linux_dsm_epyc7002/include/media/v4l2-mc.h
Mauro Carvalho Chehab eee7d353a1 [media] v4l2-mc: add a routine to create USB media_device
Instead of copying exactly the same code on all USB devices,
add an ancillary routine that will create and fill the
struct media_device with the values imported from the USB
device.

Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2016-02-16 08:38:59 -02:00

173 lines
5.7 KiB
C

/*
* v4l2-mc.h - Media Controller V4L2 types and prototypes
*
* Copyright (C) 2016 Mauro Carvalho Chehab <mchehab@osg.samsung.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _V4L2_MC_H
#define _V4L2_MC_H
#include <media/media-device.h>
/**
* enum tuner_pad_index - tuner pad index for MEDIA_ENT_F_TUNER
*
* @TUNER_PAD_RF_INPUT: Radiofrequency (RF) sink pad, usually linked to a
* RF connector entity.
* @TUNER_PAD_OUTPUT: Tuner video output source pad. Contains the video
* chrominance and luminance or the hole bandwidth
* of the signal converted to an Intermediate Frequency
* (IF) or to baseband (on zero-IF tuners).
* @TUNER_PAD_AUD_OUT: Tuner audio output source pad. Tuners used to decode
* analog TV signals have an extra pad for audio output.
* Old tuners use an analog stage with a saw filter for
* the audio IF frequency. The output of the pad is, in
* this case, the audio IF, with should be decoded either
* by the bridge chipset (that's the case of cx2388x
* chipsets) or may require an external IF sound
* processor, like msp34xx. On modern silicon tuners,
* the audio IF decoder is usually incorporated at the
* tuner. On such case, the output of this pad is an
* audio sampled data.
* @TUNER_NUM_PADS: Number of pads of the tuner.
*/
enum tuner_pad_index {
TUNER_PAD_RF_INPUT,
TUNER_PAD_OUTPUT,
TUNER_PAD_AUD_OUT,
TUNER_NUM_PADS
};
/**
* enum if_vid_dec_index - video IF-PLL pad index for
* MEDIA_ENT_F_IF_VID_DECODER
*
* @IF_VID_DEC_PAD_IF_INPUT: video Intermediate Frequency (IF) sink pad
* @IF_VID_DEC_PAD_OUT: IF-PLL video output source pad. Contains the
* video chrominance and luminance IF signals.
* @IF_VID_DEC_PAD_NUM_PADS: Number of pads of the video IF-PLL.
*/
enum if_vid_dec_pad_index {
IF_VID_DEC_PAD_IF_INPUT,
IF_VID_DEC_PAD_OUT,
IF_VID_DEC_PAD_NUM_PADS
};
/**
* enum if_aud_dec_index - audio/sound IF-PLL pad index for
* MEDIA_ENT_F_IF_AUD_DECODER
*
* @IF_AUD_DEC_PAD_IF_INPUT: audio Intermediate Frequency (IF) sink pad
* @IF_AUD_DEC_PAD_OUT: IF-PLL audio output source pad. Contains the
* audio sampled stream data, usually connected
* to the bridge bus via an Inter-IC Sound (I2S)
* bus.
* @IF_AUD_DEC_PAD_NUM_PADS: Number of pads of the audio IF-PLL.
*/
enum if_aud_dec_pad_index {
IF_AUD_DEC_PAD_IF_INPUT,
IF_AUD_DEC_PAD_OUT,
IF_AUD_DEC_PAD_NUM_PADS
};
/**
* enum demod_pad_index - analog TV pad index for MEDIA_ENT_F_ATV_DECODER
*
* @DEMOD_PAD_IF_INPUT: IF input sink pad.
* @DEMOD_PAD_VID_OUT: Video output source pad.
* @DEMOD_PAD_VBI_OUT: Vertical Blank Interface (VBI) output source pad.
* @DEMOD_NUM_PADS: Maximum number of output pads.
*/
enum demod_pad_index {
DEMOD_PAD_IF_INPUT,
DEMOD_PAD_VID_OUT,
DEMOD_PAD_VBI_OUT,
DEMOD_NUM_PADS
};
/* We don't need to include pci.h or usb.h here */
struct pci_dev;
struct usb_device;
#ifdef CONFIG_MEDIA_CONTROLLER
/**
* v4l2_mc_create_media_graph() - create Media Controller links at the graph.
*
* @mdev: pointer to the &media_device struct.
*
* Add links between the entities commonly found on PC customer's hardware at
* the V4L2 side: camera sensors, audio and video PLL-IF decoders, tuners,
* analog TV decoder and I/O entities (video, VBI and Software Defined Radio).
* NOTE: webcams are modelled on a very simple way: the sensor is
* connected directly to the I/O entity. All dirty details, like
* scaler and crop HW are hidden. While such mapping is enough for v4l2
* interface centric PC-consumer's hardware, V4L2 subdev centric camera
* hardware should not use this routine, as it will not build the right graph.
*/
int v4l2_mc_create_media_graph(struct media_device *mdev);
/**
* v4l2_mc_pci_media_device_init() - create and initialize a
* struct &media_device from a PCI device.
*
* @pci_dev: pointer to struct pci_dev
* @name: media device name. If %NULL, the routine will use the default
* name for the pci device, given by pci_name() macro.
*/
struct media_device *v4l2_mc_pci_media_device_init(struct pci_dev *pci_dev,
const char *name);
/**
* __v4l2_mc_usb_media_device_init() - create and initialize a
* struct &media_device from a PCI device.
*
* @udev: pointer to struct usb_device
* @board_name: media device name. If %NULL, the routine will use the usb
* product name, if available.
* @driver_name: name of the driver. if %NULL, the routine will use the name
* given by udev->dev->driver->name, with is usually the wrong
* thing to do.
*
* NOTE: It is better to call v4l2_mc_usb_media_device_init() instead, as
* such macro fills driver_name with %KBUILD_MODNAME.
*/
struct media_device *__v4l2_mc_usb_media_device_init(struct usb_device *udev,
const char *board_name,
const char *driver_name);
#else
static inline int v4l2_mc_create_media_graph(struct media_device *mdev)
{
return 0;
}
static inline
struct media_device *v4l2_mc_pci_media_device_init(struct pci_dev *pci_dev,
char *name)
{
return NULL;
}
static inline
struct media_device *__v4l2_mc_usb_media_device_init(struct usb_device *udev,
char *board_name,
char *driver_name)
{
return NULL;
}
#endif
#define v4l2_mc_usb_media_device_init(udev, name) \
__v4l2_mc_usb_media_device_init(udev, name, KBUILD_MODNAME)
#endif