mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
537946556c
[ Upstream commit 57efa1fe5957694fa541c9062de0a127f0b9acb0 ] Since commit70e806e4e6
("mm: Do early cow for pinned pages during fork() for ptes") pages under a FOLL_PIN will not be write protected during COW for fork. This means that pages returned from pin_user_pages(FOLL_WRITE) should not become write protected while the pin is active. However, there is a small race where get_user_pages_fast(FOLL_PIN) can establish a FOLL_PIN at the same time copy_present_page() is write protecting it: CPU 0 CPU 1 get_user_pages_fast() internal_get_user_pages_fast() copy_page_range() pte_alloc_map_lock() copy_present_page() atomic_read(has_pinned) == 0 page_maybe_dma_pinned() == false atomic_set(has_pinned, 1); gup_pgd_range() gup_pte_range() pte_t pte = gup_get_pte(ptep) pte_access_permitted(pte) try_grab_compound_head() pte = pte_wrprotect(pte) set_pte_at(); pte_unmap_unlock() // GUP now returns with a write protected page The first attempt to resolve this by using the write protect caused problems (and was missing a barrrier), see commitf3c64eda3e
("mm: avoid early COW write protect games during fork()") Instead wrap copy_p4d_range() with the write side of a seqcount and check the read side around gup_pgd_range(). If there is a collision then get_user_pages_fast() fails and falls back to slow GUP. Slow GUP is safe against this race because copy_page_range() is only called while holding the exclusive side of the mmap_lock on the src mm_struct. [akpm@linux-foundation.org: coding style fixes] Link: https://lore.kernel.org/r/CAHk-=wi=iCnYCARbPGjkVJu9eyYeZ13N64tZYLdOB8CP5Q_PLw@mail.gmail.com Link: https://lkml.kernel.org/r/2-v4-908497cf359a+4782-gup_fork_jgg@nvidia.com Fixes:f3c64eda3e
("mm: avoid early COW write protect games during fork()") Signed-off-by: Jason Gunthorpe <jgg@nvidia.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Peter Xu <peterx@redhat.com> Acked-by: "Ahmed S. Darwish" <a.darwish@linutronix.de> [seqcount_t parts] Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Hugh Dickins <hughd@google.com> Cc: Jann Horn <jannh@google.com> Cc: Kirill Shutemov <kirill@shutemov.name> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Leon Romanovsky <leonro@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
1026 lines
26 KiB
C
1026 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* efi.c - EFI subsystem
|
|
*
|
|
* Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com>
|
|
* Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com>
|
|
* Copyright (C) 2013 Tom Gundersen <teg@jklm.no>
|
|
*
|
|
* This code registers /sys/firmware/efi{,/efivars} when EFI is supported,
|
|
* allowing the efivarfs to be mounted or the efivars module to be loaded.
|
|
* The existance of /sys/firmware/efi may also be used by userspace to
|
|
* determine that the system supports EFI.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kobject.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/device.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/of.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/random.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/ucs2_string.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/security.h>
|
|
|
|
#include <asm/early_ioremap.h>
|
|
|
|
struct efi __read_mostly efi = {
|
|
.runtime_supported_mask = EFI_RT_SUPPORTED_ALL,
|
|
.acpi = EFI_INVALID_TABLE_ADDR,
|
|
.acpi20 = EFI_INVALID_TABLE_ADDR,
|
|
.smbios = EFI_INVALID_TABLE_ADDR,
|
|
.smbios3 = EFI_INVALID_TABLE_ADDR,
|
|
.esrt = EFI_INVALID_TABLE_ADDR,
|
|
.tpm_log = EFI_INVALID_TABLE_ADDR,
|
|
.tpm_final_log = EFI_INVALID_TABLE_ADDR,
|
|
#ifdef CONFIG_LOAD_UEFI_KEYS
|
|
.mokvar_table = EFI_INVALID_TABLE_ADDR,
|
|
#endif
|
|
};
|
|
EXPORT_SYMBOL(efi);
|
|
|
|
unsigned long __ro_after_init efi_rng_seed = EFI_INVALID_TABLE_ADDR;
|
|
static unsigned long __initdata mem_reserve = EFI_INVALID_TABLE_ADDR;
|
|
static unsigned long __initdata rt_prop = EFI_INVALID_TABLE_ADDR;
|
|
|
|
