linux_dsm_epyc7002/drivers/net/dsa/mt7530.c
Sean Wang 83163f7dca net: dsa: mediatek: add VLAN support for MT7530
MT7530 can treat each port as either VLAN-unaware port or VLAN-aware port
through the implementation of port matrix mode or port security mode on
the ingress port, respectively. On one hand, Each port has been acting as
the VLAN-unaware one whenever the device is created in the initial or
certain port joins or leaves into/from the bridge at the runtime. On the
other hand, the patch just filling the required callbacks for VLAN
operations is achieved via extending the port to be into port security
mode when the port is configured as VLAN-aware port. Which mode can make
the port be able to recognize VID from incoming packets and look up VLAN
table to validate and judge which port it should be going to. And the
range for VID from 1 to 4094 is valid for the hardware.

Signed-off-by: Sean Wang <sean.wang@mediatek.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-12-15 10:31:54 -05:00

1428 lines
35 KiB
C

/*
* Mediatek MT7530 DSA Switch driver
* Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of_gpio.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include <linux/gpio/consumer.h>
#include <net/dsa.h>
#include "mt7530.h"
/* String, offset, and register size in bytes if different from 4 bytes */
static const struct mt7530_mib_desc mt7530_mib[] = {
MIB_DESC(1, 0x00, "TxDrop"),
MIB_DESC(1, 0x04, "TxCrcErr"),
MIB_DESC(1, 0x08, "TxUnicast"),
MIB_DESC(1, 0x0c, "TxMulticast"),
MIB_DESC(1, 0x10, "TxBroadcast"),
MIB_DESC(1, 0x14, "TxCollision"),
MIB_DESC(1, 0x18, "TxSingleCollision"),
MIB_DESC(1, 0x1c, "TxMultipleCollision"),
MIB_DESC(1, 0x20, "TxDeferred"),
MIB_DESC(1, 0x24, "TxLateCollision"),
MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
MIB_DESC(1, 0x2c, "TxPause"),
MIB_DESC(1, 0x30, "TxPktSz64"),
MIB_DESC(1, 0x34, "TxPktSz65To127"),
MIB_DESC(1, 0x38, "TxPktSz128To255"),
MIB_DESC(1, 0x3c, "TxPktSz256To511"),
MIB_DESC(1, 0x40, "TxPktSz512To1023"),
MIB_DESC(1, 0x44, "Tx1024ToMax"),
MIB_DESC(2, 0x48, "TxBytes"),
MIB_DESC(1, 0x60, "RxDrop"),
MIB_DESC(1, 0x64, "RxFiltering"),
MIB_DESC(1, 0x6c, "RxMulticast"),
MIB_DESC(1, 0x70, "RxBroadcast"),
MIB_DESC(1, 0x74, "RxAlignErr"),
MIB_DESC(1, 0x78, "RxCrcErr"),
MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
MIB_DESC(1, 0x80, "RxFragErr"),
MIB_DESC(1, 0x84, "RxOverSzErr"),
MIB_DESC(1, 0x88, "RxJabberErr"),
MIB_DESC(1, 0x8c, "RxPause"),
MIB_DESC(1, 0x90, "RxPktSz64"),
MIB_DESC(1, 0x94, "RxPktSz65To127"),
MIB_DESC(1, 0x98, "RxPktSz128To255"),
MIB_DESC(1, 0x9c, "RxPktSz256To511"),
MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
MIB_DESC(2, 0xa8, "RxBytes"),
MIB_DESC(1, 0xb0, "RxCtrlDrop"),
MIB_DESC(1, 0xb4, "RxIngressDrop"),
MIB_DESC(1, 0xb8, "RxArlDrop"),
};
static int
mt7623_trgmii_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
int ret;
ret = regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
if (ret < 0)
dev_err(priv->dev,
"failed to priv write register\n");
return ret;
}
static u32
mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
{
int ret;
u32 val;
ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
if (ret < 0) {
dev_err(priv->dev,
"failed to priv read register\n");
return ret;
}
return val;
}
static void
mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
u32 mask, u32 set)
{
u32 val;
val = mt7623_trgmii_read(priv, reg);
val &= ~mask;
val |= set;
mt7623_trgmii_write(priv, reg, val);
}
static void
mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7623_trgmii_rmw(priv, reg, 0, val);
}
static void
mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7623_trgmii_rmw(priv, reg, val, 0);
}
static int
core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
{
struct mii_bus *bus = priv->bus;
int value, ret;
