Since
* MFW will not trigger an additional attention for
* VF flr until ACKs, we're safe.
*/
p_flr[rel_vf_id / 64] |= 1ULL << (rel_vf_id % 64);
found = true;
}
}
return found;
}
static void qed_iov_get_link(struct qed_hwfn *p_hwfn,
u16 vfid,
struct qed_mcp_link_params *p_params,
struct qed_mcp_link_state *p_link,
struct qed_mcp_link_capabilities *p_caps)
{
struct qed_vf_info *p_vf = qed_iov_get_vf_info(p_hwfn,
vfid,
false);
struct qed_bulletin_content *p_bulletin;
if (!p_vf)
return;
p_bulletin = p_vf->bulletin.p_virt;
if (p_params)
__qed_vf_get_link_params(p_hwfn, p_params, p_bulletin);
if (p_link)
__qed_vf_get_link_state(p_hwfn, p_link, p_bulletin);
if (p_caps)
__qed_vf_get_link_caps(p_hwfn, p_caps, p_bulletin);
}
static int
qed_iov_vf_pf_bulletin_update_mac(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_vf_info *p_vf)
{
struct qed_bulletin_content *p_bulletin = p_vf->bulletin.p_virt;
struct qed_iov_vf_mbx *mbx = &p_vf->vf_mbx;
struct vfpf_bulletin_update_mac_tlv *p_req;
u8 status = PFVF_STATUS_SUCCESS;
int rc = 0;
if (!p_vf->p_vf_info.is_trusted_configured) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"Blocking bulletin update request from untrusted VF[%d]\n",
p_vf->abs_vf_id);
status = PFVF_STATUS_NOT_SUPPORTED;
rc = -EINVAL;
goto send_status;
}
p_req = &mbx->req_virt->bulletin_update_mac;
ether_addr_copy(p_bulletin->mac, p_req->mac);
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Updated bulletin of VF[%d] with requested MAC[%pM]\n",
p_vf->abs_vf_id, p_req->mac);
send_status:
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
CHANNEL_TLV_BULLETIN_UPDATE_MAC,
sizeof(struct pfvf_def_resp_tlv), status);
return rc;
}
static void qed_iov_process_mbx_req(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, int vfid)
{
struct qed_iov_vf_mbx *mbx;
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf)
return;
mbx = &p_vf->vf_mbx;
/* qed_iov_process_mbx_request */
if (!mbx->b_pending_msg) {
DP_NOTICE(p_hwfn,
"VF[%02x]: Trying to process mailbox message when none is pending\n",
p_vf->abs_vf_id);
return;
}
mbx->b_pending_msg = false;
mbx->first_tlv = mbx->req_virt->first_tlv;
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF[%02x]: Processing mailbox message [type %04x]\n",
p_vf->abs_vf_id, mbx->first_tlv.tl.type);
/* check if tlv type is known */
if (qed_iov_tlv_supported(mbx->first_tlv.tl.type) &&
!p_vf->b_malicious) {
switch (mbx->first_tlv.tl.type) {
case CHANNEL_TLV_ACQUIRE:
qed_iov_vf_mbx_acquire(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_VPORT_START:
qed_iov_vf_mbx_start_vport(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_VPORT_TEARDOWN:
qed_iov_vf_mbx_stop_vport(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_START_RXQ:
qed_iov_vf_mbx_start_rxq(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_START_TXQ:
qed_iov_vf_mbx_start_txq(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_STOP_RXQS:
qed_iov_vf_mbx_stop_rxqs(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_STOP_TXQS:
qed_iov_vf_mbx_stop_txqs(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_UPDATE_RXQ:
qed_iov_vf_mbx_update_rxqs(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_VPORT_UPDATE:
qed_iov_vf_mbx_vport_update(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_UCAST_FILTER:
qed_iov_vf_mbx_ucast_filter(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_CLOSE:
qed_iov_vf_mbx_close(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_INT_CLEANUP:
qed_iov_vf_mbx_int_cleanup(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_RELEASE:
qed_iov_vf_mbx_release(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_UPDATE_TUNN_PARAM:
qed_iov_vf_mbx_update_tunn_param(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_COALESCE_UPDATE:
qed_iov_vf_pf_set_coalesce(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_COALESCE_READ:
qed_iov_vf_pf_get_coalesce(p_hwfn, p_ptt, p_vf);
break;
case CHANNEL_TLV_BULLETIN_UPDATE_MAC:
qed_iov_vf_pf_bulletin_update_mac(p_hwfn, p_ptt, p_vf);
break;
}
} else if (qed_iov_tlv_supported(mbx->first_tlv.tl.type)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"VF [%02x] - considered malicious; Ignoring TLV [%04x]\n",
p_vf->abs_vf_id, mbx->first_tlv.tl.type);
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
mbx->first_tlv.tl.type,
sizeof(struct pfvf_def_resp_tlv),
PFVF_STATUS_MALICIOUS);
} else {
/* unknown TLV - this may belong to a VF driver from the future
* - a version written after this PF driver was written, which
* supports features unknown as of yet. Too bad since we don't
* support them. Or this may be because someone wrote a crappy
* VF driver and is sending garbage over the channel.
*/
DP_NOTICE(p_hwfn,
"VF[%02x]: unknown TLV. type %04x length %04x padding %08x reply address %llu\n",
p_vf->abs_vf_id,
mbx->first_tlv.tl.type,
mbx->first_tlv.tl.length,
mbx->first_tlv.padding, mbx->first_tlv.reply_address);
/* Try replying in case reply address matches the acquisition's
* posted address.