struct mm_struct efi_mm = {
|
|
.mm_rb = RB_ROOT,
|
|
.mm_users = ATOMIC_INIT(2),
|
|
.mm_count = ATOMIC_INIT(1),
|
|
.write_protect_seq = SEQCNT_ZERO(efi_mm.write_protect_seq),
|
|
MMAP_LOCK_INITIALIZER(efi_mm)
|
|
.page_table_lock = __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock),
|
|
.mmlist = LIST_HEAD_INIT(efi_mm.mmlist),
|
|
.cpu_bitmap = { [BITS_TO_LONGS(NR_CPUS)] = 0},
|
|
};
|
|
|
|
struct workqueue_struct *efi_rts_wq;
|
|
|
|
static bool disable_runtime;
|
|
static int __init setup_noefi(char *arg)
|
|
{
|
|
disable_runtime = true;
|
|
return 0;
|
|
}
|
|
early_param("noefi", setup_noefi);
|
|
|
|
bool efi_runtime_disabled(void)
|
|
{
|
|
return disable_runtime;
|
|
}
|
|
|
|
bool __pure __efi_soft_reserve_enabled(void)
|
|
{
|
|
return !efi_enabled(EFI_MEM_NO_SOFT_RESERVE);
|
|
}
|
|
|
|
static int __init parse_efi_cmdline(char *str)
|
|
{
|
|
if (!str) {
|
|
pr_warn("need at least one option\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (parse_option_str(str, "debug"))
|
|
set_bit(EFI_DBG, &efi.flags);
|
|
|
|
if (parse_option_str(str, "noruntime"))
|
|
disable_runtime = true;
|
|
|
|
if (parse_option_str(str, "nosoftreserve"))
|
|
set_bit(EFI_MEM_NO_SOFT_RESERVE, &efi.flags);
|
|
|
|
return 0;
|
|
}
|
|
early_param("efi", parse_efi_cmdline);
|
|
|
|
struct kobject *efi_kobj;
|
|
|
|
/*
|
|
* Let's not leave out systab information that snuck into
|
|
* the efivars driver
|
|
* Note, do not add more fields in systab sysfs file as it breaks sysfs
|
|
* one value per file rule!
|
|
*/
|
|
static ssize_t systab_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
char *str = buf;
|
|
|
|
if (!kobj || !buf)
|
|
return -EINVAL;
|
|
|
|
if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20);
|
|
if (efi.acpi != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "ACPI=0x%lx\n", efi.acpi);
|
|
/*
|
|
* If both SMBIOS and SMBIOS3 entry points are implemented, the
|
|
* SMBIOS3 entry point shall be preferred, so we list it first to
|
|
* let applications stop parsing after the first match.
|
|
*/
|
|
if (efi.smbios3 != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3);
|
|
if (efi.smbios != EFI_INVALID_TABLE_ADDR)
|
|
str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios);
|
|
|
|
if (IS_ENABLED(CONFIG_IA64) || IS_ENABLED(CONFIG_X86))
|
|
str = efi_systab_show_arch(str);
|
|
|
|
return str - buf;
|
|
}
|
|
|
|
static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400);
|
|
|
|
static ssize_t fw_platform_size_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32);
|
|
}
|
|
|
|
extern __weak struct kobj_attribute efi_attr_fw_vendor;
|
|
extern __weak struct kobj_attribute efi_attr_runtime;
|
|
extern __weak struct kobj_attribute efi_attr_config_table;
|
|
static struct kobj_attribute efi_attr_fw_platform_size =
|
|
__ATTR_RO(fw_platform_size);
|
|
|
|
static struct attribute *efi_subsys_attrs[] = {
|
|
&efi_attr_systab.attr,
|
|
&efi_attr_fw_platform_size.attr,
|
|
&efi_attr_fw_vendor.attr,
|
|
&efi_attr_runtime.attr,
|
|
&efi_attr_config_table.attr,
|
|
NULL,
|
|
};
|
|
|
|
umode_t __weak efi_attr_is_visible(struct kobject *kobj, struct attribute *attr,
|
|
int n)
|
|
{
|
|
return attr->mode;
|
|
}
|
|
|
|
static const struct attribute_group efi_subsys_attr_group = {
|
|
.attrs = efi_subsys_attrs,
|
|
.is_visible = efi_attr_is_visible,
|
|
};
|
|
|
|
static struct efivars generic_efivars;
|
|
static struct efivar_operations generic_ops;
|
|
|
|
static int generic_ops_register(void)
|
|
{
|
|
generic_ops.get_variable = efi.get_variable;
|
|
generic_ops.get_next_variable = efi.get_next_variable;
|
|
generic_ops.query_variable_store = efi_query_variable_store;
|
|
|
|
if (efi_rt_services_supported(EFI_RT_SUPPORTED_SET_VARIABLE)) {
|
|
generic_ops.set_variable = efi.set_variable;
|
|
generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking;
|
|
}
|
|
return efivars_register(&generic_efivars, &generic_ops, efi_kobj);
|
|
}
|
|
|
|
static void generic_ops_unregister(void)
|
|
{
|
|
efivars_unregister(&generic_efivars);