/* Write the desired MMD Devad */
ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
if (ret < 0)
goto err;
/* Write the desired MMD register address */
ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
if (ret < 0)
goto err;
/* Select the Function : DATA with no post increment */
ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
if (ret < 0)
goto err;
/* Read the content of the MMD's selected register */
value = bus->read(bus, 0, MII_MMD_DATA);
return value;
err:
dev_err(&bus->dev, "failed to read mmd register\n");
return ret;
}
static int
core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
int devad, u32 data)
{
struct mii_bus *bus = priv->bus;
int ret;
/* Write the desired MMD Devad */
ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
if (ret < 0)
goto err;
/* Write the desired MMD register address */
ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
if (ret < 0)
goto err;
/* Select the Function : DATA with no post increment */
ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
if (ret < 0)
goto err;
/* Write the data into MMD's selected register */
ret = bus->write(bus, 0, MII_MMD_DATA, data);
err:
if (ret < 0)
dev_err(&bus->dev,
"failed to write mmd register\n");
return ret;
}
static void
core_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
mutex_unlock(&bus->mdio_lock);
}
static void
core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
{
struct mii_bus *bus = priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
val &= ~mask;
val |= set;
core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
mutex_unlock(&bus->mdio_lock);
}
static void
core_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
core_rmw(priv, reg, 0, val);
}
static void
core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
core_rmw(priv, reg, val, 0);
}
static int
mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
u16 page, r, lo, hi;
int ret;
page = (reg >> 6) & 0x3ff;
r = (reg >> 2) & 0xf;
lo = val & 0xffff;
hi = val >> 16;
/* MT7530 uses 31 as the pseudo port */
ret = bus->write(bus, 0x1f, 0x1f, page);
if (ret < 0)
goto err;
ret = bus->write(bus, 0x1f, r, lo);
if (ret < 0)
goto err;
ret = bus->write(bus, 0x1f, 0x10, hi);
err:
if (ret < 0)
dev_err(&bus->dev,
"failed to write mt7530 register\n");
return ret;
}
static u32
mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
{
struct mii_bus *bus = priv->bus;
u16 page, r, lo, hi;
int ret;
page = (reg >> 6) & 0x3ff;
r = (reg >> 2) & 0xf;
/* MT7530 uses 31 as the pseudo port */
ret = bus->write(bus, 0x1f, 0x1f, page);
if (ret < 0) {
dev_err(&bus->dev,
"failed to read mt7530 register\n");
return ret;
}
lo = bus->read(bus, 0x1f, r);
hi = bus->read(bus, 0x1f, 0x10);
return (hi << 16) | (lo & 0xffff);
}
static void
mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
{
struct mii_bus *bus = priv->bus;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
mt7530_mii_write(priv, reg, val);
mutex_unlock(&bus->mdio_lock);
}
static u32
_mt7530_read(struct mt7530_dummy_poll *p)
{
struct mii_bus *bus = p->priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = mt7530_mii_read(p->priv, p->reg);
mutex_unlock(&bus->mdio_lock);
return val;
}
static u32
mt7530_read(struct mt7530_priv *priv, u32 reg)
{
struct mt7530_dummy_poll p;
INIT_MT7530_DUMMY_POLL(&p, priv, reg);
return _mt7530_read(&p);
}
static void
mt7530_rmw(struct mt7530_priv *priv, u32 reg,
u32 mask, u32 set)
{
struct mii_bus *bus = priv->bus;
u32 val;
mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
val = mt7530_mii_read(priv, reg);
val &= ~mask;
val |= set;
mt7530_mii_write(priv, reg, val);
mutex_unlock(&bus->mdio_lock);
}
static void
mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_rmw(priv, reg, 0, val);
}
static void
mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
{
mt7530_rmw(priv, reg, val, 0);
