mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-01 08:46:43 +07:00
53d2e6976b
Change summary: o error propagation for direct IO failures fixes for both XFS and ext4 o new quota interfaces and XFS implementation for iterating all the quota IDs in the filesystem o locking fixes for real-time device extent allocation o reduction of duplicate information in the xfs and vfs inode, saving roughly 100 bytes of memory per cached inode. o buffer flag cleanup o rework of the writepage code to use the generic write clustering mechanisms o several fixes for inode flag based DAX enablement o rework of remount option parsing o compile time verification of on-disk format structure sizes o delayed allocation reservation overrun fixes o lots of little error handling fixes o small memory leak fixes o enable xfsaild freezing again -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJW71DQAAoJEK3oKUf0dfodyiwP/0Tou9f1huzLC0kd7kmEoKKC BWQmtJGEdo0iSpJNZhg/EJmjvRtbBiOB9CRcEyG8d71kqZ+MKW7t/4JjNvNG34aE vHjhwMBVVqkw/q6azi2LiEDsVcOe5bXxUrXNZi18/09OAl4pHm+X8VERLnnC5y+i QIHAOdB5R+36cXcceJm1HR6jTZedbNdQkT/ndhm5S60FGhvVI29cs9NwYwoi5aif O55r6krSWBj6U/X6MsLvr+lNb6+1Sd1hyE8dGTE7lOUX/crFIysaDPEuQmWvDjsO M1ulVfzKoBJHcyvpbdHwdBEyiBjzvETcrgndMRoWOjZiOLqNtWYsgIEiC+Nlidwd +T4XhkJJJg5UUQ4r6Hs85SQn/THanzR5KoN5nbTsFtFkCKw1DRkUSNuh2mXP2xVG JcNDCjDvvHG76EfQ1otlYf7ru79Ck+hjVs+szaEVPpOzAwz8yOtD+L7I8f73gQ6a ayP8W2oZQpYvQRv+smgvt+HwQA4fNJk9ZseY3QD5+z5snJz7JEhZogqW+ngFYkNQ dtA5Y7gpTkKfo3mKO0XmE5+3fcSXhGHGYQzmUgJFlgWTK7+E8fuDhn6D66wFcZSq QhyRk9J7Xb7ZWuP5PlOkxb9DLd4hnuyie2bYw/0hVtOatjE/Em4gRJ3Oq3ZANwZx OeMGj4Uyb3/MKAJwy3Gq =ZoiX -----END PGP SIGNATURE----- Merge tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs Pull xfs updates from Dave Chinner: "There's quite a lot in this request, and there's some cross-over with ext4, dax and quota code due to the nature of the changes being made. As for the rest of the XFS changes, there are lots of little things all over the place, which add up to a lot of changes in the end. The major changes are that we've reduced the size of the struct xfs_inode by ~100 bytes (gives an inode cache footprint reduction of >10%), the writepage code now only does a single set of mapping tree lockups so uses less CPU, delayed allocation reservations won't overrun under random write loads anymore, and we added compile time verification for on-disk structure sizes so we find out when a commit or platform/compiler change breaks the on disk structure as early as possible. Change summary: - error propagation for direct IO failures fixes for both XFS and ext4 - new quota interfaces and XFS implementation for iterating all the quota IDs in the filesystem - locking fixes for real-time device extent allocation - reduction of duplicate information in the xfs and vfs inode, saving roughly 100 bytes of memory per cached inode. - buffer flag cleanup - rework of the writepage code to use the generic write clustering mechanisms - several fixes for inode flag based DAX enablement - rework of remount option parsing - compile time verification of on-disk format structure sizes - delayed allocation reservation overrun fixes - lots of little error handling fixes - small memory leak fixes - enable xfsaild freezing again" * tag 'xfs-for-linus-4.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (66 commits) xfs: always set rvalp in xfs_dir2_node_trim_free xfs: ensure committed is initialized in xfs_trans_roll xfs: borrow indirect blocks from freed extent when available xfs: refactor delalloc indlen reservation split into helper xfs: update freeblocks counter after extent deletion xfs: debug mode forced buffered write failure xfs: remove impossible condition xfs: check sizes of XFS on-disk structures at compile time xfs: ioends require logically contiguous file offsets xfs: use named array initializers for log item dumping xfs: fix computation of inode btree maxlevels xfs: reinitialise per-AG structures if geometry changes during recovery xfs: remove xfs_trans_get_block_res xfs: fix up inode32/64 (re)mount handling xfs: fix format specifier , should be %llx and not %llu xfs: sanitize remount options xfs: convert mount option parsing to tokens xfs: fix two memory leaks in xfs_attr_list.c error paths xfs: XFS_DIFLAG2_DAX limited by PAGE_SIZE xfs: dynamically switch modes when XFS_DIFLAG2_DAX is set/cleared ...