|
|
}
|
|
|
|
#ifdef CONFIG_EFI_CUSTOM_SSDT_OVERLAYS
|
|
#define EFIVAR_SSDT_NAME_MAX 16
|
|
static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata;
|
|
static int __init efivar_ssdt_setup(char *str)
|
|
{
|
|
int ret = security_locked_down(LOCKDOWN_ACPI_TABLES);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (strlen(str) < sizeof(efivar_ssdt))
|
|
memcpy(efivar_ssdt, str, strlen(str));
|
|
else
|
|
pr_warn("efivar_ssdt: name too long: %s\n", str);
|
|
return 0;
|
|
}
|
|
__setup("efivar_ssdt=", efivar_ssdt_setup);
|
|
|
|
static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor,
|
|
unsigned long name_size, void *data)
|
|
{
|
|
struct efivar_entry *entry;
|
|
struct list_head *list = data;
|
|
char utf8_name[EFIVAR_SSDT_NAME_MAX];
|
|
int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size);
|
|
|
|
ucs2_as_utf8(utf8_name, name, limit - 1);
|
|
if (strncmp(utf8_name, efivar_ssdt, limit) != 0)
|
|
return 0;
|
|
|
|
entry = kmalloc(sizeof(*entry), GFP_KERNEL);
|
|
if (!entry)
|
|
return 0;
|
|
|
|
memcpy(entry->var.VariableName, name, name_size);
|
|
memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t));
|
|
|
|
efivar_entry_add(entry, list);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __init int efivar_ssdt_load(void)
|
|
{
|
|
LIST_HEAD(entries);
|
|
struct efivar_entry *entry, *aux;
|
|
unsigned long size;
|
|
void *data;
|
|
int ret;
|
|
|
|
if (!efivar_ssdt[0])
|
|
return 0;
|
|
|
|
ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries);
|
|
|
|
list_for_each_entry_safe(entry, aux, &entries, list) {
|
|
pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt,
|
|
&entry->var.VendorGuid);
|
|
|
|
list_del(&entry->list);
|
|
|
|
ret = efivar_entry_size(entry, &size);
|
|
if (ret) {
|
|
pr_err("failed to get var size\n");
|
|
goto free_entry;
|
|
}
|
|
|
|
data = kmalloc(size, GFP_KERNEL);
|
|
if (!data) {
|
|
ret = -ENOMEM;
|
|
goto free_entry;
|
|
}
|
|
|
|
ret = efivar_entry_get(entry, NULL, &size, data);
|
|
if (ret) {
|
|
pr_err("failed to get var data\n");
|
|
goto free_data;
|
|
}
|
|
|
|
ret = acpi_load_table(data, NULL);
|
|
if (ret) {
|
|
pr_err("failed to load table: %d\n", ret);
|
|
goto free_data;
|
|
}
|
|
|
|
goto free_entry;
|
|
|
|
free_data:
|
|
kfree(data);
|
|
|
|
free_entry:
|
|
kfree(entry);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static inline int efivar_ssdt_load(void) { return 0; }
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
|
|
#define EFI_DEBUGFS_MAX_BLOBS 32
|
|
|
|
static struct debugfs_blob_wrapper debugfs_blob[EFI_DEBUGFS_MAX_BLOBS];
|
|
|
|
static void __init efi_debugfs_init(void)
|
|
{
|
|
struct dentry *efi_debugfs;
|
|
efi_memory_desc_t *md;
|
|
char name[32];
|
|
int type_count[EFI_BOOT_SERVICES_DATA + 1] = {};
|
|
int i = 0;
|
|
|
|
efi_debugfs = debugfs_create_dir("efi", NULL);
|
|
if (IS_ERR_OR_NULL(efi_debugfs))
|
|
return;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
switch (md->type) {
|
|
case EFI_BOOT_SERVICES_CODE:
|
|
snprintf(name, sizeof(name), "boot_services_code%d",
|
|
type_count[md->type]++);
|
|
break;
|
|
case EFI_BOOT_SERVICES_DATA:
|
|
snprintf(name, sizeof(name), "boot_services_data%d",
|
|
type_count[md->type]++);
|
|
break;
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
if (i >= EFI_DEBUGFS_MAX_BLOBS) {
|
|
pr_warn("More then %d EFI boot service segments, only showing first %d in debugfs\n",
|
|
EFI_DEBUGFS_MAX_BLOBS, EFI_DEBUGFS_MAX_BLOBS);
|
|
break;
|
|
}
|
|
|
|
debugfs_blob[i].size = md->num_pages << EFI_PAGE_SHIFT;
|
|
debugfs_blob[i].data = memremap(md->phys_addr,
|
|
debugfs_blob[i].size,
|
|
MEMREMAP_WB);
|
|
if (!debugfs_blob[i].data)
|
|
continue;
|
|
|
|
debugfs_create_blob(name, 0400, efi_debugfs, &debugfs_blob[i]);
|
|
i++;
|
|
}
|
|
}
|
|
#else
|
|
static inline void efi_debugfs_init(void) {}
|
|
#endif
|
|
|
|
/*
|
|
* We register the efi subsystem with the firmware subsystem and the
|
|
* efivars subsystem with the efi subsystem, if the system was booted with
|
|
* EFI.