}
static int
mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
{
u32 val;
int ret;
struct mt7530_dummy_poll p;
/* Set the command operating upon the MAC address entries */
val = ATC_BUSY | ATC_MAT(0) | cmd;
mt7530_write(priv, MT7530_ATC, val);
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
ret = readx_poll_timeout(_mt7530_read, &p, val,
!(val & ATC_BUSY), 20, 20000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
/* Additional sanity for read command if the specified
* entry is invalid
*/
val = mt7530_read(priv, MT7530_ATC);
if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
return -EINVAL;
if (rsp)
*rsp = val;
return 0;
}
static void
mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
{
u32 reg[3];
int i;
/* Read from ARL table into an array */
for (i = 0; i < 3; i++) {
reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
__func__, __LINE__, i, reg[i]);
}
fdb->vid = (reg[1] >> CVID) & CVID_MASK;
fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
}
static void
mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
u8 port_mask, const u8 *mac,
u8 aging, u8 type)
{
u32 reg[3] = { 0 };
int i;
reg[1] |= vid & CVID_MASK;
reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
/* STATIC_ENT indicate that entry is static wouldn't
* be aged out and STATIC_EMP specified as erasing an
* entry
*/
reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
reg[1] |= mac[5] << MAC_BYTE_5;
reg[1] |= mac[4] << MAC_BYTE_4;
reg[0] |= mac[3] << MAC_BYTE_3;
reg[0] |= mac[2] << MAC_BYTE_2;
reg[0] |= mac[1] << MAC_BYTE_1;
reg[0] |= mac[0] << MAC_BYTE_0;
/* Write array into the ARL table */
for (i = 0; i < 3; i++)
mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
}
static int
mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
{
struct mt7530_priv *priv = ds->priv;
u32 ncpo1, ssc_delta, trgint, i;
switch (mode) {
case PHY_INTERFACE_MODE_RGMII:
trgint = 0;
ncpo1 = 0x0c80;
ssc_delta = 0x87;
break;
case PHY_INTERFACE_MODE_TRGMII:
trgint = 1;
ncpo1 = 0x1400;
ssc_delta = 0x57;
break;
default:
dev_err(priv->dev, "xMII mode %d not supported\n", mode);
return -EINVAL;
}
mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
P6_INTF_MODE(trgint));
/* Lower Tx Driving for TRGMII path */
for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
TD_DM_DRVP(8) | TD_DM_DRVN(8));
/* Setup core clock for MT7530 */
if (!trgint) {
/* Disable MT7530 core clock */
core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
/* Disable PLL, since phy_device has not yet been created
* provided for phy_[read,write]_mmd_indirect is called, we
* provide our own core_write_mmd_indirect to complete this
* function.
*/
core_write_mmd_indirect(priv,
CORE_GSWPLL_GRP1,
MDIO_MMD_VEND2,
0);
/* Set core clock into 500Mhz */
core_write(priv, CORE_GSWPLL_GRP2,
RG_GSWPLL_POSDIV_500M(1) |
RG_GSWPLL_FBKDIV_500M(25));
/* Enable PLL */
core_write(priv, CORE_GSWPLL_GRP1,
RG_GSWPLL_EN_PRE |
RG_GSWPLL_POSDIV_200M(2) |
RG_GSWPLL_FBKDIV_200M(32));
/* Enable MT7530 core clock */
core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
}
/* Setup the MT7530 TRGMII Tx Clock */
core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
core_write(priv, CORE_PLL_GROUP4,
RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
RG_SYSPLL_BIAS_LPF_EN);
core_write(priv, CORE_PLL_GROUP2,
RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
RG_SYSPLL_POSDIV(1));
core_write(priv, CORE_PLL_GROUP7,
RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
core_set(priv, CORE_TRGMII_GSW_CLK_CG,
REG_GSWCK_EN | REG_TRGMIICK_EN);
if (!trgint)
for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
mt7530_rmw(priv, MT7530_TRGMII_RD(i),
RD_TAP_MASK, RD_TAP(16));
else
mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII);
return 0;
}
static int
