mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
3f07c01441
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which will have to be picked up from other headers and a couple of .c files. Create a trivial placeholder <linux/sched/signal.h> file that just maps to <linux/sched.h> to make this patch obviously correct and bisectable. Include the new header in the files that are going to need it. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
972 lines
24 KiB
C
972 lines
24 KiB
C
/*
|
|
* Copyright 2014 Advanced Micro Devices, Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/mm_types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/types.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/memory.h>
|
|
#include "kfd_priv.h"
|
|
#include "kfd_events.h"
|
|
#include <linux/device.h>
|
|
|
|
/*
|
|
* A task can only be on a single wait_queue at a time, but we need to support
|
|
* waiting on multiple events (any/all).
|
|
* Instead of each event simply having a wait_queue with sleeping tasks, it
|
|
* has a singly-linked list of tasks.
|
|
* A thread that wants to sleep creates an array of these, one for each event
|
|
* and adds one to each event's waiter chain.
|
|
*/
|
|
struct kfd_event_waiter {
|
|
struct list_head waiters;
|
|
struct task_struct *sleeping_task;
|
|
|
|
/* Transitions to true when the event this belongs to is signaled. */
|
|
bool activated;
|
|
|
|
/* Event */
|
|
struct kfd_event *event;
|
|
uint32_t input_index;
|
|
};
|
|
|
|
/*
|
|
* Over-complicated pooled allocator for event notification slots.
|
|
*
|
|
* Each signal event needs a 64-bit signal slot where the signaler will write
|
|
* a 1 before sending an interrupt.l (This is needed because some interrupts
|
|
* do not contain enough spare data bits to identify an event.)
|
|
* We get whole pages from vmalloc and map them to the process VA.
|
|
* Individual signal events are then allocated a slot in a page.
|
|
*/
|
|
|
|
struct signal_page {
|
|
struct list_head event_pages; /* kfd_process.signal_event_pages */
|
|
uint64_t *kernel_address;
|
|
uint64_t __user *user_address;
|
|
uint32_t page_index; /* Index into the mmap aperture. */
|
|
unsigned int free_slots;
|
|
unsigned long used_slot_bitmap[0];
|
|
};
|
|
|
|
#define SLOTS_PER_PAGE KFD_SIGNAL_EVENT_LIMIT
|
|
#define SLOT_BITMAP_SIZE BITS_TO_LONGS(SLOTS_PER_PAGE)
|
|
#define BITS_PER_PAGE (ilog2(SLOTS_PER_PAGE)+1)
|
|
#define SIGNAL_PAGE_SIZE (sizeof(struct signal_page) + \
|
|
SLOT_BITMAP_SIZE * sizeof(long))
|
|
|
|
/*
|
|
* For signal events, the event ID is used as the interrupt user data.
|
|
* For SQ s_sendmsg interrupts, this is limited to 8 bits.