1760 lines
47 KiB
C
1760 lines
47 KiB
C
/*
|
|
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it would be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write the Free Software Foundation,
|
|
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_inode_item.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_iomap.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_bmap_util.h"
|
|
#include "xfs_bmap_btree.h"
|
|
#include <linux/gfp.h>
|
|
#include <linux/mpage.h>
|
|
#include <linux/pagevec.h>
|
|
#include <linux/writeback.h>
|
|
|
|
/* flags for direct write completions */
|
|
#define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
|
|
#define XFS_DIO_FLAG_APPEND (1 << 1)
|
|
|
|
/*
|
|
* structure owned by writepages passed to individual writepage calls
|
|
*/
|
|
struct xfs_writepage_ctx {
|
|
struct xfs_bmbt_irec imap;
|
|
bool imap_valid;
|
|
unsigned int io_type;
|
|
struct xfs_ioend *ioend;
|
|
sector_t last_block;
|
|
};
|
|
|
|
void
|
|
xfs_count_page_state(
|
|
struct page *page,
|
|
int *delalloc,
|
|
int *unwritten)
|
|
{
|
|
struct buffer_head *bh, *head;
|
|
|
|
*delalloc = *unwritten = 0;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_unwritten(bh))
|
|
(*unwritten) = 1;
|
|
else if (buffer_delay(bh))
|
|
(*delalloc) = 1;
|
|
} while ((bh = bh->b_this_page) != head);
|
|
}
|
|
|
|
struct block_device *
|
|
xfs_find_bdev_for_inode(
|
|
struct inode *inode)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
|
|
if (XFS_IS_REALTIME_INODE(ip))
|
|
return mp->m_rtdev_targp->bt_bdev;
|
|
else
|
|
return mp->m_ddev_targp->bt_bdev;
|
|
}
|
|
|
|
/*
|
|
* We're now finished for good with this ioend structure.
|
|
* Update the page state via the associated buffer_heads,
|
|
* release holds on the inode and bio, and finally free
|
|
* up memory. Do not use the ioend after this.
|
|
*/
|
|
STATIC void
|
|
xfs_destroy_ioend(
|
|
xfs_ioend_t *ioend)
|
|
{
|
|
struct buffer_head *bh, *next;
|
|
|
|
for (bh = ioend->io_buffer_head; bh; bh = next) {
|
|
next = bh->b_private;
|
|
bh->b_end_io(bh, !ioend->io_error);
|
|
}
|
|
|
|
mempool_free(ioend, xfs_ioend_pool);
|
|
}
|
|
|
|
/*
|
|
* Fast and loose check if this write could update the on-disk inode size.
|
|
*/
|
|
static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
|
|
{
|
|
return ioend->io_offset + ioend->io_size >
|
|
XFS_I(ioend->io_inode)->i_d.di_size;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_setfilesize_trans_alloc(
|
|
struct xfs_ioend *ioend)
|
|
{
|
|
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
|
|
struct xfs_trans *tp;
|
|
int error;
|
|
|
|
tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
|
|
|
|
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
|
|
if (error) {
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
|
|
ioend->io_append_trans = tp;
|
|
|
|
/*
|
|
* We may pass freeze protection with a transaction. So tell lockdep
|
|
* we released it.