mt7623_pad_clk_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
int i;
for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
TD_DM_DRVP(8) | TD_DM_DRVN(8));
mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
return 0;
}
static void
mt7530_mib_reset(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
}
static void
mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
{
u32 mask = PMCR_TX_EN | PMCR_RX_EN;
if (enable)
mt7530_set(priv, MT7530_PMCR_P(port), mask);
else
mt7530_clear(priv, MT7530_PMCR_P(port), mask);
}
static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
{
struct mt7530_priv *priv = ds->priv;
return mdiobus_read_nested(priv->bus, port, regnum);
}
static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
u16 val)
{
struct mt7530_priv *priv = ds->priv;
return mdiobus_write_nested(priv->bus, port, regnum, val);
}
static void
mt7530_get_strings(struct dsa_switch *ds, int port, uint8_t *data)
{
int i;
for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
ETH_GSTRING_LEN);
}
static void
mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
uint64_t *data)
{
struct mt7530_priv *priv = ds->priv;
const struct mt7530_mib_desc *mib;
u32 reg, i;
u64 hi;
for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
mib = &mt7530_mib[i];
reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
data[i] = mt7530_read(priv, reg);
if (mib->size == 2) {
hi = mt7530_read(priv, reg + 4);
data[i] |= hi << 32;
}
}
}
static int
mt7530_get_sset_count(struct dsa_switch *ds)
{
return ARRAY_SIZE(mt7530_mib);
}
static void mt7530_adjust_link(struct dsa_switch *ds, int port,
struct phy_device *phydev)
{
struct mt7530_priv *priv = ds->priv;
if (phy_is_pseudo_fixed_link(phydev)) {
dev_dbg(priv->dev, "phy-mode for master device = %x\n",
phydev->interface);
/* Setup TX circuit incluing relevant PAD and driving */
mt7530_pad_clk_setup(ds, phydev->interface);
/* Setup RX circuit, relevant PAD and driving on the host
* which must be placed after the setup on the device side is
* all finished.
*/
mt7623_pad_clk_setup(ds);
} else {
u16 lcl_adv = 0, rmt_adv = 0;
u8 flowctrl;
u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
switch (phydev->speed) {
case SPEED_1000:
mcr |= PMCR_FORCE_SPEED_1000;
break;
case SPEED_100:
mcr |= PMCR_FORCE_SPEED_100;
break;
};
if (phydev->link)
mcr |= PMCR_FORCE_LNK;
if (phydev->duplex) {
mcr |= PMCR_FORCE_FDX;
if (phydev->pause)
rmt_adv = LPA_PAUSE_CAP;
if (phydev->asym_pause)
rmt_adv |= LPA_PAUSE_ASYM;
if (phydev->advertising & ADVERTISED_Pause)
lcl_adv |= ADVERTISE_PAUSE_CAP;
if (phydev->advertising & ADVERTISED_Asym_Pause)
lcl_adv |= ADVERTISE_PAUSE_ASYM;
flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
if (flowctrl & FLOW_CTRL_TX)
mcr |= PMCR_TX_FC_EN;
if (flowctrl & FLOW_CTRL_RX)
mcr |= PMCR_RX_FC_EN;
}
mt7530_write(priv, MT7530_PMCR_P(port), mcr);
}
}
static int
mt7530_cpu_port_enable(struct mt7530_priv *priv,
int port)
{
/* Enable Mediatek header mode on the cpu port */
mt7530_write(priv, MT7530_PVC_P(port),
PORT_SPEC_TAG);
/* Setup the MAC by default for the cpu port */
mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
/* Disable auto learning on the cpu port */
mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
/* Unknown unicast frame fordwarding to the cpu port */
mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
/* CPU port gets connected to all user ports of
* the switch
*/
mt7530_write(priv, MT7530_PCR_P(port),
PCR_MATRIX(dsa_user_ports(priv->ds)));
return 0;
}
static int
mt7530_port_enable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
/* Setup the MAC for the user port */
mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
/* Allow the user port gets connected to the cpu port and also
* restore the port matrix if the port is the member of a certain
* bridge.