|
|
*/
|
|
|
|
#define INTERRUPT_DATA_BITS 8
|
|
#define SIGNAL_EVENT_ID_SLOT_SHIFT 0
|
|
|
|
static uint64_t *page_slots(struct signal_page *page)
|
|
{
|
|
return page->kernel_address;
|
|
}
|
|
|
|
static bool allocate_free_slot(struct kfd_process *process,
|
|
struct signal_page **out_page,
|
|
unsigned int *out_slot_index)
|
|
{
|
|
struct signal_page *page;
|
|
|
|
list_for_each_entry(page, &process->signal_event_pages, event_pages) {
|
|
if (page->free_slots > 0) {
|
|
unsigned int slot =
|
|
find_first_zero_bit(page->used_slot_bitmap,
|
|
SLOTS_PER_PAGE);
|
|
|
|
__set_bit(slot, page->used_slot_bitmap);
|
|
page->free_slots--;
|
|
|
|
page_slots(page)[slot] = UNSIGNALED_EVENT_SLOT;
|
|
|
|
*out_page = page;
|
|
*out_slot_index = slot;
|
|
|
|
pr_debug("allocated event signal slot in page %p, slot %d\n",
|
|
page, slot);
|
|
|
|
return true;
|
|
}
|
|
}
|
|
|
|
pr_debug("No free event signal slots were found for process %p\n",
|
|
process);
|
|
|
|
return false;
|
|
}
|
|
|
|
#define list_tail_entry(head, type, member) \
|
|
list_entry((head)->prev, type, member)
|
|
|
|
static bool allocate_signal_page(struct file *devkfd, struct kfd_process *p)
|
|
{
|
|
void *backing_store;
|
|
struct signal_page *page;
|
|
|
|
page = kzalloc(SIGNAL_PAGE_SIZE, GFP_KERNEL);
|
|
if (!page)
|
|
goto fail_alloc_signal_page;
|
|
|
|
page->free_slots = SLOTS_PER_PAGE;
|
|
|
|
backing_store = (void *) __get_free_pages(GFP_KERNEL | __GFP_ZERO,
|
|
get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
|
|
if (!backing_store)
|
|
goto fail_alloc_signal_store;
|
|
|
|
/* prevent user-mode info leaks */
|
|
memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
|
|
KFD_SIGNAL_EVENT_LIMIT * 8);
|
|
|
|
page->kernel_address = backing_store;
|
|
|
|
if (list_empty(&p->signal_event_pages))
|
|
page->page_index = 0;
|
|
else
|
|
page->page_index = list_tail_entry(&p->signal_event_pages,
|
|
struct signal_page,
|
|
event_pages)->page_index + 1;
|
|
|
|
pr_debug("allocated new event signal page at %p, for process %p\n",
|
|
page, p);
|
|
pr_debug("page index is %d\n", page->page_index);
|
|
|
|
list_add(&page->event_pages, &p->signal_event_pages);
|
|
|
|
return true;
|
|
|
|
fail_alloc_signal_store:
|
|
kfree(page);
|
|
fail_alloc_signal_page:
|
|
return false;
|
|
}
|
|
|
|
static bool allocate_event_notification_slot(struct file *devkfd,
|
|
struct kfd_process *p,
|
|
struct signal_page **page,
|
|
unsigned int *signal_slot_index)
|
|
{
|
|
bool ret;
|
|
|
|
ret = allocate_free_slot(p, page, signal_slot_index);
|
|
if (!ret) {
|
|
ret = allocate_signal_page(devkfd, p);
|
|
if (ret)
|
|
ret = allocate_free_slot(p, page, signal_slot_index);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Assumes that the process's event_mutex is locked. */
|
|
static void release_event_notification_slot(struct signal_page *page,
|
|
size_t slot_index)
|
|
{
|
|
__clear_bit(slot_index, page->used_slot_bitmap);
|
|
page->free_slots++;
|
|
|
|
/* We don't free signal pages, they are retained by the process
|
|
* and reused until it exits. */
|
|
}
|
|
|
|
static struct signal_page *lookup_signal_page_by_index(struct kfd_process *p,
|
|
unsigned int page_index)
|
|
{
|
|
struct signal_page *page;
|
|
|
|
/*
|
|
* This is safe because we don't delete signal pages until the
|
|
* process exits.
|
|
*/
|
|
list_for_each_entry(page, &p->signal_event_pages, event_pages)
|
|
if (page->page_index == page_index)
|
|
return page;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Assumes that p->event_mutex is held and of course that p is not going
|
|
* away (current or locked).
|
|
*/
|
|
static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
|
|
{
|
|
struct kfd_event *ev;
|
|
|
|
hash_for_each_possible(p->events, ev, events, id)
|
|
if (ev->event_id == id)
|
|
return ev;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static u32 make_signal_event_id(struct signal_page *page,
|
|
unsigned int signal_slot_index)
|
|
{
|
|
return page->page_index |
|
|
(signal_slot_index << SIGNAL_EVENT_ID_SLOT_SHIFT);
|
|
}
|
|
|
|
/*
|
|
* Produce a kfd event id for a nonsignal event.
