linux_dsm_epyc7002/arch/x86/kernel/setup_percpu.c
Tejun Heo 6b19b0c240 x86, percpu: setup reserved percpu area for x86_64
Impact: fix relocation overflow during module load

x86_64 uses 32bit relocations for symbol access and static percpu
symbols whether in core or modules must be inside 2GB of the percpu
segement base which the dynamic percpu allocator doesn't guarantee.
This patch makes x86_64 reserve PERCPU_MODULE_RESERVE bytes in the
first chunk so that module percpu areas are always allocated from the
first chunk which is always inside the relocatable range.

This problem exists for any percpu allocator but is easily triggered
when using the embedding allocator because the second chunk is located
beyond 2GB on it.

This patch also changes the meaning of PERCPU_DYNAMIC_RESERVE such
that it only indicates the size of the area to reserve for dynamic
allocation as static and dynamic areas can be separate.  New
PERCPU_DYNAMIC_RESERVED is increased by 4k for both 32 and 64bits as
the reserved area separation eats away some allocatable space and
having slightly more headroom (currently between 4 and 8k after
minimal boot sans module area) makes sense for common case
performance.

x86_32 can address anywhere from anywhere and doesn't need reserving.

Mike Galbraith first reported the problem first and bisected it to the
embedding percpu allocator commit.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mike Galbraith <efault@gmx.de>
Reported-by: Jaswinder Singh Rajput <jaswinder@kernel.org>
2009-03-06 14:33:59 +09:00