*/
priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
priv->ports[port].enable = true;
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
priv->ports[port].pm);
mt7530_port_set_status(priv, port, 1);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void
mt7530_port_disable(struct dsa_switch *ds, int port,
struct phy_device *phy)
{
struct mt7530_priv *priv = ds->priv;
mutex_lock(&priv->reg_mutex);
/* Clear up all port matrix which could be restored in the next
* enablement for the port.
*/
priv->ports[port].enable = false;
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
mt7530_port_set_status(priv, port, 0);
mutex_unlock(&priv->reg_mutex);
}
static void
mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
{
struct mt7530_priv *priv = ds->priv;
u32 stp_state;
switch (state) {
case BR_STATE_DISABLED:
stp_state = MT7530_STP_DISABLED;
break;
case BR_STATE_BLOCKING:
stp_state = MT7530_STP_BLOCKING;
break;
case BR_STATE_LISTENING:
stp_state = MT7530_STP_LISTENING;
break;
case BR_STATE_LEARNING:
stp_state = MT7530_STP_LEARNING;
break;
case BR_STATE_FORWARDING:
default:
stp_state = MT7530_STP_FORWARDING;
break;
}
mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
}
static int
mt7530_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct mt7530_priv *priv = ds->priv;
u32 port_bitmap = BIT(MT7530_CPU_PORT);
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Add this port to the port matrix of the other ports in the
* same bridge. If the port is disabled, port matrix is kept
* and not being setup until the port becomes enabled.
*/
if (dsa_is_user_port(ds, i) && i != port) {
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
if (priv->ports[i].enable)
mt7530_set(priv, MT7530_PCR_P(i),
PCR_MATRIX(BIT(port)));
priv->ports[i].pm |= PCR_MATRIX(BIT(port));
port_bitmap |= BIT(i);
}
}
/* Add the all other ports to this port matrix. */
if (priv->ports[port].enable)
mt7530_rmw(priv, MT7530_PCR_P(port),
PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
mutex_unlock(&priv->reg_mutex);
return 0;
}
static void
mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
bool all_user_ports_removed = true;
int i;
/* When a port is removed from the bridge, the port would be set up
* back to the default as is at initial boot which is a VLAN-unaware
* port.
*/
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_MATRIX_MODE);
mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
priv->ports[port].vlan_filtering = false;
for (i = 0; i < MT7530_NUM_PORTS; i++) {
if (dsa_is_user_port(ds, i) &&
priv->ports[i].vlan_filtering) {
all_user_ports_removed = false;
break;
}
}
/* CPU port also does the same thing until all user ports belonging to
* the CPU port get out of VLAN filtering mode.
*/
if (all_user_ports_removed) {
mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
PCR_MATRIX(dsa_user_ports(priv->ds)));
mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
PORT_SPEC_TAG);
}
}
static void
mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
/* The real fabric path would be decided on the membership in the
* entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
* means potential VLAN can be consisting of certain subset of all
* ports.
*/
mt7530_rmw(priv, MT7530_PCR_P(port),
PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
/* Trapped into security mode allows packet forwarding through VLAN
* table lookup.
*/
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
MT7530_PORT_SECURITY_MODE);
/* Set the port as a user port which is to be able to recognize VID
* from incoming packets before fetching entry within the VLAN table.
*/
mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
VLAN_ATTR(MT7530_VLAN_USER));
}
static void
mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct mt7530_priv *priv = ds->priv;
int i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Remove this port from the port matrix of the other ports
* in the same bridge. If the port is disabled, port matrix
* is kept and not being setup until the port becomes enabled.
* And the other port's port matrix cannot be broken when the
* other port is still a VLAN-aware port.
*/
if (!priv->ports[i].vlan_filtering &&
dsa_is_user_port(ds, i) && i != port) {
if (dsa_to_port(ds, i)->bridge_dev != bridge)
continue;
if (priv->ports[i].enable)
mt7530_clear(priv, MT7530_PCR_P(i),
PCR_MATRIX(BIT(port)));
priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
}
}
/* Set the cpu port to be the only one in the port matrix of
* this port.