|
|
* These are arbitrary numbers, so we do a sequential search through
|
|
* the hash table for an unused number.
|
|
*/
|
|
static u32 make_nonsignal_event_id(struct kfd_process *p)
|
|
{
|
|
u32 id;
|
|
|
|
for (id = p->next_nonsignal_event_id;
|
|
id < KFD_LAST_NONSIGNAL_EVENT_ID &&
|
|
lookup_event_by_id(p, id) != NULL;
|
|
id++)
|
|
;
|
|
|
|
if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
|
|
|
|
/*
|
|
* What if id == LAST_NONSIGNAL_EVENT_ID - 1?
|
|
* Then next_nonsignal_event_id = LAST_NONSIGNAL_EVENT_ID so
|
|
* the first loop fails immediately and we proceed with the
|
|
* wraparound loop below.
|
|
*/
|
|
p->next_nonsignal_event_id = id + 1;
|
|
|
|
return id;
|
|
}
|
|
|
|
for (id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
|
id < KFD_LAST_NONSIGNAL_EVENT_ID &&
|
|
lookup_event_by_id(p, id) != NULL;
|
|
id++)
|
|
;
|
|
|
|
|
|
if (id < KFD_LAST_NONSIGNAL_EVENT_ID) {
|
|
p->next_nonsignal_event_id = id + 1;
|
|
return id;
|
|
}
|
|
|
|
p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
|
return 0;
|
|
}
|
|
|
|
static struct kfd_event *lookup_event_by_page_slot(struct kfd_process *p,
|
|
struct signal_page *page,
|
|
unsigned int signal_slot)
|
|
{
|
|
return lookup_event_by_id(p, make_signal_event_id(page, signal_slot));
|
|
}
|
|
|
|
static int create_signal_event(struct file *devkfd,
|
|
struct kfd_process *p,
|
|
struct kfd_event *ev)
|
|
{
|
|
if (p->signal_event_count == KFD_SIGNAL_EVENT_LIMIT) {
|
|
pr_warn("amdkfd: Signal event wasn't created because limit was reached\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (!allocate_event_notification_slot(devkfd, p, &ev->signal_page,
|
|
&ev->signal_slot_index)) {
|
|
pr_warn("amdkfd: Signal event wasn't created because out of kernel memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
p->signal_event_count++;
|
|
|
|
ev->user_signal_address =
|
|
&ev->signal_page->user_address[ev->signal_slot_index];
|
|
|
|
ev->event_id = make_signal_event_id(ev->signal_page,
|
|
ev->signal_slot_index);
|
|
|
|
pr_debug("signal event number %zu created with id %d, address %p\n",
|
|
p->signal_event_count, ev->event_id,
|
|
ev->user_signal_address);
|
|
|
|
pr_debug("signal event number %zu created with id %d, address %p\n",
|
|
p->signal_event_count, ev->event_id,
|
|
ev->user_signal_address);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* No non-signal events are supported yet.
|
|
* We create them as events that never signal.
|
|
* Set event calls from user-mode are failed.
|
|
*/
|
|
static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
|
|
{
|
|
ev->event_id = make_nonsignal_event_id(p);
|
|
if (ev->event_id == 0)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kfd_event_init_process(struct kfd_process *p)
|
|
{
|
|
mutex_init(&p->event_mutex);
|
|
hash_init(p->events);
|
|
INIT_LIST_HEAD(&p->signal_event_pages);
|
|
p->next_nonsignal_event_id = KFD_FIRST_NONSIGNAL_EVENT_ID;
|
|
p->signal_event_count = 0;
|
|
}
|
|
|
|
static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
|
|
{
|
|
if (ev->signal_page != NULL) {
|
|
release_event_notification_slot(ev->signal_page,
|
|
ev->signal_slot_index);
|
|
p->signal_event_count--;
|
|
}
|
|
|
|
/*
|
|
* Abandon the list of waiters. Individual waiting threads will
|
|
* clean up their own data.