|
|
*/
|
|
static int __init efisubsys_init(void)
|
|
{
|
|
int error;
|
|
|
|
if (!efi_enabled(EFI_RUNTIME_SERVICES))
|
|
efi.runtime_supported_mask = 0;
|
|
|
|
if (!efi_enabled(EFI_BOOT))
|
|
return 0;
|
|
|
|
if (efi.runtime_supported_mask) {
|
|
/*
|
|
* Since we process only one efi_runtime_service() at a time, an
|
|
* ordered workqueue (which creates only one execution context)
|
|
* should suffice for all our needs.
|
|
*/
|
|
efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0);
|
|
if (!efi_rts_wq) {
|
|
pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n");
|
|
clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
|
|
efi.runtime_supported_mask = 0;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (efi_rt_services_supported(EFI_RT_SUPPORTED_TIME_SERVICES))
|
|
platform_device_register_simple("rtc-efi", 0, NULL, 0);
|
|
|
|
/* We register the efi directory at /sys/firmware/efi */
|
|
efi_kobj = kobject_create_and_add("efi", firmware_kobj);
|
|
if (!efi_kobj) {
|
|
pr_err("efi: Firmware registration failed.\n");
|
|
destroy_workqueue(efi_rts_wq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
|
|
EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME)) {
|
|
error = generic_ops_register();
|
|
if (error)
|
|
goto err_put;
|
|
efivar_ssdt_load();
|
|
platform_device_register_simple("efivars", 0, NULL, 0);
|
|
}
|
|
|
|
error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group);
|
|
if (error) {
|
|
pr_err("efi: Sysfs attribute export failed with error %d.\n",
|
|
error);
|
|
goto err_unregister;
|
|
}
|
|
|
|
error = efi_runtime_map_init(efi_kobj);
|
|
if (error)
|
|
goto err_remove_group;
|
|
|
|
/* and the standard mountpoint for efivarfs */
|
|
error = sysfs_create_mount_point(efi_kobj, "efivars");
|
|
if (error) {
|
|
pr_err("efivars: Subsystem registration failed.\n");
|
|
goto err_remove_group;
|
|
}
|
|
|
|
if (efi_enabled(EFI_DBG) && efi_enabled(EFI_PRESERVE_BS_REGIONS))
|
|
efi_debugfs_init();
|
|
|
|
return 0;
|
|
|
|
err_remove_group:
|
|
sysfs_remove_group(efi_kobj, &efi_subsys_attr_group);
|
|
err_unregister:
|
|
if (efi_rt_services_supported(EFI_RT_SUPPORTED_GET_VARIABLE |
|
|
EFI_RT_SUPPORTED_GET_NEXT_VARIABLE_NAME))
|
|
generic_ops_unregister();
|
|
err_put:
|
|
kobject_put(efi_kobj);
|
|
destroy_workqueue(efi_rts_wq);
|
|
return error;
|
|
}
|
|
|
|
subsys_initcall(efisubsys_init);
|
|
|
|
/*
|
|
* Find the efi memory descriptor for a given physical address. Given a
|
|
* physical address, determine if it exists within an EFI Memory Map entry,
|
|
* and if so, populate the supplied memory descriptor with the appropriate
|
|
* data.
|
|
*/
|
|
int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP)) {
|
|
pr_err_once("EFI_MEMMAP is not enabled.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!out_md) {
|
|
pr_err_once("out_md is null.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
u64 size;
|
|
u64 end;
|
|
|
|
size = md->num_pages << EFI_PAGE_SHIFT;
|
|
end = md->phys_addr + size;
|
|
if (phys_addr >= md->phys_addr && phys_addr < end) {
|
|
memcpy(out_md, md, sizeof(*out_md));
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/*
|
|
* Calculate the highest address of an efi memory descriptor.
|
|
*/
|
|
u64 __init efi_mem_desc_end(efi_memory_desc_t *md)
|
|
{
|
|
u64 size = md->num_pages << EFI_PAGE_SHIFT;
|
|
u64 end = md->phys_addr + size;
|
|
return end;
|
|
}
|
|
|
|
void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {}
|
|
|
|
/**
|
|
* efi_mem_reserve - Reserve an EFI memory region
|
|
* @addr: Physical address to reserve
|
|
* @size: Size of reservation
|
|
*
|
|
* Mark a region as reserved from general kernel allocation and
|
|
* prevent it being released by efi_free_boot_services().
|
|
*
|
|
* This function should be called drivers once they've parsed EFI
|
|
* configuration tables to figure out where their data lives, e.g.
|
|
* efi_esrt_init().
|
|
*/
|
|
void __init efi_mem_reserve(phys_addr_t addr, u64 size)
|
|
{
|
|
if (!memblock_is_region_reserved(addr, size))
|
|
memblock_reserve(addr, size);
|
|
|
|
/*
|
|
* Some architectures (x86) reserve all boot services ranges
|
|
* until efi_free_boot_services() because of buggy firmware
|
|
* implementations. This means the above memblock_reserve() is
|
|
* superfluous on x86 and instead what it needs to do is
|
|
* ensure the @start, @size is not freed.