*/
if (priv->ports[port].enable)
mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
PCR_MATRIX(BIT(MT7530_CPU_PORT)));
priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
mt7530_port_set_vlan_unaware(ds, port);
mutex_unlock(&priv->reg_mutex);
}
static int
mt7530_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct mt7530_priv *priv = ds->priv;
int ret;
u8 port_mask = BIT(port);
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, 0);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_fdb_del(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct mt7530_priv *priv = ds->priv;
int ret;
u8 port_mask = BIT(port);
mutex_lock(&priv->reg_mutex);
mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, 0);
mutex_unlock(&priv->reg_mutex);
return ret;
}
static int
mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
struct mt7530_priv *priv = ds->priv;
struct mt7530_fdb _fdb = { 0 };
int cnt = MT7530_NUM_FDB_RECORDS;
int ret = 0;
u32 rsp = 0;
mutex_lock(&priv->reg_mutex);
ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
if (ret < 0)
goto err;
do {
if (rsp & ATC_SRCH_HIT) {
mt7530_fdb_read(priv, &_fdb);
if (_fdb.port_mask & BIT(port)) {
ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
data);
if (ret < 0)
break;
}
}
} while (--cnt &&
!(rsp & ATC_SRCH_END) &&
!mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
err:
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
{
struct mt7530_dummy_poll p;
u32 val;
int ret;
val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
mt7530_write(priv, MT7530_VTCR, val);
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
ret = readx_poll_timeout(_mt7530_read, &p, val,
!(val & VTCR_BUSY), 20, 20000);
if (ret < 0) {
dev_err(priv->dev, "poll timeout\n");
return ret;
}
val = mt7530_read(priv, MT7530_VTCR);
if (val & VTCR_INVALID) {
dev_err(priv->dev, "read VTCR invalid\n");
return -EINVAL;
}
return 0;
}
static int
mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
bool vlan_filtering)
{
struct mt7530_priv *priv = ds->priv;
priv->ports[port].vlan_filtering = vlan_filtering;
if (vlan_filtering) {
/* The port is being kept as VLAN-unaware port when bridge is
* set up with vlan_filtering not being set, Otherwise, the
* port and the corresponding CPU port is required the setup
* for becoming a VLAN-aware port.
*/
mt7530_port_set_vlan_aware(ds, port);
mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
}
return 0;
}
static int
mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
/* nothing needed */
return 0;
}
static void
mt7530_hw_vlan_add(struct mt7530_priv *priv,
struct mt7530_hw_vlan_entry *entry)
{
u8 new_members;
u32 val;
new_members = entry->old_members | BIT(entry->port) |
BIT(MT7530_CPU_PORT);
/* Validate the entry with independent learning, create egress tag per
* VLAN and joining the port as one of the port members.
*/
val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
/* Decide whether adding tag or not for those outgoing packets from the
* port inside the VLAN.
*/
val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
MT7530_VLAN_EGRESS_TAG;
mt7530_rmw(priv, MT7530_VAWD2,
ETAG_CTRL_P_MASK(entry->port),
ETAG_CTRL_P(entry->port, val));
/* CPU port is always taken as a tagged port for serving more than one
* VLANs across and also being applied with egress type stack mode for
* that VLAN tags would be appended after hardware special tag used as
* DSA tag.
*/
mt7530_rmw(priv, MT7530_VAWD2,
ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
ETAG_CTRL_P(MT7530_CPU_PORT,
MT7530_VLAN_EGRESS_STACK));
}
static void
mt7530_hw_vlan_del(struct mt7530_priv *priv,
struct mt7530_hw_vlan_entry *entry)
{
u8 new_members;
u32 val;
new_members = entry->old_members & ~BIT(entry->port);
val = mt7530_read(priv, MT7530_VAWD1);
if (!(val & VLAN_VALID)) {
dev_err(priv->dev,
"Cannot be deleted due to invalid entry\n");
return;
}
/* If certain member apart from CPU port is still alive in the VLAN,
* the entry would be kept valid. Otherwise, the entry is got to be
* disabled.