*/
if (p_vf->acquire.first_tlv.reply_address &&
(mbx->first_tlv.reply_address ==
p_vf->acquire.first_tlv.reply_address)) {
qed_iov_prepare_resp(p_hwfn, p_ptt, p_vf,
mbx->first_tlv.tl.type,
sizeof(struct pfvf_def_resp_tlv),
PFVF_STATUS_NOT_SUPPORTED);
} else {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"VF[%02x]: Can't respond to TLV - no valid reply address\n",
p_vf->abs_vf_id);
}
}
}
static void qed_iov_pf_get_pending_events(struct qed_hwfn *p_hwfn, u64 *events)
{
int i;
memset(events, 0, sizeof(u64) * QED_VF_ARRAY_LENGTH);
qed_for_each_vf(p_hwfn, i) {
struct qed_vf_info *p_vf;
p_vf = &p_hwfn->pf_iov_info->vfs_array[i];
if (p_vf->vf_mbx.b_pending_msg)
events[i / 64] |= 1ULL << (i % 64);
}
}
static struct qed_vf_info *qed_sriov_get_vf_from_absid(struct qed_hwfn *p_hwfn,
u16 abs_vfid)
{
u8 min = (u8) p_hwfn->cdev->p_iov_info->first_vf_in_pf;
if (!_qed_iov_pf_sanity_check(p_hwfn, (int)abs_vfid - min, false)) {
DP_VERBOSE(p_hwfn,
QED_MSG_IOV,
"Got indication for VF [abs 0x%08x] that cannot be handled by PF\n",
abs_vfid);
return NULL;
}
return &p_hwfn->pf_iov_info->vfs_array[(u8) abs_vfid - min];
}
static int qed_sriov_vfpf_msg(struct qed_hwfn *p_hwfn,
u16 abs_vfid, struct regpair *vf_msg)
{
struct qed_vf_info *p_vf = qed_sriov_get_vf_from_absid(p_hwfn,
abs_vfid);
if (!p_vf)
return 0;
/* List the physical address of the request so that handler
* could later on copy the message from it.
*/
p_vf->vf_mbx.pending_req = (((u64)vf_msg->hi) << 32) | vf_msg->lo;
/* Mark the event and schedule the workqueue */
p_vf->vf_mbx.b_pending_msg = true;
qed_schedule_iov(p_hwfn, QED_IOV_WQ_MSG_FLAG);
return 0;
}
static void qed_sriov_vfpf_malicious(struct qed_hwfn *p_hwfn,
struct malicious_vf_eqe_data *p_data)
{
struct qed_vf_info *p_vf;
p_vf = qed_sriov_get_vf_from_absid(p_hwfn, p_data->vf_id);
if (!p_vf)
return;
if (!p_vf->b_malicious) {
DP_NOTICE(p_hwfn,
"VF [%d] - Malicious behavior [%02x]\n",
p_vf->abs_vf_id, p_data->err_id);
p_vf->b_malicious = true;
} else {
DP_INFO(p_hwfn,
"VF [%d] - Malicious behavior [%02x]\n",
p_vf->abs_vf_id, p_data->err_id);
}
}
static int qed_sriov_eqe_event(struct qed_hwfn *p_hwfn,
u8 opcode,
__le16 echo,
union event_ring_data *data, u8 fw_return_code)
{
switch (opcode) {
case COMMON_EVENT_VF_PF_CHANNEL:
return qed_sriov_vfpf_msg(p_hwfn, le16_to_cpu(echo),
&data->vf_pf_channel.msg_addr);
case COMMON_EVENT_MALICIOUS_VF:
qed_sriov_vfpf_malicious(p_hwfn, &data->malicious_vf);
return 0;
default:
DP_INFO(p_hwfn->cdev, "Unknown sriov eqe event 0x%02x\n",
opcode);
return -EINVAL;
}
}
u16 qed_iov_get_next_active_vf(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
{
struct qed_hw_sriov_info *p_iov = p_hwfn->cdev->p_iov_info;
u16 i;
if (!p_iov)
goto out;
for (i = rel_vf_id; i < p_iov->total_vfs; i++)
if (qed_iov_is_valid_vfid(p_hwfn, rel_vf_id, true, false))
return i;
out:
return MAX_NUM_VFS;
}
static int qed_iov_copy_vf_msg(struct qed_hwfn *p_hwfn, struct qed_ptt *ptt,
int vfid)
{
struct qed_dmae_params params;
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info)
return -EINVAL;
memset(&params, 0, sizeof(struct qed_dmae_params));
params.flags = QED_DMAE_FLAG_VF_SRC | QED_DMAE_FLAG_COMPLETION_DST;
params.src_vfid = vf_info->abs_vf_id;
if (qed_dmae_host2host(p_hwfn, ptt,
vf_info->vf_mbx.pending_req,
vf_info->vf_mbx.req_phys,
sizeof(union vfpf_tlvs) / 4, &params)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Failed to copy message from VF 0x%02x\n", vfid);
return -EIO;
}
return 0;
}
static void qed_iov_bulletin_set_forced_mac(struct qed_hwfn *p_hwfn,
u8 *mac, int vfid)
{
struct qed_vf_info *vf_info;
u64 feature;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev,
"Can not set forced MAC, invalid vfid [%d]\n", vfid);
return;
}
if (vf_info->b_malicious) {
DP_NOTICE(p_hwfn->cdev,
"Can't set forced MAC to malicious VF [%d]\n", vfid);
return;
}
if (vf_info->p_vf_info.is_trusted_configured) {
feature = BIT(VFPF_BULLETIN_MAC_ADDR);