|
|
*/
|
|
list_del(&ev->waiters);
|
|
|
|
hash_del(&ev->events);
|
|
kfree(ev);
|
|
}
|
|
|
|
static void destroy_events(struct kfd_process *p)
|
|
{
|
|
struct kfd_event *ev;
|
|
struct hlist_node *tmp;
|
|
unsigned int hash_bkt;
|
|
|
|
hash_for_each_safe(p->events, hash_bkt, tmp, ev, events)
|
|
destroy_event(p, ev);
|
|
}
|
|
|
|
/*
|
|
* We assume that the process is being destroyed and there is no need to
|
|
* unmap the pages or keep bookkeeping data in order.
|
|
*/
|
|
static void shutdown_signal_pages(struct kfd_process *p)
|
|
{
|
|
struct signal_page *page, *tmp;
|
|
|
|
list_for_each_entry_safe(page, tmp, &p->signal_event_pages,
|
|
event_pages) {
|
|
free_pages((unsigned long)page->kernel_address,
|
|
get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
|
|
kfree(page);
|
|
}
|
|
}
|
|
|
|
void kfd_event_free_process(struct kfd_process *p)
|
|
{
|
|
destroy_events(p);
|
|
shutdown_signal_pages(p);
|
|
}
|
|
|
|
static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
|
|
{
|
|
return ev->type == KFD_EVENT_TYPE_SIGNAL ||
|
|
ev->type == KFD_EVENT_TYPE_DEBUG;
|
|
}
|
|
|
|
static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
|
|
{
|
|
return ev->type == KFD_EVENT_TYPE_SIGNAL;
|
|
}
|
|
|
|
int kfd_event_create(struct file *devkfd, struct kfd_process *p,
|
|
uint32_t event_type, bool auto_reset, uint32_t node_id,
|
|
uint32_t *event_id, uint32_t *event_trigger_data,
|
|
uint64_t *event_page_offset, uint32_t *event_slot_index)
|
|
{
|
|
int ret = 0;
|
|
struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
|
|
|
|
if (!ev)
|
|
return -ENOMEM;
|
|
|
|
ev->type = event_type;
|
|
ev->auto_reset = auto_reset;
|
|
ev->signaled = false;
|
|
|
|
INIT_LIST_HEAD(&ev->waiters);
|
|
|
|
*event_page_offset = 0;
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
switch (event_type) {
|
|
case KFD_EVENT_TYPE_SIGNAL:
|
|
case KFD_EVENT_TYPE_DEBUG:
|
|
ret = create_signal_event(devkfd, p, ev);
|
|
if (!ret) {
|
|
*event_page_offset = (ev->signal_page->page_index |
|
|
KFD_MMAP_EVENTS_MASK);
|
|
*event_page_offset <<= PAGE_SHIFT;
|
|
*event_slot_index = ev->signal_slot_index;
|
|
}
|
|
break;
|
|
default:
|
|
ret = create_other_event(p, ev);
|
|
break;
|
|
}
|
|
|
|
if (!ret) {
|
|
hash_add(p->events, &ev->events, ev->event_id);
|
|
|
|
*event_id = ev->event_id;
|
|
*event_trigger_data = ev->event_id;
|
|
} else {
|
|
kfree(ev);
|
|
}
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Assumes that p is current. */
|
|
int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
|
|
{
|
|
struct kfd_event *ev;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
ev = lookup_event_by_id(p, event_id);
|
|
|
|
if (ev)
|
|
destroy_event(p, ev);
|
|
else
|
|
ret = -EINVAL;
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void set_event(struct kfd_event *ev)