|
|
*/
|
|
efi_arch_mem_reserve(addr, size);
|
|
}
|
|
|
|
static const efi_config_table_type_t common_tables[] __initconst = {
|
|
{ACPI_20_TABLE_GUID, &efi.acpi20, "ACPI 2.0" },
|
|
{ACPI_TABLE_GUID, &efi.acpi, "ACPI" },
|
|
{SMBIOS_TABLE_GUID, &efi.smbios, "SMBIOS" },
|
|
{SMBIOS3_TABLE_GUID, &efi.smbios3, "SMBIOS 3.0" },
|
|
{EFI_SYSTEM_RESOURCE_TABLE_GUID, &efi.esrt, "ESRT" },
|
|
{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, &efi_mem_attr_table, "MEMATTR" },
|
|
{LINUX_EFI_RANDOM_SEED_TABLE_GUID, &efi_rng_seed, "RNG" },
|
|
{LINUX_EFI_TPM_EVENT_LOG_GUID, &efi.tpm_log, "TPMEventLog" },
|
|
{LINUX_EFI_TPM_FINAL_LOG_GUID, &efi.tpm_final_log, "TPMFinalLog" },
|
|
{LINUX_EFI_MEMRESERVE_TABLE_GUID, &mem_reserve, "MEMRESERVE" },
|
|
{EFI_RT_PROPERTIES_TABLE_GUID, &rt_prop, "RTPROP" },
|
|
#ifdef CONFIG_EFI_RCI2_TABLE
|
|
{DELLEMC_EFI_RCI2_TABLE_GUID, &rci2_table_phys },
|
|
#endif
|
|
#ifdef CONFIG_LOAD_UEFI_KEYS
|
|
{LINUX_EFI_MOK_VARIABLE_TABLE_GUID, &efi.mokvar_table, "MOKvar" },
|
|
#endif
|
|
{},
|
|
};
|
|
|
|
static __init int match_config_table(const efi_guid_t *guid,
|
|
unsigned long table,
|
|
const efi_config_table_type_t *table_types)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
|
|
if (!efi_guidcmp(*guid, table_types[i].guid)) {
|
|
*(table_types[i].ptr) = table;
|
|
if (table_types[i].name[0])
|
|
pr_cont("%s=0x%lx ",
|
|
table_types[i].name, table);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init efi_config_parse_tables(const efi_config_table_t *config_tables,
|
|
int count,
|
|
const efi_config_table_type_t *arch_tables)
|
|
{
|
|
const efi_config_table_64_t *tbl64 = (void *)config_tables;
|
|
const efi_config_table_32_t *tbl32 = (void *)config_tables;
|
|
const efi_guid_t *guid;
|
|
unsigned long table;
|
|
int i;
|
|
|
|
pr_info("");
|
|
for (i = 0; i < count; i++) {
|
|
if (!IS_ENABLED(CONFIG_X86)) {
|
|
guid = &config_tables[i].guid;
|
|
table = (unsigned long)config_tables[i].table;
|
|
} else if (efi_enabled(EFI_64BIT)) {
|
|
guid = &tbl64[i].guid;
|
|
table = tbl64[i].table;
|
|
|
|
if (IS_ENABLED(CONFIG_X86_32) &&
|
|
tbl64[i].table > U32_MAX) {
|
|
pr_cont("\n");
|
|
pr_err("Table located above 4GB, disabling EFI.\n");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
guid = &tbl32[i].guid;
|
|
table = tbl32[i].table;
|
|
}
|
|
|
|
if (!match_config_table(guid, table, common_tables) && arch_tables)
|
|
match_config_table(guid, table, arch_tables);
|
|
}
|
|
pr_cont("\n");
|
|
set_bit(EFI_CONFIG_TABLES, &efi.flags);
|
|
|
|
if (efi_rng_seed != EFI_INVALID_TABLE_ADDR) {
|
|
struct linux_efi_random_seed *seed;
|
|
u32 size = 0;
|
|
|
|
seed = early_memremap(efi_rng_seed, sizeof(*seed));
|
|
if (seed != NULL) {
|
|
size = READ_ONCE(seed->size);
|
|
early_memunmap(seed, sizeof(*seed));
|
|
} else {
|
|
pr_err("Could not map UEFI random seed!\n");
|
|
}
|
|
if (size > 0) {
|
|
seed = early_memremap(efi_rng_seed,
|
|
sizeof(*seed) + size);
|
|
if (seed != NULL) {
|
|
pr_notice("seeding entropy pool\n");
|
|
add_bootloader_randomness(seed->bits, size);
|
|
early_memunmap(seed, sizeof(*seed) + size);
|
|
} else {
|
|
pr_err("Could not map UEFI random seed!\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!IS_ENABLED(CONFIG_X86_32) && efi_enabled(EFI_MEMMAP))
|
|
efi_memattr_init();
|
|
|
|
efi_tpm_eventlog_init();
|
|
|
|
if (mem_reserve != EFI_INVALID_TABLE_ADDR) {
|
|
unsigned long prsv = mem_reserve;
|
|
|
|
while (prsv) {
|
|
struct linux_efi_memreserve *rsv;
|
|
u8 *p;
|
|
|
|
/*
|
|
* Just map a full page: that is what we will get
|
|
* anyway, and it permits us to map the entire entry
|
|
* before knowing its size.