489 lines
13 KiB
C

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/percpu.h>
#include <linux/kexec.h>
#include <linux/crash_dump.h>
#include <linux/smp.h>
#include <linux/topology.h>
#include <linux/pfn.h>
#include <asm/sections.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/mpspec.h>
#include <asm/apicdef.h>
#include <asm/highmem.h>
#include <asm/proto.h>
#include <asm/cpumask.h>
#include <asm/cpu.h>
#include <asm/stackprotector.h>
#ifdef CONFIG_DEBUG_PER_CPU_MAPS
# define DBG(x...) printk(KERN_DEBUG x)
#else
# define DBG(x...)
#endif
DEFINE_PER_CPU(int, cpu_number);
EXPORT_PER_CPU_SYMBOL(cpu_number);
#ifdef CONFIG_X86_64
#define BOOT_PERCPU_OFFSET ((unsigned long)__per_cpu_load)
#else
#define BOOT_PERCPU_OFFSET 0
#endif
DEFINE_PER_CPU(unsigned long, this_cpu_off) = BOOT_PERCPU_OFFSET;
EXPORT_PER_CPU_SYMBOL(this_cpu_off);
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly = {
[0 ... NR_CPUS-1] = BOOT_PERCPU_OFFSET,
};
EXPORT_SYMBOL(__per_cpu_offset);
/*
* On x86_64 symbols referenced from code should be reachable using
* 32bit relocations. Reserve space for static percpu variables in
* modules so that they are always served from the first chunk which
* is located at the percpu segment base. On x86_32, anything can
* address anywhere. No need to reserve space in the first chunk.
*/
#ifdef CONFIG_X86_64
#define PERCPU_FIRST_CHUNK_RESERVE PERCPU_MODULE_RESERVE
#else
#define PERCPU_FIRST_CHUNK_RESERVE 0
#endif
/**
* pcpu_need_numa - determine percpu allocation needs to consider NUMA
*
* If NUMA is not configured or there is only one NUMA node available,
* there is no reason to consider NUMA. This function determines
* whether percpu allocation should consider NUMA or not.
*
* RETURNS:
* true if NUMA should be considered; otherwise, false.
*/
static bool __init pcpu_need_numa(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
pg_data_t *last = NULL;
unsigned int cpu;
for_each_possible_cpu(cpu) {
int node = early_cpu_to_node(cpu);
if (node_online(node) && NODE_DATA(node) &&
last && last != NODE_DATA(node))
return true;
last = NODE_DATA(node);
}
#endif
return false;
}
/**
* pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
* @cpu: cpu to allocate for
* @size: size allocation in bytes
* @align: alignment
*
* Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
* does the right thing for NUMA regardless of the current
* configuration.
*
* RETURNS:
* Pointer to the allocated area on success, NULL on failure.
*/
static void * __init pcpu_alloc_bootmem(unsigned int cpu, unsigned long size,
unsigned long align)
{
const unsigned long goal = __pa(MAX_DMA_ADDRESS);
#ifdef CONFIG_NEED_MULTIPLE_NODES
int node = early_cpu_to_node(cpu);
void *ptr;
if (!node_online(node) || !NODE_DATA(node)) {
ptr = __alloc_bootmem_nopanic(size, align, goal);
pr_info("cpu %d has no node %d or node-local memory\n",
cpu, node);
pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
cpu, size, __pa(ptr));
} else {
ptr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
size, align, goal);
pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
"%016lx\n", cpu, size, node, __pa(ptr));
}
return ptr;
#else
return __alloc_bootmem_nopanic(size, align, goal);
#endif
}
/*
* Remap allocator
*
* This allocator uses PMD page as unit. A PMD page is allocated for
* each cpu and each is remapped into vmalloc area using PMD mapping.
* As PMD page is quite large, only part of it is used for the first
* chunk. Unused part is returned to the bootmem allocator.
*
* So, the PMD pages are mapped twice - once to the physical mapping
* and to the vmalloc area for the first percpu chunk. The double
* mapping does add one more PMD TLB entry pressure but still is much
* better than only using 4k mappings while still being NUMA friendly.
*/
#ifdef CONFIG_NEED_MULTIPLE_NODES
static size_t pcpur_size __initdata;
static void **pcpur_ptrs __initdata;
static struct page * __init pcpur_get_page(unsigned int cpu, int pageno)
{
size_t off = (size_t)pageno << PAGE_SHIFT;
if (off >= pcpur_size)
return NULL;
return virt_to_page(pcpur_ptrs[cpu] + off);
}
static ssize_t __init setup_pcpu_remap(size_t static_size)
{
static struct vm_struct vm;
pg_data_t *last;
size_t ptrs_size, dyn_size;
unsigned int cpu;
ssize_t ret;
/*