|
|
{
|
|
struct kfd_event_waiter *waiter;
|
|
struct kfd_event_waiter *next;
|
|
|
|
/* Auto reset if the list is non-empty and we're waking someone. */
|
|
ev->signaled = !ev->auto_reset || list_empty(&ev->waiters);
|
|
|
|
list_for_each_entry_safe(waiter, next, &ev->waiters, waiters) {
|
|
waiter->activated = true;
|
|
|
|
/* _init because free_waiters will call list_del */
|
|
list_del_init(&waiter->waiters);
|
|
|
|
wake_up_process(waiter->sleeping_task);
|
|
}
|
|
}
|
|
|
|
/* Assumes that p is current. */
|
|
int kfd_set_event(struct kfd_process *p, uint32_t event_id)
|
|
{
|
|
int ret = 0;
|
|
struct kfd_event *ev;
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
ev = lookup_event_by_id(p, event_id);
|
|
|
|
if (ev && event_can_be_cpu_signaled(ev))
|
|
set_event(ev);
|
|
else
|
|
ret = -EINVAL;
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static void reset_event(struct kfd_event *ev)
|
|
{
|
|
ev->signaled = false;
|
|
}
|
|
|
|
/* Assumes that p is current. */
|
|
int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
|
|
{
|
|
int ret = 0;
|
|
struct kfd_event *ev;
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
ev = lookup_event_by_id(p, event_id);
|
|
|
|
if (ev && event_can_be_cpu_signaled(ev))
|
|
reset_event(ev);
|
|
else
|
|
ret = -EINVAL;
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
return ret;
|
|
|
|
}
|
|
|
|
static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
|
|
{
|
|
page_slots(ev->signal_page)[ev->signal_slot_index] =
|
|
UNSIGNALED_EVENT_SLOT;
|
|
}
|
|
|
|
static bool is_slot_signaled(struct signal_page *page, unsigned int index)
|
|
{
|
|
return page_slots(page)[index] != UNSIGNALED_EVENT_SLOT;
|
|
}
|
|
|
|
static void set_event_from_interrupt(struct kfd_process *p,
|
|
struct kfd_event *ev)
|
|
{
|
|
if (ev && event_can_be_gpu_signaled(ev)) {
|
|
acknowledge_signal(p, ev);
|
|
set_event(ev);
|
|
}
|
|
}
|
|
|
|
void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
|
|
uint32_t valid_id_bits)
|
|
{
|
|
struct kfd_event *ev;
|
|
|
|
/*
|
|
* Because we are called from arbitrary context (workqueue) as opposed
|
|
* to process context, kfd_process could attempt to exit while we are
|
|
* running so the lookup function returns a locked process.
|
|
*/
|
|
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
|
|
|
|
if (!p)
|
|
return; /* Presumably process exited. */
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
if (valid_id_bits >= INTERRUPT_DATA_BITS) {
|
|
/* Partial ID is a full ID. */
|
|
ev = lookup_event_by_id(p, partial_id);
|
|
set_event_from_interrupt(p, ev);
|
|
} else {
|
|
/*
|
|
* Partial ID is in fact partial. For now we completely
|
|
* ignore it, but we could use any bits we did receive to
|
|
* search faster.