|
|
*/
|
|
__sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
|
|
/*
|
|
* We hand off the transaction to the completion thread now, so
|
|
* clear the flag here.
|
|
*/
|
|
current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update on-disk file size now that data has been written to disk.
|
|
*/
|
|
STATIC int
|
|
xfs_setfilesize(
|
|
struct xfs_inode *ip,
|
|
struct xfs_trans *tp,
|
|
xfs_off_t offset,
|
|
size_t size)
|
|
{
|
|
xfs_fsize_t isize;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
isize = xfs_new_eof(ip, offset + size);
|
|
if (!isize) {
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_cancel(tp);
|
|
return 0;
|
|
}
|
|
|
|
trace_xfs_setfilesize(ip, offset, size);
|
|
|
|
ip->i_d.di_size = isize;
|
|
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
|
|
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
|
|
|
|
return xfs_trans_commit(tp);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_setfilesize_ioend(
|
|
struct xfs_ioend *ioend)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
struct xfs_trans *tp = ioend->io_append_trans;
|
|
|
|
/*
|
|
* The transaction may have been allocated in the I/O submission thread,
|
|
* thus we need to mark ourselves as being in a transaction manually.
|
|
* Similarly for freeze protection.
|
|
*/
|
|
current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
|
|
__sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
|
|
|
|
/* we abort the update if there was an IO error */
|
|
if (ioend->io_error) {
|
|
xfs_trans_cancel(tp);
|
|
return ioend->io_error;
|
|
}
|
|
|
|
return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
|
|
}
|
|
|
|
/*
|
|
* Schedule IO completion handling on the final put of an ioend.
|
|
*
|
|
* If there is no work to do we might as well call it a day and free the
|
|
* ioend right now.
|
|
*/
|
|
STATIC void
|
|
xfs_finish_ioend(
|
|
struct xfs_ioend *ioend)
|
|
{
|
|
if (atomic_dec_and_test(&ioend->io_remaining)) {
|
|
struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
|
|
|
|
if (ioend->io_type == XFS_IO_UNWRITTEN)
|
|
queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
|
|
else if (ioend->io_append_trans)
|
|
queue_work(mp->m_data_workqueue, &ioend->io_work);
|
|
else
|
|
xfs_destroy_ioend(ioend);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* IO write completion.
|
|
*/
|
|
STATIC void
|
|
xfs_end_io(
|
|
struct work_struct *work)
|
|
{
|
|
xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
|
|
struct xfs_inode *ip = XFS_I(ioend->io_inode);
|
|
int error = 0;
|
|
|
|
/*
|
|
* Set an error if the mount has shut down and proceed with end I/O
|
|
* processing so it can perform whatever cleanups are necessary.
|
|
*/
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
ioend->io_error = -EIO;
|
|
|
|
/*
|
|
* For unwritten extents we need to issue transactions to convert a
|
|
* range to normal written extens after the data I/O has finished.
|
|
* Detecting and handling completion IO errors is done individually
|
|
* for each case as different cleanup operations need to be performed
|
|
* on error.
|
|
*/
|
|
if (ioend->io_type == XFS_IO_UNWRITTEN) {
|
|
if (ioend->io_error)
|
|
goto done;
|
|
error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
|
|
ioend->io_size);
|
|
} else if (ioend->io_append_trans) {
|
|
error = xfs_setfilesize_ioend(ioend);
|
|
} else {
|
|
ASSERT(!xfs_ioend_is_append(ioend));
|
|
}
|
|
|
|
done:
|
|
if (error)
|
|
ioend->io_error = error;
|
|
xfs_destroy_ioend(ioend);
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialise an IO completion structure.
|
|
* We need to track unwritten extent write completion here initially.
|
|
* We'll need to extend this for updating the ondisk inode size later
|
|
* (vs. incore size).