* If large page isn't supported, there's no benefit in doing
* this. Also, on non-NUMA, embedding is better.
*/
if (!cpu_has_pse || pcpu_need_numa())
return -EINVAL;
last = NULL;
for_each_possible_cpu(cpu) {
int node = early_cpu_to_node(cpu);
if (node_online(node) && NODE_DATA(node) &&
last && last != NODE_DATA(node))
goto proceed;
last = NODE_DATA(node);
}
return -EINVAL;
proceed:
/*
* Currently supports only single page. Supporting multiple
* pages won't be too difficult if it ever becomes necessary.
*/
pcpur_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
PERCPU_DYNAMIC_RESERVE);
if (pcpur_size > PMD_SIZE) {
pr_warning("PERCPU: static data is larger than large page, "
"can't use large page\n");
return -EINVAL;
}
dyn_size = pcpur_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
/* allocate pointer array and alloc large pages */
ptrs_size = PFN_ALIGN(num_possible_cpus() * sizeof(pcpur_ptrs[0]));
pcpur_ptrs = alloc_bootmem(ptrs_size);
for_each_possible_cpu(cpu) {
pcpur_ptrs[cpu] = pcpu_alloc_bootmem(cpu, PMD_SIZE, PMD_SIZE);
if (!pcpur_ptrs[cpu])
goto enomem;
/*
* Only use pcpur_size bytes and give back the rest.
*
* Ingo: The 2MB up-rounding bootmem is needed to make
* sure the partial 2MB page is still fully RAM - it's
* not well-specified to have a PAT-incompatible area
* (unmapped RAM, device memory, etc.) in that hole.
*/
free_bootmem(__pa(pcpur_ptrs[cpu] + pcpur_size),
PMD_SIZE - pcpur_size);
memcpy(pcpur_ptrs[cpu], __per_cpu_load, static_size);
}
/* allocate address and map */
vm.flags = VM_ALLOC;
vm.size = num_possible_cpus() * PMD_SIZE;
vm_area_register_early(&vm, PMD_SIZE);
for_each_possible_cpu(cpu) {
pmd_t *pmd;
pmd = populate_extra_pmd((unsigned long)vm.addr
+ cpu * PMD_SIZE);
set_pmd(pmd, pfn_pmd(page_to_pfn(virt_to_page(pcpur_ptrs[cpu])),
PAGE_KERNEL_LARGE));
}
/* we're ready, commit */
pr_info("PERCPU: Remapped at %p with large pages, static data "
"%zu bytes\n", vm.addr, static_size);
ret = pcpu_setup_first_chunk(pcpur_get_page, static_size,
PERCPU_FIRST_CHUNK_RESERVE,
PMD_SIZE, dyn_size, vm.addr, NULL);
goto out_free_ar;
enomem:
for_each_possible_cpu(cpu)
if (pcpur_ptrs[cpu])
free_bootmem(__pa(pcpur_ptrs[cpu]), PMD_SIZE);
ret = -ENOMEM;
out_free_ar:
free_bootmem(__pa(pcpur_ptrs), ptrs_size);
return ret;
}
#else
static ssize_t __init setup_pcpu_remap(size_t static_size)
{
return -EINVAL;
}
#endif
/*
* Embedding allocator
*
* The first chunk is sized to just contain the static area plus
* module and dynamic reserves, and allocated as a contiguous area
* using bootmem allocator and used as-is without being mapped into
* vmalloc area. This enables the first chunk to piggy back on the
* linear physical PMD mapping and doesn't add any additional pressure
* to TLB. Note that if the needed size is smaller than the minimum
* unit size, the leftover is returned to the bootmem allocator.
*/
static void *pcpue_ptr __initdata;
static size_t pcpue_size __initdata;
static size_t pcpue_unit_size __initdata;
static struct page * __init pcpue_get_page(unsigned int cpu, int pageno)
{
size_t off = (size_t)pageno << PAGE_SHIFT;
if (off >= pcpue_size)
return NULL;
return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off);
}
static ssize_t __init setup_pcpu_embed(size_t static_size)
{
unsigned int cpu;
size_t dyn_size;
/*
* If large page isn't supported, there's no benefit in doing
* this. Also, embedding allocation doesn't play well with
* NUMA.
*/
if (!cpu_has_pse || pcpu_need_numa())
return -EINVAL;
/* allocate and copy */
pcpue_size = PFN_ALIGN(static_size + PERCPU_MODULE_RESERVE +
PERCPU_DYNAMIC_RESERVE);
pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE);
dyn_size = pcpue_size - static_size - PERCPU_FIRST_CHUNK_RESERVE;
pcpue_ptr = pcpu_alloc_bootmem(0, num_possible_cpus() * pcpue_unit_size,
PAGE_SIZE);
if (!pcpue_ptr)
return -ENOMEM;
for_each_possible_cpu(cpu) {
void *ptr = pcpue_ptr + cpu * pcpue_unit_size;
free_bootmem(__pa(ptr + pcpue_size),
pcpue_unit_size - pcpue_size);
memcpy(ptr, __per_cpu_load, static_size);
}
/* we're ready, commit */
pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size);
return pcpu_setup_first_chunk(pcpue_get_page, static_size,
PERCPU_FIRST_CHUNK_RESERVE,
pcpue_unit_size, dyn_size,
pcpue_ptr, NULL);
}
/*
* 4k page allocator
*