|
|
*/
|
|
struct signal_page *page;
|
|
unsigned i;
|
|
|
|
list_for_each_entry(page, &p->signal_event_pages, event_pages)
|
|
for (i = 0; i < SLOTS_PER_PAGE; i++)
|
|
if (is_slot_signaled(page, i)) {
|
|
ev = lookup_event_by_page_slot(p,
|
|
page, i);
|
|
set_event_from_interrupt(p, ev);
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
mutex_unlock(&p->mutex);
|
|
}
|
|
|
|
static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
|
|
{
|
|
struct kfd_event_waiter *event_waiters;
|
|
uint32_t i;
|
|
|
|
event_waiters = kmalloc_array(num_events,
|
|
sizeof(struct kfd_event_waiter),
|
|
GFP_KERNEL);
|
|
|
|
for (i = 0; (event_waiters) && (i < num_events) ; i++) {
|
|
INIT_LIST_HEAD(&event_waiters[i].waiters);
|
|
event_waiters[i].sleeping_task = current;
|
|
event_waiters[i].activated = false;
|
|
}
|
|
|
|
return event_waiters;
|
|
}
|
|
|
|
static int init_event_waiter(struct kfd_process *p,
|
|
struct kfd_event_waiter *waiter,
|
|
uint32_t event_id,
|
|
uint32_t input_index)
|
|
{
|
|
struct kfd_event *ev = lookup_event_by_id(p, event_id);
|
|
|
|
if (!ev)
|
|
return -EINVAL;
|
|
|
|
waiter->event = ev;
|
|
waiter->input_index = input_index;
|
|
waiter->activated = ev->signaled;
|
|
ev->signaled = ev->signaled && !ev->auto_reset;
|
|
|
|
list_add(&waiter->waiters, &ev->waiters);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool test_event_condition(bool all, uint32_t num_events,
|
|
struct kfd_event_waiter *event_waiters)
|
|
{
|
|
uint32_t i;
|
|
uint32_t activated_count = 0;
|
|
|
|
for (i = 0; i < num_events; i++) {
|
|
if (event_waiters[i].activated) {
|
|
if (!all)
|
|
return true;
|
|
|
|
activated_count++;
|
|
}
|
|
}
|
|
|
|
return activated_count == num_events;
|
|
}
|
|
|
|
/*
|
|
* Copy event specific data, if defined.
|
|
* Currently only memory exception events have additional data to copy to user
|
|
*/
|
|
static bool copy_signaled_event_data(uint32_t num_events,
|
|
struct kfd_event_waiter *event_waiters,
|
|
struct kfd_event_data __user *data)
|
|
{
|
|
struct kfd_hsa_memory_exception_data *src;
|
|
struct kfd_hsa_memory_exception_data __user *dst;
|
|
struct kfd_event_waiter *waiter;
|
|
struct kfd_event *event;
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < num_events; i++) {
|
|
waiter = &event_waiters[i];
|
|
event = waiter->event;
|
|
if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
|
|
dst = &data[waiter->input_index].memory_exception_data;
|
|
src = &event->memory_exception_data;
|
|
if (copy_to_user(dst, src,
|
|
sizeof(struct kfd_hsa_memory_exception_data)))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
|
|
{
|
|
if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
|
|
return 0;
|
|
|
|
if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
|
|
return MAX_SCHEDULE_TIMEOUT;
|
|
|
|
/*
|
|
* msecs_to_jiffies interprets all values above 2^31-1 as infinite,
|
|
* but we consider them finite.
|
|
* This hack is wrong, but nobody is likely to notice.
|
|
*/
|
|
user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
|
|
|
|
return msecs_to_jiffies(user_timeout_ms) + 1;
|
|
}
|
|
|
|
static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
|
|
{
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < num_events; i++)
|
|
list_del(&waiters[i].waiters);
|
|
|
|
kfree(waiters);
|
|
}
|
|
|
|
int kfd_wait_on_events(struct kfd_process *p,
|
|
uint32_t num_events, void __user *data,
|
|
bool all, uint32_t user_timeout_ms,
|
|
enum kfd_event_wait_result *wait_result)
|
|
{
|
|
struct kfd_event_data __user *events =
|
|
(struct kfd_event_data __user *) data;
|
|
uint32_t i;
|
|
int ret = 0;
|
|
struct kfd_event_waiter *event_waiters = NULL;
|
|
long timeout = user_timeout_to_jiffies(user_timeout_ms);
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
event_waiters = alloc_event_waiters(num_events);
|
|
if (!event_waiters) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < num_events; i++) {
|
|
struct kfd_event_data event_data;
|
|
|
|
if (copy_from_user(&event_data, &events[i],
|
|
sizeof(struct kfd_event_data))) {
|
|
ret = -EFAULT;
|
|
goto fail;
|
|
}
|
|
|
|
ret = init_event_waiter(p, &event_waiters[i],
|
|
event_data.event_id, i);
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
|
|
while (true) {
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -EINTR;
|
|
break;
|
|
}
|
|
|
|
if (signal_pending(current)) {
|
|
/*
|
|
* This is wrong when a nonzero, non-infinite timeout
|
|
* is specified. We need to use
|
|
* ERESTARTSYS_RESTARTBLOCK, but struct restart_block
|
|
* contains a union with data for each user and it's
|
|
* in generic kernel code that I don't want to
|
|
* touch yet.