|
|
*/
|
|
p = early_memremap(ALIGN_DOWN(prsv, PAGE_SIZE),
|
|
PAGE_SIZE);
|
|
if (p == NULL) {
|
|
pr_err("Could not map UEFI memreserve entry!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rsv = (void *)(p + prsv % PAGE_SIZE);
|
|
|
|
/* reserve the entry itself */
|
|
memblock_reserve(prsv,
|
|
struct_size(rsv, entry, rsv->size));
|
|
|
|
for (i = 0; i < atomic_read(&rsv->count); i++) {
|
|
memblock_reserve(rsv->entry[i].base,
|
|
rsv->entry[i].size);
|
|
}
|
|
|
|
prsv = rsv->next;
|
|
early_memunmap(p, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
if (rt_prop != EFI_INVALID_TABLE_ADDR) {
|
|
efi_rt_properties_table_t *tbl;
|
|
|
|
tbl = early_memremap(rt_prop, sizeof(*tbl));
|
|
if (tbl) {
|
|
efi.runtime_supported_mask &= tbl->runtime_services_supported;
|
|
early_memunmap(tbl, sizeof(*tbl));
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init efi_systab_check_header(const efi_table_hdr_t *systab_hdr,
|
|
int min_major_version)
|
|
{
|
|
if (systab_hdr->signature != EFI_SYSTEM_TABLE_SIGNATURE) {
|
|
pr_err("System table signature incorrect!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if ((systab_hdr->revision >> 16) < min_major_version)
|
|
pr_err("Warning: System table version %d.%02d, expected %d.00 or greater!\n",
|
|
systab_hdr->revision >> 16,
|
|
systab_hdr->revision & 0xffff,
|
|
min_major_version);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifndef CONFIG_IA64
|
|
static const efi_char16_t *__init map_fw_vendor(unsigned long fw_vendor,
|
|
size_t size)
|
|
{
|
|
const efi_char16_t *ret;
|
|
|
|
ret = early_memremap_ro(fw_vendor, size);
|
|
if (!ret)
|
|
pr_err("Could not map the firmware vendor!\n");
|
|
return ret;
|
|
}
|
|
|
|
static void __init unmap_fw_vendor(const void *fw_vendor, size_t size)
|
|
{
|
|
early_memunmap((void *)fw_vendor, size);
|
|
}
|
|
#else
|
|
#define map_fw_vendor(p, s) __va(p)
|
|
#define unmap_fw_vendor(v, s)
|
|
#endif
|
|
|
|
void __init efi_systab_report_header(const efi_table_hdr_t *systab_hdr,
|
|
unsigned long fw_vendor)
|
|
{
|
|
char vendor[100] = "unknown";
|
|
const efi_char16_t *c16;
|
|
size_t i;
|
|
|
|
c16 = map_fw_vendor(fw_vendor, sizeof(vendor) * sizeof(efi_char16_t));
|
|
if (c16) {
|
|
for (i = 0; i < sizeof(vendor) - 1 && c16[i]; ++i)
|
|
vendor[i] = c16[i];
|
|
vendor[i] = '\0';
|
|
|
|
unmap_fw_vendor(c16, sizeof(vendor) * sizeof(efi_char16_t));
|
|
}
|
|
|
|
pr_info("EFI v%u.%.02u by %s\n",
|
|
systab_hdr->revision >> 16,
|
|
systab_hdr->revision & 0xffff,
|
|
vendor);
|
|
}
|
|
|
|
static __initdata char memory_type_name[][13] = {
|
|
"Reserved",
|
|
"Loader Code",
|
|
"Loader Data",
|
|
"Boot Code",
|
|
"Boot Data",
|
|
"Runtime Code",
|
|
"Runtime Data",
|
|
"Conventional",
|
|
"Unusable",
|
|
"ACPI Reclaim",
|
|
"ACPI Mem NVS",
|
|
"MMIO",
|
|
"MMIO Port",
|
|
"PAL Code",
|
|
"Persistent",
|
|
};
|
|
|
|
char * __init efi_md_typeattr_format(char *buf, size_t size,
|
|
const efi_memory_desc_t *md)
|
|
{
|
|
char *pos;
|
|
int type_len;
|
|
u64 attr;
|
|
|
|
pos = buf;
|
|
if (md->type >= ARRAY_SIZE(memory_type_name))
|
|
type_len = snprintf(pos, size, "[type=%u", md->type);
|
|
else
|
|
type_len = snprintf(pos, size, "[%-*s",
|
|
(int)(sizeof(memory_type_name[0]) - 1),
|
|
memory_type_name[md->type]);
|
|
if (type_len >= size)
|
|
return buf;
|
|
|
|
pos += type_len;
|
|
size -= type_len;
|
|
|
|
attr = md->attribute;
|
|
if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT |
|
|
EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO |
|
|
EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP |
|
|
EFI_MEMORY_NV | EFI_MEMORY_SP | EFI_MEMORY_CPU_CRYPTO |
|
|
EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE))
|
|
snprintf(pos, size, "|attr=0x%016llx]",
|
|
(unsigned long long)attr);
|
|
else
|
|
snprintf(pos, size,
|
|
"|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]",
|
|
attr & EFI_MEMORY_RUNTIME ? "RUN" : "",
|
|
attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "",
|
|
attr & EFI_MEMORY_CPU_CRYPTO ? "CC" : "",
|
|
attr & EFI_MEMORY_SP ? "SP" : "",
|
|
attr & EFI_MEMORY_NV ? "NV" : "",
|
|
attr & EFI_MEMORY_XP ? "XP" : "",
|
|
attr & EFI_MEMORY_RP ? "RP" : "",
|
|
attr & EFI_MEMORY_WP ? "WP" : "",
|
|
attr & EFI_MEMORY_RO ? "RO" : "",
|
|
attr & EFI_MEMORY_UCE ? "UCE" : "",
|
|
attr & EFI_MEMORY_WB ? "WB" : "",
|
|
attr & EFI_MEMORY_WT ? "WT" : "",
|
|
attr & EFI_MEMORY_WC ? "WC" : "",
|
|
attr & EFI_MEMORY_UC ? "UC" : "");
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* IA64 has a funky EFI memory map that doesn't work the same way as
|
|
* other architectures.
|
|
*/
|
|
#ifndef CONFIG_IA64
|
|
/*
|
|
* efi_mem_attributes - lookup memmap attributes for physical address
|
|
* @phys_addr: the physical address to lookup
|
|
*
|
|
* Search in the EFI memory map for the region covering
|
|
* @phys_addr. Returns the EFI memory attributes if the region
|
|
* was found in the memory map, 0 otherwise.
|
|
*/
|
|
u64 efi_mem_attributes(unsigned long phys_addr)
|
|
{
|
|
efi_memory_desc_t *md;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return 0;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->attribute;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* efi_mem_type - lookup memmap type for physical address
|
|
* @phys_addr: the physical address to lookup
|
|
*
|
|
* Search in the EFI memory map for the region covering @phys_addr.
|
|
* Returns the EFI memory type if the region was found in the memory
|
|
* map, -EINVAL otherwise.
|
|
*/
|
|
int efi_mem_type(unsigned long phys_addr)
|
|
{
|
|
const efi_memory_desc_t *md;
|
|
|
|
if (!efi_enabled(EFI_MEMMAP))
|
|
return -ENOTSUPP;
|
|
|
|
for_each_efi_memory_desc(md) {
|
|
if ((md->phys_addr <= phys_addr) &&
|
|
(phys_addr < (md->phys_addr +
|
|
(md->num_pages << EFI_PAGE_SHIFT))))
|
|
return md->type;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
|
|
int efi_status_to_err(efi_status_t status)
|
|
{
|
|
int err;
|
|
|
|
switch (status) {
|
|
case EFI_SUCCESS:
|
|
err = 0;
|
|
break;
|
|
case EFI_INVALID_PARAMETER:
|
|
err = -EINVAL;
|
|
break;
|
|
case EFI_OUT_OF_RESOURCES:
|
|
err = -ENOSPC;
|
|
break;
|
|
case EFI_DEVICE_ERROR:
|
|
err = -EIO;
|
|
break;
|
|
case EFI_WRITE_PROTECTED:
|
|
err = -EROFS;
|
|
break;
|
|
case EFI_SECURITY_VIOLATION:
|
|
err = -EACCES;
|
|
break;
|
|
case EFI_NOT_FOUND:
|
|
err = -ENOENT;
|
|
break;
|
|
case EFI_ABORTED:
|
|
err = -EINTR;
|
|
break;
|
|
default:
|
|
err = -EINVAL;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(efi_mem_reserve_persistent_lock);
|
|
static struct linux_efi_memreserve *efi_memreserve_root __ro_after_init;
|
|
|
|
static int __init efi_memreserve_map_root(void)
|
|
{
|
|
if (mem_reserve == EFI_INVALID_TABLE_ADDR)
|
|
return -ENODEV;
|
|
|
|
efi_memreserve_root = memremap(mem_reserve,
|
|
sizeof(*efi_memreserve_root),
|
|
MEMREMAP_WB);
|
|
if (WARN_ON_ONCE(!efi_memreserve_root))
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
static int efi_mem_reserve_iomem(phys_addr_t addr, u64 size)
|
|
{
|
|
struct resource *res, *parent;
|
|
|
|
res = kzalloc(sizeof(struct resource), GFP_ATOMIC);
|
|
if (!res)
|
|
return -ENOMEM;