|
|
*/
|
|
STATIC xfs_ioend_t *
|
|
xfs_alloc_ioend(
|
|
struct inode *inode,
|
|
unsigned int type)
|
|
{
|
|
xfs_ioend_t *ioend;
|
|
|
|
ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
|
|
|
|
/*
|
|
* Set the count to 1 initially, which will prevent an I/O
|
|
* completion callback from happening before we have started
|
|
* all the I/O from calling the completion routine too early.
|
|
*/
|
|
atomic_set(&ioend->io_remaining, 1);
|
|
ioend->io_error = 0;
|
|
INIT_LIST_HEAD(&ioend->io_list);
|
|
ioend->io_type = type;
|
|
ioend->io_inode = inode;
|
|
ioend->io_buffer_head = NULL;
|
|
ioend->io_buffer_tail = NULL;
|
|
ioend->io_offset = 0;
|
|
ioend->io_size = 0;
|
|
ioend->io_append_trans = NULL;
|
|
|
|
INIT_WORK(&ioend->io_work, xfs_end_io);
|
|
return ioend;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_map_blocks(
|
|
struct inode *inode,
|
|
loff_t offset,
|
|
struct xfs_bmbt_irec *imap,
|
|
int type)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
ssize_t count = 1 << inode->i_blkbits;
|
|
xfs_fileoff_t offset_fsb, end_fsb;
|
|
int error = 0;
|
|
int bmapi_flags = XFS_BMAPI_ENTIRE;
|
|
int nimaps = 1;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
if (type == XFS_IO_UNWRITTEN)
|
|
bmapi_flags |= XFS_BMAPI_IGSTATE;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_SHARED);
|
|
ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
|
|
(ip->i_df.if_flags & XFS_IFEXTENTS));
|
|
ASSERT(offset <= mp->m_super->s_maxbytes);
|
|
|
|
if (offset + count > mp->m_super->s_maxbytes)
|
|
count = mp->m_super->s_maxbytes - offset;
|
|
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
|
|
imap, &nimaps, bmapi_flags);
|
|
xfs_iunlock(ip, XFS_ILOCK_SHARED);
|
|
|
|
if (error)
|
|
return error;
|
|
|
|
if (type == XFS_IO_DELALLOC &&
|
|
(!nimaps || isnullstartblock(imap->br_startblock))) {
|
|
error = xfs_iomap_write_allocate(ip, offset, imap);
|
|
if (!error)
|
|
trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
|
|
return error;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (type == XFS_IO_UNWRITTEN) {
|
|
ASSERT(nimaps);
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
}
|
|
#endif
|
|
if (nimaps)
|
|
trace_xfs_map_blocks_found(ip, offset, count, type, imap);
|
|
return 0;
|
|
}
|
|
|
|
STATIC bool
|
|
xfs_imap_valid(
|
|
struct inode *inode,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
offset >>= inode->i_blkbits;
|
|
|
|
return offset >= imap->br_startoff &&
|
|
offset < imap->br_startoff + imap->br_blockcount;
|
|
}
|
|
|
|
/*
|
|
* BIO completion handler for buffered IO.