|
|
*/
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
if (test_event_condition(all, num_events, event_waiters)) {
|
|
if (copy_signaled_event_data(num_events,
|
|
event_waiters, events))
|
|
*wait_result = KFD_WAIT_COMPLETE;
|
|
else
|
|
*wait_result = KFD_WAIT_ERROR;
|
|
break;
|
|
}
|
|
|
|
if (timeout <= 0) {
|
|
*wait_result = KFD_WAIT_TIMEOUT;
|
|
break;
|
|
}
|
|
|
|
timeout = schedule_timeout_interruptible(timeout);
|
|
}
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
free_waiters(num_events, event_waiters);
|
|
mutex_unlock(&p->event_mutex);
|
|
|
|
return ret;
|
|
|
|
fail:
|
|
if (event_waiters)
|
|
free_waiters(num_events, event_waiters);
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
|
|
*wait_result = KFD_WAIT_ERROR;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
|
|
{
|
|
|
|
unsigned int page_index;
|
|
unsigned long pfn;
|
|
struct signal_page *page;
|
|
|
|
/* check required size is logical */
|
|
if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) !=
|
|
get_order(vma->vm_end - vma->vm_start)) {
|
|
pr_err("amdkfd: event page mmap requested illegal size\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
page_index = vma->vm_pgoff;
|
|
|
|
page = lookup_signal_page_by_index(p, page_index);
|
|
if (!page) {
|
|
/* Probably KFD bug, but mmap is user-accessible. */
|
|
pr_debug("signal page could not be found for page_index %u\n",
|
|
page_index);
|
|
return -EINVAL;
|
|
}
|
|
|
|
pfn = __pa(page->kernel_address);
|
|
pfn >>= PAGE_SHIFT;
|
|
|
|
vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
|
|
| VM_DONTDUMP | VM_PFNMAP;
|
|
|
|
pr_debug("mapping signal page\n");
|
|
pr_debug(" start user address == 0x%08lx\n", vma->vm_start);
|
|
pr_debug(" end user address == 0x%08lx\n", vma->vm_end);
|
|
pr_debug(" pfn == 0x%016lX\n", pfn);
|
|
pr_debug(" vm_flags == 0x%08lX\n", vma->vm_flags);
|
|
pr_debug(" size == 0x%08lX\n",
|
|
vma->vm_end - vma->vm_start);
|
|
|
|
page->user_address = (uint64_t __user *)vma->vm_start;
|
|
|
|
/* mapping the page to user process */
|
|
return remap_pfn_range(vma, vma->vm_start, pfn,
|
|
vma->vm_end - vma->vm_start, vma->vm_page_prot);
|
|
}
|
|
|
|
/*
|
|
* Assumes that p->event_mutex is held and of course
|
|
* that p is not going away (current or locked).