* This is the basic allocator. Static percpu area is allocated
* page-by-page and most of initialization is done by the generic
* setup function.
*/
static struct page **pcpu4k_pages __initdata;
static int pcpu4k_nr_static_pages __initdata;
static struct page * __init pcpu4k_get_page(unsigned int cpu, int pageno)
{
if (pageno < pcpu4k_nr_static_pages)
return pcpu4k_pages[cpu * pcpu4k_nr_static_pages + pageno];
return NULL;
}
static void __init pcpu4k_populate_pte(unsigned long addr)
{
populate_extra_pte(addr);
}
static ssize_t __init setup_pcpu_4k(size_t static_size)
{
size_t pages_size;
unsigned int cpu;
int i, j;
ssize_t ret;
pcpu4k_nr_static_pages = PFN_UP(static_size);
/* unaligned allocations can't be freed, round up to page size */
pages_size = PFN_ALIGN(pcpu4k_nr_static_pages * num_possible_cpus()
* sizeof(pcpu4k_pages[0]));
pcpu4k_pages = alloc_bootmem(pages_size);
/* allocate and copy */
j = 0;
for_each_possible_cpu(cpu)
for (i = 0; i < pcpu4k_nr_static_pages; i++) {
void *ptr;
ptr = pcpu_alloc_bootmem(cpu, PAGE_SIZE, PAGE_SIZE);
if (!ptr)
goto enomem;
memcpy(ptr, __per_cpu_load + i * PAGE_SIZE, PAGE_SIZE);
pcpu4k_pages[j++] = virt_to_page(ptr);
}
/* we're ready, commit */
pr_info("PERCPU: Allocated %d 4k pages, static data %zu bytes\n",
pcpu4k_nr_static_pages, static_size);
ret = pcpu_setup_first_chunk(pcpu4k_get_page, static_size,
PERCPU_FIRST_CHUNK_RESERVE, -1, -1, NULL,
pcpu4k_populate_pte);
goto out_free_ar;
enomem:
while (--j >= 0)
free_bootmem(__pa(page_address(pcpu4k_pages[j])), PAGE_SIZE);
ret = -ENOMEM;
out_free_ar:
free_bootmem(__pa(pcpu4k_pages), pages_size);
return ret;
}
static inline void setup_percpu_segment(int cpu)
{
#ifdef CONFIG_X86_32
struct desc_struct gdt;
pack_descriptor(&gdt, per_cpu_offset(cpu), 0xFFFFF,
0x2 | DESCTYPE_S, 0x8);
gdt.s = 1;
write_gdt_entry(get_cpu_gdt_table(cpu),
GDT_ENTRY_PERCPU, &gdt, DESCTYPE_S);
#endif
}
/*
* Great future plan:
* Declare PDA itself and support (irqstack,tss,pgd) as per cpu data.
* Always point %gs to its beginning
*/
void __init setup_per_cpu_areas(void)
{
size_t static_size = __per_cpu_end - __per_cpu_start;
unsigned int cpu;
unsigned long delta;
size_t pcpu_unit_size;
ssize_t ret;
pr_info("NR_CPUS:%d nr_cpumask_bits:%d nr_cpu_ids:%d nr_node_ids:%d\n",
NR_CPUS, nr_cpumask_bits, nr_cpu_ids, nr_node_ids);
/*
* Allocate percpu area. If PSE is supported, try to make use
* of large page mappings. Please read comments on top of
* each allocator for details.
*/
ret = setup_pcpu_remap(static_size);
if (ret < 0)
ret = setup_pcpu_embed(static_size);
if (ret < 0)
ret = setup_pcpu_4k(static_size);
if (ret < 0)
panic("cannot allocate static percpu area (%zu bytes, err=%zd)",
static_size, ret);
pcpu_unit_size = ret;
/* alrighty, percpu areas up and running */
delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
for_each_possible_cpu(cpu) {
per_cpu_offset(cpu) = delta + cpu * pcpu_unit_size;
per_cpu(this_cpu_off, cpu) = per_cpu_offset(cpu);
per_cpu(cpu_number, cpu) = cpu;
setup_percpu_segment(cpu);
setup_stack_canary_segment(cpu);
/*
* Copy data used in early init routines from the
* initial arrays to the per cpu data areas. These
* arrays then become expendable and the *_early_ptr's
* are zeroed indicating that the static arrays are
* gone.
*/
#ifdef CONFIG_X86_LOCAL_APIC
per_cpu(x86_cpu_to_apicid, cpu) =
early_per_cpu_map(x86_cpu_to_apicid, cpu);
per_cpu(x86_bios_cpu_apicid, cpu) =
early_per_cpu_map(x86_bios_cpu_apicid, cpu);
#endif
#ifdef CONFIG_X86_64
per_cpu(irq_stack_ptr, cpu) =
per_cpu(irq_stack_union.irq_stack, cpu) +
IRQ_STACK_SIZE - 64;
#ifdef CONFIG_NUMA
per_cpu(x86_cpu_to_node_map, cpu) =
early_per_cpu_map(x86_cpu_to_node_map, cpu);
#endif
#endif
/*
* Up to this point, the boot CPU has been using .data.init
* area. Reload any changed state for the boot CPU.
*/
if (cpu == boot_cpu_id)
switch_to_new_gdt(cpu);
}
/* indicate the early static arrays will soon be gone */
#ifdef CONFIG_X86_LOCAL_APIC
early_per_cpu_ptr(x86_cpu_to_apicid) = NULL;
early_per_cpu_ptr(x86_bios_cpu_apicid) = NULL;
#endif
#if defined(CONFIG_X86_64) && defined(CONFIG_NUMA)
early_per_cpu_ptr(x86_cpu_to_node_map) = NULL;
#endif
/* Setup node to cpumask map */
setup_node_to_cpumask_map();
/* Setup cpu initialized, callin, callout masks */
setup_cpu_local_masks();
}