|
|
*/
|
|
STATIC void
|
|
xfs_end_bio(
|
|
struct bio *bio)
|
|
{
|
|
xfs_ioend_t *ioend = bio->bi_private;
|
|
|
|
if (!ioend->io_error)
|
|
ioend->io_error = bio->bi_error;
|
|
|
|
/* Toss bio and pass work off to an xfsdatad thread */
|
|
bio->bi_private = NULL;
|
|
bio->bi_end_io = NULL;
|
|
bio_put(bio);
|
|
|
|
xfs_finish_ioend(ioend);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_submit_ioend_bio(
|
|
struct writeback_control *wbc,
|
|
xfs_ioend_t *ioend,
|
|
struct bio *bio)
|
|
{
|
|
atomic_inc(&ioend->io_remaining);
|
|
bio->bi_private = ioend;
|
|
bio->bi_end_io = xfs_end_bio;
|
|
submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
|
|
}
|
|
|
|
STATIC struct bio *
|
|
xfs_alloc_ioend_bio(
|
|
struct buffer_head *bh)
|
|
{
|
|
struct bio *bio = bio_alloc(GFP_NOIO, BIO_MAX_PAGES);
|
|
|
|
ASSERT(bio->bi_private == NULL);
|
|
bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
|
|
bio->bi_bdev = bh->b_bdev;
|
|
return bio;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_start_buffer_writeback(
|
|
struct buffer_head *bh)
|
|
{
|
|
ASSERT(buffer_mapped(bh));
|
|
ASSERT(buffer_locked(bh));
|
|
ASSERT(!buffer_delay(bh));
|
|
ASSERT(!buffer_unwritten(bh));
|
|
|
|
mark_buffer_async_write(bh);
|
|
set_buffer_uptodate(bh);
|
|
clear_buffer_dirty(bh);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_start_page_writeback(
|
|
struct page *page,
|
|
int clear_dirty)
|
|
{
|
|
ASSERT(PageLocked(page));
|
|
ASSERT(!PageWriteback(page));
|
|
|
|
/*
|
|
* if the page was not fully cleaned, we need to ensure that the higher
|
|
* layers come back to it correctly. That means we need to keep the page
|
|
* dirty, and for WB_SYNC_ALL writeback we need to ensure the
|
|
* PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
|
|
* write this page in this writeback sweep will be made.
|
|
*/
|
|
if (clear_dirty) {
|
|
clear_page_dirty_for_io(page);
|
|
set_page_writeback(page);
|
|
} else
|
|
set_page_writeback_keepwrite(page);
|
|
|
|
unlock_page(page);
|
|
}
|
|
|
|
static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
|
|
{
|
|
return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
|
|
}
|
|
|
|
/*
|
|
* Submit all of the bios for an ioend. We are only passed a single ioend at a
|
|
* time; the caller is responsible for chaining prior to submission.
|
|
*
|
|
* If @fail is non-zero, it means that we have a situation where some part of
|
|
* the submission process has failed after we have marked paged for writeback
|
|
* and unlocked them. In this situation, we need to fail the ioend chain rather
|
|
* than submit it to IO. This typically only happens on a filesystem shutdown.
|
|
*/
|
|
STATIC int
|
|
xfs_submit_ioend(
|
|
struct writeback_control *wbc,
|
|
xfs_ioend_t *ioend,
|
|
int status)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct bio *bio;
|
|
sector_t lastblock = 0;
|
|
|
|
/* Reserve log space if we might write beyond the on-disk inode size. */
|
|
if (!status &&
|
|
ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
|
|
status = xfs_setfilesize_trans_alloc(ioend);
|
|
/*
|
|
* If we are failing the IO now, just mark the ioend with an
|
|
* error and finish it. This will run IO completion immediately
|
|
* as there is only one reference to the ioend at this point in
|
|
* time.
|
|
*/
|
|
if (status) {
|
|
ioend->io_error = status;
|
|
xfs_finish_ioend(ioend);
|
|
return status;
|
|
}
|
|
|
|
bio = NULL;
|
|
for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
|
|
|
|
if (!bio) {
|
|
retry:
|
|
bio = xfs_alloc_ioend_bio(bh);
|
|
} else if (bh->b_blocknr != lastblock + 1) {
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
goto retry;
|
|
}
|
|
|
|
if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
goto retry;
|
|
}
|
|
|
|
lastblock = bh->b_blocknr;
|
|
}
|
|
if (bio)
|
|
xfs_submit_ioend_bio(wbc, ioend, bio);
|
|
xfs_finish_ioend(ioend);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Test to see if we've been building up a completion structure for
|
|
* earlier buffers -- if so, we try to append to this ioend if we
|
|
* can, otherwise we finish off any current ioend and start another.
|
|
* Return the ioend we finished off so that the caller can submit it
|
|
* once it has finished processing the dirty page.