|
|
*/
|
|
static void lookup_events_by_type_and_signal(struct kfd_process *p,
|
|
int type, void *event_data)
|
|
{
|
|
struct kfd_hsa_memory_exception_data *ev_data;
|
|
struct kfd_event *ev;
|
|
int bkt;
|
|
bool send_signal = true;
|
|
|
|
ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
|
|
|
|
hash_for_each(p->events, bkt, ev, events)
|
|
if (ev->type == type) {
|
|
send_signal = false;
|
|
dev_dbg(kfd_device,
|
|
"Event found: id %X type %d",
|
|
ev->event_id, ev->type);
|
|
set_event(ev);
|
|
if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
|
|
ev->memory_exception_data = *ev_data;
|
|
}
|
|
|
|
/* Send SIGTERM no event of type "type" has been found*/
|
|
if (send_signal) {
|
|
if (send_sigterm) {
|
|
dev_warn(kfd_device,
|
|
"Sending SIGTERM to HSA Process with PID %d ",
|
|
p->lead_thread->pid);
|
|
send_sig(SIGTERM, p->lead_thread, 0);
|
|
} else {
|
|
dev_err(kfd_device,
|
|
"HSA Process (PID %d) got unhandled exception",
|
|
p->lead_thread->pid);
|
|
}
|
|
}
|
|
}
|
|
|
|
void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
|
|
unsigned long address, bool is_write_requested,
|
|
bool is_execute_requested)
|
|
{
|
|
struct kfd_hsa_memory_exception_data memory_exception_data;
|
|
struct vm_area_struct *vma;
|
|
|
|
/*
|
|
* Because we are called from arbitrary context (workqueue) as opposed
|
|
* to process context, kfd_process could attempt to exit while we are
|
|
* running so the lookup function returns a locked process.
|
|
*/
|
|
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
|
|
|
|
if (!p)
|
|
return; /* Presumably process exited. */
|
|
|
|
memset(&memory_exception_data, 0, sizeof(memory_exception_data));
|
|
|
|
down_read(&p->mm->mmap_sem);
|
|
vma = find_vma(p->mm, address);
|
|
|
|
memory_exception_data.gpu_id = dev->id;
|
|
memory_exception_data.va = address;
|
|
/* Set failure reason */
|
|
memory_exception_data.failure.NotPresent = 1;
|
|
memory_exception_data.failure.NoExecute = 0;
|
|
memory_exception_data.failure.ReadOnly = 0;
|
|
if (vma) {
|
|
if (vma->vm_start > address) {
|
|
memory_exception_data.failure.NotPresent = 1;
|
|
memory_exception_data.failure.NoExecute = 0;
|
|
memory_exception_data.failure.ReadOnly = 0;
|
|
} else {
|
|
memory_exception_data.failure.NotPresent = 0;
|
|
if (is_write_requested && !(vma->vm_flags & VM_WRITE))
|
|
memory_exception_data.failure.ReadOnly = 1;
|
|
else
|
|
memory_exception_data.failure.ReadOnly = 0;
|
|
if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
|
|
memory_exception_data.failure.NoExecute = 1;
|
|
else
|
|
memory_exception_data.failure.NoExecute = 0;
|
|
}
|
|
}
|
|
|
|
up_read(&p->mm->mmap_sem);
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
/* Lookup events by type and signal them */
|
|
lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
|
|
&memory_exception_data);
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
mutex_unlock(&p->mutex);
|
|
}
|
|
|
|
void kfd_signal_hw_exception_event(unsigned int pasid)
|
|
{
|
|
/*
|
|
* Because we are called from arbitrary context (workqueue) as opposed
|
|
* to process context, kfd_process could attempt to exit while we are
|
|
* running so the lookup function returns a locked process.
|
|
*/
|
|
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
|
|
|
|
if (!p)
|
|
return; /* Presumably process exited. */
|
|
|
|
mutex_lock(&p->event_mutex);
|
|
|
|
/* Lookup events by type and signal them */
|
|
lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
|
|
|
|
mutex_unlock(&p->event_mutex);
|
|
mutex_unlock(&p->mutex);
|
|
}
|