/* Trust mode will disable Forced MAC */
vf_info->bulletin.p_virt->valid_bitmap &=
~BIT(MAC_ADDR_FORCED);
} else {
feature = BIT(MAC_ADDR_FORCED);
/* Forced MAC will disable MAC_ADDR */
vf_info->bulletin.p_virt->valid_bitmap &=
~BIT(VFPF_BULLETIN_MAC_ADDR);
}
memcpy(vf_info->bulletin.p_virt->mac, mac, ETH_ALEN);
vf_info->bulletin.p_virt->valid_bitmap |= feature;
qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
}
static int qed_iov_bulletin_set_mac(struct qed_hwfn *p_hwfn, u8 *mac, int vfid)
{
struct qed_vf_info *vf_info;
u64 feature;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev, "Can not set MAC, invalid vfid [%d]\n",
vfid);
return -EINVAL;
}
if (vf_info->b_malicious) {
DP_NOTICE(p_hwfn->cdev, "Can't set MAC to malicious VF [%d]\n",
vfid);
return -EINVAL;
}
if (vf_info->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Can not set MAC, Forced MAC is configured\n");
return -EINVAL;
}
feature = BIT(VFPF_BULLETIN_MAC_ADDR);
ether_addr_copy(vf_info->bulletin.p_virt->mac, mac);
vf_info->bulletin.p_virt->valid_bitmap |= feature;
if (vf_info->p_vf_info.is_trusted_configured)
qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
return 0;
}
static void qed_iov_bulletin_set_forced_vlan(struct qed_hwfn *p_hwfn,
u16 pvid, int vfid)
{
struct qed_vf_info *vf_info;
u64 feature;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev,
"Can not set forced MAC, invalid vfid [%d]\n", vfid);
return;
}
if (vf_info->b_malicious) {
DP_NOTICE(p_hwfn->cdev,
"Can't set forced vlan to malicious VF [%d]\n", vfid);
return;
}
feature = 1 << VLAN_ADDR_FORCED;
vf_info->bulletin.p_virt->pvid = pvid;
if (pvid)
vf_info->bulletin.p_virt->valid_bitmap |= feature;
else
vf_info->bulletin.p_virt->valid_bitmap &= ~feature;
qed_iov_configure_vport_forced(p_hwfn, vf_info, feature);
}
void qed_iov_bulletin_set_udp_ports(struct qed_hwfn *p_hwfn,
int vfid, u16 vxlan_port, u16 geneve_port)
{
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
if (!vf_info) {
DP_NOTICE(p_hwfn->cdev,
"Can not set udp ports, invalid vfid [%d]\n", vfid);
return;
}
if (vf_info->b_malicious) {
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Can not set udp ports to malicious VF [%d]\n",
vfid);
return;
}
vf_info->bulletin.p_virt->vxlan_udp_port = vxlan_port;
vf_info->bulletin.p_virt->geneve_udp_port = geneve_port;
}
static bool qed_iov_vf_has_vport_instance(struct qed_hwfn *p_hwfn, int vfid)
{
struct qed_vf_info *p_vf_info;
p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf_info)
return false;
return !!p_vf_info->vport_instance;
}
static bool qed_iov_is_vf_stopped(struct qed_hwfn *p_hwfn, int vfid)
{
struct qed_vf_info *p_vf_info;
p_vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!p_vf_info)
return true;
return p_vf_info->state == VF_STOPPED;
}
static bool qed_iov_spoofchk_get(struct qed_hwfn *p_hwfn, int vfid)
{
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info)
return false;
return vf_info->spoof_chk;
}
static int qed_iov_spoofchk_set(struct qed_hwfn *p_hwfn, int vfid, bool val)
{
struct qed_vf_info *vf;
int rc = -EINVAL;
if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
DP_NOTICE(p_hwfn,
"SR-IOV sanity check failed, can't set spoofchk\n");
goto out;
}
vf = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf)
goto out;
if (!qed_iov_vf_has_vport_instance(p_hwfn, vfid)) {
/* After VF VPORT start PF will configure spoof check */
vf->req_spoofchk_val = val;
rc = 0;
goto out;
}
rc = __qed_iov_spoofchk_set(p_hwfn, vf, val);
out:
return rc;
}
static u8 *qed_iov_bulletin_get_mac(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
{
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
if (!p_vf || !p_vf->bulletin.p_virt)
return NULL;
if (!(p_vf->bulletin.p_virt->valid_bitmap &
BIT(VFPF_BULLETIN_MAC_ADDR)))
return NULL;
return p_vf->bulletin.p_virt->mac;
}
static u8 *qed_iov_bulletin_get_forced_mac(struct qed_hwfn *p_hwfn,
u16 rel_vf_id)
{