|
|
*/
|
|
STATIC void
|
|
xfs_add_to_ioend(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
xfs_off_t offset,
|
|
struct xfs_writepage_ctx *wpc,
|
|
struct list_head *iolist)
|
|
{
|
|
if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
|
|
bh->b_blocknr != wpc->last_block + 1 ||
|
|
offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
|
|
struct xfs_ioend *new;
|
|
|
|
if (wpc->ioend)
|
|
list_add(&wpc->ioend->io_list, iolist);
|
|
|
|
new = xfs_alloc_ioend(inode, wpc->io_type);
|
|
new->io_offset = offset;
|
|
new->io_buffer_head = bh;
|
|
new->io_buffer_tail = bh;
|
|
wpc->ioend = new;
|
|
} else {
|
|
wpc->ioend->io_buffer_tail->b_private = bh;
|
|
wpc->ioend->io_buffer_tail = bh;
|
|
}
|
|
|
|
bh->b_private = NULL;
|
|
wpc->ioend->io_size += bh->b_size;
|
|
wpc->last_block = bh->b_blocknr;
|
|
xfs_start_buffer_writeback(bh);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_map_buffer(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
sector_t bn;
|
|
struct xfs_mount *m = XFS_I(inode)->i_mount;
|
|
xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
|
|
xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
|
|
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
|
|
bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
|
|
((offset - iomap_offset) >> inode->i_blkbits);
|
|
|
|
ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
|
|
|
|
bh->b_blocknr = bn;
|
|
set_buffer_mapped(bh);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_map_at_offset(
|
|
struct inode *inode,
|
|
struct buffer_head *bh,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
ASSERT(imap->br_startblock != HOLESTARTBLOCK);
|
|
ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
|
|
|
|
xfs_map_buffer(inode, bh, imap, offset);
|
|
set_buffer_mapped(bh);
|
|
clear_buffer_delay(bh);
|
|
clear_buffer_unwritten(bh);
|
|
}
|
|
|
|
/*
|
|
* Test if a given page contains at least one buffer of a given @type.
|
|
* If @check_all_buffers is true, then we walk all the buffers in the page to
|
|
* try to find one of the type passed in. If it is not set, then the caller only
|
|
* needs to check the first buffer on the page for a match.
|
|
*/
|
|
STATIC bool
|
|
xfs_check_page_type(
|
|
struct page *page,
|
|
unsigned int type,
|
|
bool check_all_buffers)
|
|
{
|
|
struct buffer_head *bh;
|
|
struct buffer_head *head;
|
|
|
|
if (PageWriteback(page))
|
|
return false;
|
|
if (!page->mapping)
|
|
return false;
|
|
if (!page_has_buffers(page))
|
|
return false;
|
|
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_unwritten(bh)) {
|
|
if (type == XFS_IO_UNWRITTEN)
|
|
return true;
|
|
} else if (buffer_delay(bh)) {
|
|
if (type == XFS_IO_DELALLOC)
|
|
return true;
|
|
} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
|
|
if (type == XFS_IO_OVERWRITE)
|
|
return true;
|
|
}
|
|
|
|
/* If we are only checking the first buffer, we are done now. */
|
|
if (!check_all_buffers)
|
|
break;
|
|
} while ((bh = bh->b_this_page) != head);
|
|
|
|
return false;
|
|
}
|
|
|
|
STATIC void
|
|
xfs_vm_invalidatepage(
|
|
struct page *page,
|
|
unsigned int offset,
|
|
unsigned int length)
|
|
{
|
|
trace_xfs_invalidatepage(page->mapping->host, page, offset,
|
|
length);
|
|
block_invalidatepage(page, offset, length);
|
|
}
|
|
|
|
/*
|
|
* If the page has delalloc buffers on it, we need to punch them out before we
|
|
* invalidate the page. If we don't, we leave a stale delalloc mapping on the
|
|
* inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
|
|
* is done on that same region - the delalloc extent is returned when none is
|
|
* supposed to be there.
|
|
*
|
|
* We prevent this by truncating away the delalloc regions on the page before
|
|
* invalidating it. Because they are delalloc, we can do this without needing a
|
|
* transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
|
|
* truncation without a transaction as there is no space left for block
|
|
* reservation (typically why we see a ENOSPC in writeback).
|
|
*
|
|
* This is not a performance critical path, so for now just do the punching a
|
|
* buffer head at a time.