*/
if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
VLAN_VALID;
mt7530_write(priv, MT7530_VAWD1, val);
} else {
mt7530_write(priv, MT7530_VAWD1, 0);
mt7530_write(priv, MT7530_VAWD2, 0);
}
}
static void
mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
struct mt7530_hw_vlan_entry *entry,
mt7530_vlan_op vlan_op)
{
u32 val;
/* Fetch entry */
mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
val = mt7530_read(priv, MT7530_VAWD1);
entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
/* Manipulate entry */
vlan_op(priv, entry);
/* Flush result to hardware */
mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
}
static void
mt7530_port_vlan_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
struct mt7530_hw_vlan_entry new_entry;
struct mt7530_priv *priv = ds->priv;
u16 vid;
/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
* being set.
*/
if (!priv->ports[port].vlan_filtering)
return;
mutex_lock(&priv->reg_mutex);
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
mt7530_hw_vlan_update(priv, vid, &new_entry,
mt7530_hw_vlan_add);
}
if (pvid) {
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
G0_PORT_VID(vlan->vid_end));
priv->ports[port].pvid = vlan->vid_end;
}
mutex_unlock(&priv->reg_mutex);
}
static int
mt7530_port_vlan_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_vlan *vlan)
{
struct mt7530_hw_vlan_entry target_entry;
struct mt7530_priv *priv = ds->priv;
u16 vid, pvid;
/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
* being set.
*/
if (!priv->ports[port].vlan_filtering)
return 0;
mutex_lock(&priv->reg_mutex);
pvid = priv->ports[port].pvid;
for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
mt7530_hw_vlan_entry_init(&target_entry, port, 0);
mt7530_hw_vlan_update(priv, vid, &target_entry,
mt7530_hw_vlan_del);
/* PVID is being restored to the default whenever the PVID port
* is being removed from the VLAN.
*/
if (pvid == vid)
pvid = G0_PORT_VID_DEF;
}
mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
priv->ports[port].pvid = pvid;
mutex_unlock(&priv->reg_mutex);
return 0;
}
static enum dsa_tag_protocol
mtk_get_tag_protocol(struct dsa_switch *ds, int port)
{
struct mt7530_priv *priv = ds->priv;
if (port != MT7530_CPU_PORT) {
dev_warn(priv->dev,
"port not matched with tagging CPU port\n");
return DSA_TAG_PROTO_NONE;
} else {
return DSA_TAG_PROTO_MTK;
}
}
static int
mt7530_setup(struct dsa_switch *ds)
{
struct mt7530_priv *priv = ds->priv;
int ret, i;
u32 id, val;
struct device_node *dn;
struct mt7530_dummy_poll p;
/* The parent node of master netdev which holds the common system
* controller also is the container for two GMACs nodes representing
* as two netdev instances.
*/
dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
priv->ethernet = syscon_node_to_regmap(dn);
if (IS_ERR(priv->ethernet))
return PTR_ERR(priv->ethernet);
regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
ret = regulator_enable(priv->core_pwr);
if (ret < 0) {
dev_err(priv->dev,
"Failed to enable core power: %d\n", ret);
return ret;
}
regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
ret = regulator_enable(priv->io_pwr);
if (ret < 0) {
dev_err(priv->dev, "Failed to enable io pwr: %d\n",
ret);
return ret;
}
/* Reset whole chip through gpio pin or memory-mapped registers for
* different type of hardware
*/
if (priv->mcm) {
reset_control_assert(priv->rstc);
usleep_range(1000, 1100);
reset_control_deassert(priv->rstc);
} else {
gpiod_set_value_cansleep(priv->reset, 0);
usleep_range(1000, 1100);
gpiod_set_value_cansleep(priv->reset, 1);
}
/* Waiting for MT7530 got to stable */
INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
20, 1000000);
if (ret < 0) {
dev_err(priv->dev, "reset timeout\n");
return ret;
}
id = mt7530_read(priv, MT7530_CREV);
id >>= CHIP_NAME_SHIFT;
if (id != MT7530_ID) {
dev_err(priv->dev, "chip %x can't be supported\n", id);
return -ENODEV;
}
/* Reset the switch through internal reset */