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
if (!p_vf || !p_vf->bulletin.p_virt)
return NULL;
if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED)))
return NULL;
return p_vf->bulletin.p_virt->mac;
}
static u16
qed_iov_bulletin_get_forced_vlan(struct qed_hwfn *p_hwfn, u16 rel_vf_id)
{
struct qed_vf_info *p_vf;
p_vf = qed_iov_get_vf_info(p_hwfn, rel_vf_id, true);
if (!p_vf || !p_vf->bulletin.p_virt)
return 0;
if (!(p_vf->bulletin.p_virt->valid_bitmap & BIT(VLAN_ADDR_FORCED)))
return 0;
return p_vf->bulletin.p_virt->pvid;
}
static int qed_iov_configure_tx_rate(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, int vfid, int val)
{
struct qed_mcp_link_state *p_link;
struct qed_vf_info *vf;
u8 abs_vp_id = 0;
int rc;
vf = qed_iov_get_vf_info(p_hwfn, (u16)vfid, true);
if (!vf)
return -EINVAL;
rc = qed_fw_vport(p_hwfn, vf->vport_id, &abs_vp_id);
if (rc)
return rc;
p_link = &QED_LEADING_HWFN(p_hwfn->cdev)->mcp_info->link_output;
return qed_init_vport_rl(p_hwfn, p_ptt, abs_vp_id, (u32)val,
p_link->speed);
}
static int
qed_iov_configure_min_tx_rate(struct qed_dev *cdev, int vfid, u32 rate)
{
struct qed_vf_info *vf;
u8 vport_id;
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
DP_NOTICE(p_hwfn,
"SR-IOV sanity check failed, can't set min rate\n");
return -EINVAL;
}
}
vf = qed_iov_get_vf_info(QED_LEADING_HWFN(cdev), (u16)vfid, true);
vport_id = vf->vport_id;
return qed_configure_vport_wfq(cdev, vport_id, rate);
}
static int qed_iov_get_vf_min_rate(struct qed_hwfn *p_hwfn, int vfid)
{
struct qed_wfq_data *vf_vp_wfq;
struct qed_vf_info *vf_info;
vf_info = qed_iov_get_vf_info(p_hwfn, (u16) vfid, true);
if (!vf_info)
return 0;
vf_vp_wfq = &p_hwfn->qm_info.wfq_data[vf_info->vport_id];
if (vf_vp_wfq->configured)
return vf_vp_wfq->min_speed;
else
return 0;
}
/**
* qed_schedule_iov - schedules IOV task for VF and PF
* @hwfn: hardware function pointer
* @flag: IOV flag for VF/PF
*/
void qed_schedule_iov(struct qed_hwfn *hwfn, enum qed_iov_wq_flag flag)
{
smp_mb__before_atomic();
set_bit(flag, &hwfn->iov_task_flags);
smp_mb__after_atomic();
DP_VERBOSE(hwfn, QED_MSG_IOV, "Scheduling iov task [Flag: %d]\n", flag);
queue_delayed_work(hwfn->iov_wq, &hwfn->iov_task, 0);
}
void qed_vf_start_iov_wq(struct qed_dev *cdev)
{
int i;
for_each_hwfn(cdev, i)
queue_delayed_work(cdev->hwfns[i].iov_wq,
&cdev->hwfns[i].iov_task, 0);
}
int qed_sriov_disable(struct qed_dev *cdev, bool pci_enabled)
{
int i, j;
for_each_hwfn(cdev, i)
if (cdev->hwfns[i].iov_wq)
flush_workqueue(cdev->hwfns[i].iov_wq);
/* Mark VFs for disablement */
qed_iov_set_vfs_to_disable(cdev, true);
if (cdev->p_iov_info && cdev->p_iov_info->num_vfs && pci_enabled)
pci_disable_sriov(cdev->pdev);
if (cdev->recov_in_prog) {
DP_VERBOSE(cdev,
QED_MSG_IOV,
"Skip SRIOV disable operations in the device since a recovery is in progress\n");
goto out;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
/* Failure to acquire the ptt in 100g creates an odd error
* where the first engine has already relased IOV.
*/
if (!ptt) {
DP_ERR(hwfn, "Failed to acquire ptt\n");
return -EBUSY;
}
/* Clean WFQ db and configure equal weight for all vports */
qed_clean_wfq_db(hwfn, ptt);
qed_for_each_vf(hwfn, j) {
int k;
if (!qed_iov_is_valid_vfid(hwfn, j, true, false))
continue;
/* Wait until VF is disabled before releasing */
for (k = 0; k < 100; k++) {
if (!qed_iov_is_vf_stopped(hwfn, j))
msleep(20);
else
break;
}
if (k < 100)
qed_iov_release_hw_for_vf(&cdev->hwfns[i],
ptt, j);
else
DP_ERR(hwfn,
"Timeout waiting for VF's FLR to end\n");
}
qed_ptt_release(hwfn, ptt);
}
out:
qed_iov_set_vfs_to_disable(cdev, false);
return 0;
}
static void qed_sriov_enable_qid_config(struct qed_hwfn *hwfn,
u16 vfid,
struct qed_iov_vf_init_params *params)
{
u16 base, i;
/* Since we have an equal resource distribution per-VF, and we assume
* PF has acquired the QED_PF_L2_QUE first queues, we start setting
* sequentially from there.