|
|
|
|
res->name = "reserved";
|
|
res->flags = IORESOURCE_MEM;
|
|
res->start = addr;
|
|
res->end = addr + size - 1;
|
|
|
|
/* we expect a conflict with a 'System RAM' region */
|
|
parent = request_resource_conflict(&iomem_resource, res);
|
|
return parent ? request_resource(parent, res) : 0;
|
|
}
|
|
|
|
int __ref efi_mem_reserve_persistent(phys_addr_t addr, u64 size)
|
|
{
|
|
struct linux_efi_memreserve *rsv;
|
|
unsigned long prsv;
|
|
int rc, index;
|
|
|
|
if (efi_memreserve_root == (void *)ULONG_MAX)
|
|
return -ENODEV;
|
|
|
|
if (!efi_memreserve_root) {
|
|
rc = efi_memreserve_map_root();
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
/* first try to find a slot in an existing linked list entry */
|
|
for (prsv = efi_memreserve_root->next; prsv; prsv = rsv->next) {
|
|
rsv = memremap(prsv, sizeof(*rsv), MEMREMAP_WB);
|
|
index = atomic_fetch_add_unless(&rsv->count, 1, rsv->size);
|
|
if (index < rsv->size) {
|
|
rsv->entry[index].base = addr;
|
|
rsv->entry[index].size = size;
|
|
|
|
memunmap(rsv);
|
|
return efi_mem_reserve_iomem(addr, size);
|
|
}
|
|
memunmap(rsv);
|
|
}
|
|
|
|
/* no slot found - allocate a new linked list entry */
|
|
rsv = (struct linux_efi_memreserve *)__get_free_page(GFP_ATOMIC);
|
|
if (!rsv)
|
|
return -ENOMEM;
|
|
|
|
rc = efi_mem_reserve_iomem(__pa(rsv), SZ_4K);
|
|
if (rc) {
|
|
free_page((unsigned long)rsv);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The memremap() call above assumes that a linux_efi_memreserve entry
|
|
* never crosses a page boundary, so let's ensure that this remains true
|
|
* even when kexec'ing a 4k pages kernel from a >4k pages kernel, by
|
|
* using SZ_4K explicitly in the size calculation below.
|
|
*/
|
|
rsv->size = EFI_MEMRESERVE_COUNT(SZ_4K);
|
|
atomic_set(&rsv->count, 1);
|
|
rsv->entry[0].base = addr;
|
|
rsv->entry[0].size = size;
|
|
|
|
spin_lock(&efi_mem_reserve_persistent_lock);
|
|
rsv->next = efi_memreserve_root->next;
|
|
efi_memreserve_root->next = __pa(rsv);
|
|
spin_unlock(&efi_mem_reserve_persistent_lock);
|
|
|
|
return efi_mem_reserve_iomem(addr, size);
|
|
}
|
|
|
|
static int __init efi_memreserve_root_init(void)
|
|
{
|
|
if (efi_memreserve_root)
|
|
return 0;
|
|
if (efi_memreserve_map_root())
|
|
efi_memreserve_root = (void *)ULONG_MAX;
|
|
return 0;
|
|
}
|
|
early_initcall(efi_memreserve_root_init);
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
static int update_efi_random_seed(struct notifier_block *nb,
|
|
unsigned long code, void *unused)
|
|
{
|
|
struct linux_efi_random_seed *seed;
|
|
u32 size = 0;
|
|
|
|
if (!kexec_in_progress)
|
|
return NOTIFY_DONE;
|
|
|
|
seed = memremap(efi_rng_seed, sizeof(*seed), MEMREMAP_WB);
|
|
if (seed != NULL) {
|
|
size = min(seed->size, EFI_RANDOM_SEED_SIZE);
|
|
memunmap(seed);
|
|
} else {
|
|
pr_err("Could not map UEFI random seed!\n");
|
|
}
|
|
if (size > 0) {
|
|
seed = memremap(efi_rng_seed, sizeof(*seed) + size,
|
|
MEMREMAP_WB);
|
|
if (seed != NULL) {
|
|
seed->size = size;
|
|
get_random_bytes(seed->bits, seed->size);
|
|
memunmap(seed);
|
|
} else {
|
|
pr_err("Could not map UEFI random seed!\n");
|
|
}
|
|
}
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static struct notifier_block efi_random_seed_nb = {
|
|
.notifier_call = update_efi_random_seed,
|
|
};
|
|
|
|
static int __init register_update_efi_random_seed(void)
|
|
{
|
|
if (efi_rng_seed == EFI_INVALID_TABLE_ADDR)
|
|
return 0;
|
|
return register_reboot_notifier(&efi_random_seed_nb);
|
|
}
|
|
late_initcall(register_update_efi_random_seed);
|
|
#endif
|