mt7530_write(priv, MT7530_SYS_CTRL,
SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
SYS_CTRL_REG_RST);
/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
val = mt7530_read(priv, MT7530_MHWTRAP);
val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
val |= MHWTRAP_MANUAL;
mt7530_write(priv, MT7530_MHWTRAP, val);
/* Enable and reset MIB counters */
mt7530_mib_reset(ds);
mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
for (i = 0; i < MT7530_NUM_PORTS; i++) {
/* Disable forwarding by default on all ports */
mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
PCR_MATRIX_CLR);
if (dsa_is_cpu_port(ds, i))
mt7530_cpu_port_enable(priv, i);
else
mt7530_port_disable(ds, i, NULL);
}
/* Flush the FDB table */
ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, 0);
if (ret < 0)
return ret;
return 0;
}
static const struct dsa_switch_ops mt7530_switch_ops = {
.get_tag_protocol = mtk_get_tag_protocol,
.setup = mt7530_setup,
.get_strings = mt7530_get_strings,
.phy_read = mt7530_phy_read,
.phy_write = mt7530_phy_write,
.get_ethtool_stats = mt7530_get_ethtool_stats,
.get_sset_count = mt7530_get_sset_count,
.adjust_link = mt7530_adjust_link,
.port_enable = mt7530_port_enable,
.port_disable = mt7530_port_disable,
.port_stp_state_set = mt7530_stp_state_set,
.port_bridge_join = mt7530_port_bridge_join,
.port_bridge_leave = mt7530_port_bridge_leave,
.port_fdb_add = mt7530_port_fdb_add,
.port_fdb_del = mt7530_port_fdb_del,
.port_fdb_dump = mt7530_port_fdb_dump,
.port_vlan_filtering = mt7530_port_vlan_filtering,
.port_vlan_prepare = mt7530_port_vlan_prepare,
.port_vlan_add = mt7530_port_vlan_add,
.port_vlan_del = mt7530_port_vlan_del,
};
static int
mt7530_probe(struct mdio_device *mdiodev)
{
struct mt7530_priv *priv;
struct device_node *dn;
dn = mdiodev->dev.of_node;
priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
if (!priv->ds)
return -ENOMEM;
/* Use medatek,mcm property to distinguish hardware type that would
* casues a little bit differences on power-on sequence.
*/
priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
if (priv->mcm) {
dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
if (IS_ERR(priv->rstc)) {
dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
return PTR_ERR(priv->rstc);
}
}
priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
if (IS_ERR(priv->core_pwr))
return PTR_ERR(priv->core_pwr);
priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
if (IS_ERR(priv->io_pwr))
return PTR_ERR(priv->io_pwr);
/* Not MCM that indicates switch works as the remote standalone
* integrated circuit so the GPIO pin would be used to complete
* the reset, otherwise memory-mapped register accessing used
* through syscon provides in the case of MCM.
*/
if (!priv->mcm) {
priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(priv->reset)) {
dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
return PTR_ERR(priv->reset);
}
}
priv->bus = mdiodev->bus;
priv->dev = &mdiodev->dev;
priv->ds->priv = priv;
priv->ds->ops = &mt7530_switch_ops;
mutex_init(&priv->reg_mutex);
dev_set_drvdata(&mdiodev->dev, priv);
return dsa_register_switch(priv->ds);
}
static void
mt7530_remove(struct mdio_device *mdiodev)
{
struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
int ret = 0;
ret = regulator_disable(priv->core_pwr);
if (ret < 0)
dev_err(priv->dev,
"Failed to disable core power: %d\n", ret);
ret = regulator_disable(priv->io_pwr);
if (ret < 0)
dev_err(priv->dev, "Failed to disable io pwr: %d\n",
ret);
dsa_unregister_switch(priv->ds);
mutex_destroy(&priv->reg_mutex);
}
static const struct of_device_id mt7530_of_match[] = {
{ .compatible = "mediatek,mt7530" },
{ /* sentinel */ },
};
static struct mdio_driver mt7530_mdio_driver = {
.probe = mt7530_probe,
.remove = mt7530_remove,
.mdiodrv.driver = {
.name = "mt7530",
.of_match_table = mt7530_of_match,
},
};
mdio_module_driver(mt7530_mdio_driver);
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mediatek-mt7530");