*/
base = FEAT_NUM(hwfn, QED_PF_L2_QUE) + vfid * params->num_queues;
params->rel_vf_id = vfid;
for (i = 0; i < params->num_queues; i++) {
params->req_rx_queue[i] = base + i;
params->req_tx_queue[i] = base + i;
}
}
static int qed_sriov_enable(struct qed_dev *cdev, int num)
{
struct qed_iov_vf_init_params params;
struct qed_hwfn *hwfn;
struct qed_ptt *ptt;
int i, j, rc;
if (num >= RESC_NUM(&cdev->hwfns[0], QED_VPORT)) {
DP_NOTICE(cdev, "Can start at most %d VFs\n",
RESC_NUM(&cdev->hwfns[0], QED_VPORT) - 1);
return -EINVAL;
}
memset(&params, 0, sizeof(params));
/* Initialize HW for VF access */
for_each_hwfn(cdev, j) {
hwfn = &cdev->hwfns[j];
ptt = qed_ptt_acquire(hwfn);
/* Make sure not to use more than 16 queues per VF */
params.num_queues = min_t(int,
FEAT_NUM(hwfn, QED_VF_L2_QUE) / num,
16);
if (!ptt) {
DP_ERR(hwfn, "Failed to acquire ptt\n");
rc = -EBUSY;
goto err;
}
for (i = 0; i < num; i++) {
if (!qed_iov_is_valid_vfid(hwfn, i, false, true))
continue;
qed_sriov_enable_qid_config(hwfn, i, &params);
rc = qed_iov_init_hw_for_vf(hwfn, ptt, &params);
if (rc) {
DP_ERR(cdev, "Failed to enable VF[%d]\n", i);
qed_ptt_release(hwfn, ptt);
goto err;
}
}
qed_ptt_release(hwfn, ptt);
}
/* Enable SRIOV PCIe functions */
rc = pci_enable_sriov(cdev->pdev, num);
if (rc) {
DP_ERR(cdev, "Failed to enable sriov [%d]\n", rc);
goto err;
}
hwfn = QED_LEADING_HWFN(cdev);
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_ERR(hwfn, "Failed to acquire ptt\n");
rc = -EBUSY;
goto err;
}
rc = qed_mcp_ov_update_eswitch(hwfn, ptt, QED_OV_ESWITCH_VEB);
if (rc)
DP_INFO(cdev, "Failed to update eswitch mode\n");
qed_ptt_release(hwfn, ptt);
return num;
err:
qed_sriov_disable(cdev, false);
return rc;
}
static int qed_sriov_configure(struct qed_dev *cdev, int num_vfs_param)
{
if (!IS_QED_SRIOV(cdev)) {
DP_VERBOSE(cdev, QED_MSG_IOV, "SR-IOV is not supported\n");
return -EOPNOTSUPP;
}
if (num_vfs_param)
return qed_sriov_enable(cdev, num_vfs_param);
else
return qed_sriov_disable(cdev, true);
}
static int qed_sriov_pf_set_mac(struct qed_dev *cdev, u8 *mac, int vfid)
{
int i;
if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"Cannot set a VF MAC; Sriov is not enabled\n");
return -EINVAL;
}
if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"Cannot set VF[%d] MAC (VF is not active)\n", vfid);
return -EINVAL;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf_info;
vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (!vf_info)
continue;
/* Set the MAC, and schedule the IOV task */
if (vf_info->is_trusted_configured)
ether_addr_copy(vf_info->mac, mac);
else
ether_addr_copy(vf_info->forced_mac, mac);
qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
}
return 0;
}
static int qed_sriov_pf_set_vlan(struct qed_dev *cdev, u16 vid, int vfid)
{
int i;
if (!IS_QED_SRIOV(cdev) || !IS_PF_SRIOV_ALLOC(&cdev->hwfns[0])) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"Cannot set a VF MAC; Sriov is not enabled\n");
return -EINVAL;
}
if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vfid, true, true)) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"Cannot set VF[%d] MAC (VF is not active)\n", vfid);
return -EINVAL;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf_info;
vf_info = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (!vf_info)
continue;
/* Set the forced vlan, and schedule the IOV task */
vf_info->forced_vlan = vid;
qed_schedule_iov(hwfn, QED_IOV_WQ_SET_UNICAST_FILTER_FLAG);
}
return 0;
}
static int qed_get_vf_config(struct qed_dev *cdev,
int vf_id, struct ifla_vf_info *ivi)
{
struct qed_hwfn *hwfn = QED_LEADING_HWFN(cdev);
struct qed_public_vf_info *vf_info;
struct qed_mcp_link_state link;
u32 tx_rate;
/* Sanitize request */
if (IS_VF(cdev))
return -EINVAL;
if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, false)) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"VF index [%d] isn't active\n", vf_id);
return -EINVAL;
}
vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
qed_iov_get_link(hwfn, vf_id, NULL, &link, NULL);
/* Fill information about VF */
ivi->vf = vf_id;
if (is_valid_ether_addr(vf_info->forced_mac))
ether_addr_copy(ivi->mac, vf_info->forced_mac);
else
ether_addr_copy(ivi->mac, vf_info->mac);
ivi->vlan = vf_info->forced_vlan;
ivi->spoofchk = qed_iov_spoofchk_get(hwfn, vf_id);
ivi->linkstate = vf_info->link_state;
tx_rate = vf_info->tx_rate;
ivi->max_tx_rate = tx_rate ? tx_rate : link.speed;
ivi->min_tx_rate = qed_iov_get_vf_min_rate(hwfn, vf_id);
return 0;
}
void qed_inform_vf_link_state(struct qed_hwfn *hwfn)
{
struct qed_hwfn *lead_hwfn = QED_LEADING_HWFN(hwfn->cdev);
struct qed_mcp_link_capabilities caps;
struct qed_mcp_link_params params;
struct qed_mcp_link_state link;
int i;
if (!hwfn->pf_iov_info)
return;
/* Update bulletin of all future possible VFs with link configuration */
for (i = 0; i < hwfn->cdev->p_iov_info->total_vfs; i++) {
struct qed_public_vf_info *vf_info;
vf_info = qed_iov_get_public_vf_info(hwfn, i, false);
if (!vf_info)
continue;
/* Only hwfn0 is actually interested in the link speed.
* But since only it would receive an MFW indication of link,
* need to take configuration from it - otherwise things like
* rate limiting for hwfn1 VF would not work.
*/
memcpy(&params, qed_mcp_get_link_params(lead_hwfn),
sizeof(params));
memcpy(&link, qed_mcp_get_link_state(lead_hwfn), sizeof(link));
memcpy(&caps, qed_mcp_get_link_capabilities(lead_hwfn),
sizeof(caps));
/* Modify link according to the VF's configured link state */
switch (vf_info->link_state) {
case IFLA_VF_LINK_STATE_DISABLE:
link.link_up = false;
break;
case IFLA_VF_LINK_STATE_ENABLE:
link.link_up = true;
/* Set speed according to maximum supported by HW.
* that is 40G for regular devices and 100G for CMT
* mode devices.
*/
link.speed = (hwfn->cdev->num_hwfns > 1) ?
100000 : 40000;
default:
/* In auto mode pass PF link image to VF */
break;
}
if (link.link_up && vf_info->tx_rate) {
struct qed_ptt *ptt;
int rate;
rate = min_t(int, vf_info->tx_rate, link.speed);
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_NOTICE(hwfn, "Failed to acquire PTT\n");
return;
}
if (!qed_iov_configure_tx_rate(hwfn, ptt, i, rate)) {
vf_info->tx_rate = rate;
link.speed = rate;
}
qed_ptt_release(hwfn, ptt);
}
qed_iov_set_link(hwfn, i, &params, &link, &caps);
}
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
static int qed_set_vf_link_state(struct qed_dev *cdev,
int vf_id, int link_state)
{
int i;
/* Sanitize request */
if (IS_VF(cdev))
return -EINVAL;
if (!qed_iov_is_valid_vfid(&cdev->hwfns[0], vf_id, true, true)) {
DP_VERBOSE(cdev, QED_MSG_IOV,
"VF index [%d] isn't active\n", vf_id);
return -EINVAL;
}
/* Handle configuration of link state */
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf;
vf = qed_iov_get_public_vf_info(hwfn, vf_id, true);
if (!vf)
continue;
if (vf->link_state == link_state)
continue;
vf->link_state = link_state;
qed_inform_vf_link_state(&cdev->hwfns[i]);
}
return 0;
}
static int qed_spoof_configure(struct qed_dev *cdev, int vfid, bool val)
{
int i, rc = -EINVAL;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
rc = qed_iov_spoofchk_set(p_hwfn, vfid, val);
if (rc)
break;
}
return rc;
}
static int qed_configure_max_vf_rate(struct qed_dev *cdev, int vfid, int rate)
{
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf;
if (!qed_iov_pf_sanity_check(p_hwfn, vfid)) {
DP_NOTICE(p_hwfn,
"SR-IOV sanity check failed, can't set tx rate\n");
return -EINVAL;
}
vf = qed_iov_get_public_vf_info(p_hwfn, vfid, true);
vf->tx_rate = rate;
qed_inform_vf_link_state(p_hwfn);
}
return 0;
}
static int qed_set_vf_rate(struct qed_dev *cdev,
int vfid, u32 min_rate, u32 max_rate)
{
int rc_min = 0, rc_max = 0;
if (max_rate)
rc_max = qed_configure_max_vf_rate(cdev, vfid, max_rate);
if (min_rate)
rc_min = qed_iov_configure_min_tx_rate(cdev, vfid, min_rate);
if (rc_max | rc_min)
return -EINVAL;
return 0;
}
static int qed_set_vf_trust(struct qed_dev *cdev, int vfid, bool trust)
{
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *hwfn = &cdev->hwfns[i];
struct qed_public_vf_info *vf;
if (!qed_iov_pf_sanity_check(hwfn, vfid)) {
DP_NOTICE(hwfn,
"SR-IOV sanity check failed, can't set trust\n");
return -EINVAL;
}
vf = qed_iov_get_public_vf_info(hwfn, vfid, true);
if (vf->is_trusted_request == trust)
return 0;
vf->is_trusted_request = trust;
qed_schedule_iov(hwfn, QED_IOV_WQ_TRUST_FLAG);
}
return 0;
}
static void qed_handle_vf_msg(struct qed_hwfn *hwfn)
{
u64 events[QED_VF_ARRAY_LENGTH];
struct qed_ptt *ptt;
int i;
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Can't acquire PTT; re-scheduling\n");
qed_schedule_iov(hwfn, QED_IOV_WQ_MSG_FLAG);
return;
}
qed_iov_pf_get_pending_events(hwfn, events);
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Event mask of VF events: 0x%llx 0x%llx 0x%llx\n",
events[0], events[1], events[2]);
qed_for_each_vf(hwfn, i) {
/* Skip VFs with no pending messages */
if (!(events[i / 64] & (1ULL << (i % 64))))
continue;
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Handling VF message from VF 0x%02x [Abs 0x%02x]\n",
i, hwfn->cdev->p_iov_info->first_vf_in_pf + i);
/* Copy VF's message to PF's request buffer for that VF */
if (qed_iov_copy_vf_msg(hwfn, ptt, i))
continue;
qed_iov_process_mbx_req(hwfn, ptt, i);
}
qed_ptt_release(hwfn, ptt);
}
static bool qed_pf_validate_req_vf_mac(struct qed_hwfn *hwfn,
u8 *mac,
struct qed_public_vf_info *info)
{
if (info->is_trusted_configured) {
if (is_valid_ether_addr(info->mac) &&
(!mac || !ether_addr_equal(mac, info->mac)))
return true;
} else {
if (is_valid_ether_addr(info->forced_mac) &&
(!mac || !ether_addr_equal(mac, info->forced_mac)))
return true;
}
return false;
}
static void qed_set_bulletin_mac(struct qed_hwfn *hwfn,
struct qed_public_vf_info *info,
int vfid)
{
if (info->is_trusted_configured)
qed_iov_bulletin_set_mac(hwfn, info->mac, vfid);
else
qed_iov_bulletin_set_forced_mac(hwfn, info->forced_mac, vfid);
}
static void qed_handle_pf_set_vf_unicast(struct qed_hwfn *hwfn)
{
int i;
qed_for_each_vf(hwfn, i) {
struct qed_public_vf_info *info;
bool update = false;
u8 *mac;
info = qed_iov_get_public_vf_info(hwfn, i, true);
if (!info)
continue;
/* Update data on bulletin board */
if (info->is_trusted_configured)
mac = qed_iov_bulletin_get_mac(hwfn, i);
else
mac = qed_iov_bulletin_get_forced_mac(hwfn, i);
if (qed_pf_validate_req_vf_mac(hwfn, mac, info)) {
DP_VERBOSE(hwfn,
QED_MSG_IOV,
"Handling PF setting of VF MAC to VF 0x%02x [Abs 0x%02x]\n",
i,
hwfn->cdev->p_iov_info->first_vf_in_pf + i);
/* Update bulletin board with MAC */
qed_set_bulletin_mac(hwfn, info, i);
update = true;
}
if (qed_iov_bulletin_get_forced_vlan(hwfn, i) ^
info->forced_vlan) {
DP_VERBOSE(hwfn,
QED_MSG_IOV,
"Handling PF setting of pvid [0x%04x] to VF 0x%02x [Abs 0x%02x]\n",
info->forced_vlan,
i,
hwfn->cdev->p_iov_info->first_vf_in_pf + i);
qed_iov_bulletin_set_forced_vlan(hwfn,
info->forced_vlan, i);
update = true;
}
if (update)
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
}
static void qed_handle_bulletin_post(struct qed_hwfn *hwfn)
{
struct qed_ptt *ptt;
int i;
ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
DP_NOTICE(hwfn, "Failed allocating a ptt entry\n");
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
return;
}
qed_for_each_vf(hwfn, i)
qed_iov_post_vf_bulletin(hwfn, i, ptt);
qed_ptt_release(hwfn, ptt);
}
static void qed_update_mac_for_vf_trust_change(struct qed_hwfn *hwfn, int vf_id)
{
struct qed_public_vf_info *vf_info;
struct qed_vf_info *vf;
u8 *force_mac;
int i;
vf_info = qed_iov_get_public_vf_info(hwfn, vf_id, true);
vf = qed_iov_get_vf_info(hwfn, vf_id, true);
if (!vf_info || !vf)
return;
/* Force MAC converted to generic MAC in case of VF trust on */
if (vf_info->is_trusted_configured &&
(vf->bulletin.p_virt->valid_bitmap & BIT(MAC_ADDR_FORCED))) {
force_mac = qed_iov_bulletin_get_forced_mac(hwfn, vf_id);
if (force_mac) {
/* Clear existing shadow copy of MAC to have a clean
* slate.
*/
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
if (ether_addr_equal(vf->shadow_config.macs[i],
vf_info->mac)) {
memset(vf->shadow_config.macs[i], 0,
ETH_ALEN);
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Shadow MAC %pM removed for VF 0x%02x, VF trust mode is ON\n",
vf_info->mac, vf_id);
break;
}
}
ether_addr_copy(vf_info->mac, force_mac);
memset(vf_info->forced_mac, 0, ETH_ALEN);
vf->bulletin.p_virt->valid_bitmap &=
~BIT(MAC_ADDR_FORCED);
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
}
/* Update shadow copy with VF MAC when trust mode is turned off */
if (!vf_info->is_trusted_configured) {
u8 empty_mac[ETH_ALEN];
memset(empty_mac, 0, ETH_ALEN);
for (i = 0; i < QED_ETH_VF_NUM_MAC_FILTERS; i++) {
if (ether_addr_equal(vf->shadow_config.macs[i],
empty_mac)) {
ether_addr_copy(vf->shadow_config.macs[i],
vf_info->mac);
DP_VERBOSE(hwfn, QED_MSG_IOV,
"Shadow is updated with %pM for VF 0x%02x, VF trust mode is OFF\n",
vf_info->mac, vf_id);
break;
}
}
/* Clear bulletin when trust mode is turned off,
* to have a clean slate for next (normal) operations.
*/
qed_iov_bulletin_set_mac(hwfn, empty_mac, vf_id);
qed_schedule_iov(hwfn, QED_IOV_WQ_BULLETIN_UPDATE_FLAG);
}
}
static void qed_iov_handle_trust_change(struct qed_hwfn *hwfn)
{
struct qed_sp_vport_update_params params;
struct qed_filter_accept_flags *flags;
struct qed_public_vf_info *vf_info;
struct qed_vf_info *vf;
u8 mask;
int i;
mask = QED_ACCEPT_UCAST_UNMATCHED | QED_ACCEPT_MCAST_UNMATCHED;
flags = &params.accept_flags;
qed_for_each_vf(hwfn, i) {
/* Need to make sure current requested configuration didn't
* flip so that we'll end up configuring something that's not
* needed.
*/
vf_info = qed_iov_get_public_vf_info(hwfn, i, true);
if (vf_info->is_trusted_configured ==
vf_info->is_trusted_request)
continue;
vf_info->is_trusted_configured = vf_info->is_trusted_request;
/* Handle forced MAC mode */
qed_update_mac_for_vf_trust_change(hwfn, i);
/* Validate that the VF has a configured vport */
vf = qed_iov_get_vf_info(hwfn, i, true);
if (!vf->vport_instance)
continue;
memset(&params, 0, sizeof(params));
params.opaque_fid = vf->opaque_fid;
params.vport_id = vf->vport_id;
if (vf_info->rx_accept_mode & mask) {
flags->update_rx_mode_config = 1;
flags->rx_accept_filter = vf_info->rx_accept_mode;
}
if (vf_info->tx_accept_mode & mask) {
flags->update_tx_mode_config = 1;
flags->tx_accept_filter = vf_info->tx_accept_mode;
}
/* Remove if needed; Otherwise this would set the mask */
if (!vf_info->is_trusted_configured) {
flags->rx_accept_filter &= ~mask;
flags->tx_accept_filter &= ~mask;
}
if (flags->update_rx_mode_config ||
flags->update_tx_mode_config)
qed_sp_vport_update(hwfn, &params,
QED_SPQ_MODE_EBLOCK, NULL);
}
}
static void qed_iov_pf_task(struct work_struct *work)
{
struct qed_hwfn *hwfn = container_of(work, struct qed_hwfn,
iov_task.work);
int rc;
if (test_and_clear_bit(QED_IOV_WQ_STOP_WQ_FLAG, &hwfn->iov_task_flags))
return;
if (test_and_clear_bit(QED_IOV_WQ_FLR_FLAG, &hwfn->iov_task_flags)) {
struct qed_ptt *ptt = qed_ptt_acquire(hwfn);
if (!ptt) {
qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
return;
}
rc = qed_iov_vf_flr_cleanup(hwfn, ptt);
if (rc)
qed_schedule_iov(hwfn, QED_IOV_WQ_FLR_FLAG);
qed_ptt_release(hwfn, ptt);
}
if (test_and_clear_bit(QED_IOV_WQ_MSG_FLAG, &hwfn->iov_task_flags))
qed_handle_vf_msg(hwfn);
if (test_and_clear_bit(QED_IOV_WQ_SET_UNICAST_FILTER_FLAG,
&hwfn->iov_task_flags))
qed_handle_pf_set_vf_unicast(hwfn);
if (test_and_clear_bit(QED_IOV_WQ_BULLETIN_UPDATE_FLAG,
&hwfn->iov_task_flags))
qed_handle_bulletin_post(hwfn);
if (test_and_clear_bit(QED_IOV_WQ_TRUST_FLAG, &hwfn->iov_task_flags))
qed_iov_handle_trust_change(hwfn);
}
void qed_iov_wq_stop(struct qed_dev *cdev, bool schedule_first)
{
int i;
for_each_hwfn(cdev, i) {
if (!cdev->hwfns[i].iov_wq)
continue;
if (schedule_first) {
qed_schedule_iov(&cdev->hwfns[i],
QED_IOV_WQ_STOP_WQ_FLAG);
cancel_delayed_work_sync(&cdev->hwfns[i].iov_task);
}
flush_workqueue(cdev->hwfns[i].iov_wq);
destroy_workqueue(cdev->hwfns[i].iov_wq);
}
}
int qed_iov_wq_start(struct qed_dev *cdev)
{
char name[NAME_SIZE];
int i;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
/* PFs needs a dedicated workqueue only if they support IOV.
* VFs always require one.
*/
if (IS_PF(p_hwfn->cdev) && !IS_PF_SRIOV(p_hwfn))
continue;
snprintf(name, NAME_SIZE, "iov-%02x:%02x.%02x",
cdev->pdev->bus->number,
PCI_SLOT(cdev->pdev->devfn), p_hwfn->abs_pf_id);
p_hwfn->iov_wq = create_singlethread_workqueue(name);
if (!p_hwfn->iov_wq) {
DP_NOTICE(p_hwfn, "Cannot create iov workqueue\n");
return -ENOMEM;
}
if (IS_PF(cdev))
INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_pf_task);
else
INIT_DELAYED_WORK(&p_hwfn->iov_task, qed_iov_vf_task);
}
return 0;
}
const struct qed_iov_hv_ops qed_iov_ops_pass = {
.configure = &qed_sriov_configure,
.set_mac = &qed_sriov_pf_set_mac,
.set_vlan = &qed_sriov_pf_set_vlan,
.get_config = &qed_get_vf_config,
.set_link_state = &qed_set_vf_link_state,
.set_spoof = &qed_spoof_configure,
.set_rate = &qed_set_vf_rate,
.set_trust = &qed_set_vf_trust,
};