|
|
*/
|
|
STATIC void
|
|
xfs_aops_discard_page(
|
|
struct page *page)
|
|
{
|
|
struct inode *inode = page->mapping->host;
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct buffer_head *bh, *head;
|
|
loff_t offset = page_offset(page);
|
|
|
|
if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
|
|
goto out_invalidate;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(ip->i_mount))
|
|
goto out_invalidate;
|
|
|
|
xfs_alert(ip->i_mount,
|
|
"page discard on page %p, inode 0x%llx, offset %llu.",
|
|
page, ip->i_ino, offset);
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
int error;
|
|
xfs_fileoff_t start_fsb;
|
|
|
|
if (!buffer_delay(bh))
|
|
goto next_buffer;
|
|
|
|
start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
|
|
error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
|
|
if (error) {
|
|
/* something screwed, just bail */
|
|
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_alert(ip->i_mount,
|
|
"page discard unable to remove delalloc mapping.");
|
|
}
|
|
break;
|
|
}
|
|
next_buffer:
|
|
offset += 1 << inode->i_blkbits;
|
|
|
|
} while ((bh = bh->b_this_page) != head);
|
|
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
out_invalidate:
|
|
xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We implement an immediate ioend submission policy here to avoid needing to
|
|
* chain multiple ioends and hence nest mempool allocations which can violate
|
|
* forward progress guarantees we need to provide. The current ioend we are
|
|
* adding buffers to is cached on the writepage context, and if the new buffer
|
|
* does not append to the cached ioend it will create a new ioend and cache that
|
|
* instead.
|
|
*
|
|
* If a new ioend is created and cached, the old ioend is returned and queued
|
|
* locally for submission once the entire page is processed or an error has been
|
|
* detected. While ioends are submitted immediately after they are completed,
|
|
* batching optimisations are provided by higher level block plugging.
|
|
*
|
|
* At the end of a writeback pass, there will be a cached ioend remaining on the
|
|
* writepage context that the caller will need to submit.
|
|
*/
|
|
static int
|
|
xfs_writepage_map(
|
|
struct xfs_writepage_ctx *wpc,
|
|
struct writeback_control *wbc,
|
|
struct inode *inode,
|
|
struct page *page,
|
|
loff_t offset,
|
|
__uint64_t end_offset)
|
|
{
|
|
LIST_HEAD(submit_list);
|
|
struct xfs_ioend *ioend, *next;
|
|
struct buffer_head *bh, *head;
|
|
ssize_t len = 1 << inode->i_blkbits;
|
|
int error = 0;
|
|
int count = 0;
|
|
int uptodate = 1;
|
|
|
|
bh = head = page_buffers(page);
|
|
offset = page_offset(page);
|
|
do {
|
|
if (offset >= end_offset)
|
|
break;
|
|
if (!buffer_uptodate(bh))
|
|
uptodate = 0;
|
|
|
|
/*
|
|
* set_page_dirty dirties all buffers in a page, independent
|
|
* of their state. The dirty state however is entirely
|
|
* meaningless for holes (!mapped && uptodate), so skip
|
|
* buffers covering holes here.
|
|
*/
|
|
if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
|
|
wpc->imap_valid = false;
|
|
continue;
|
|
}
|
|
|
|
if (buffer_unwritten(bh)) {
|
|
if (wpc->io_type != XFS_IO_UNWRITTEN) {
|
|
wpc->io_type = XFS_IO_UNWRITTEN;
|
|
wpc->imap_valid = false;
|
|
}
|
|
} else if (buffer_delay(bh)) {
|
|
if (wpc->io_type != XFS_IO_DELALLOC) {
|
|
wpc->io_type = XFS_IO_DELALLOC;
|
|
wpc->imap_valid = false;
|
|
}
|
|
} else if (buffer_uptodate(bh)) {
|
|
if (wpc->io_type != XFS_IO_OVERWRITE) {
|
|
wpc->io_type = XFS_IO_OVERWRITE;
|
|
wpc->imap_valid = false;
|
|
}
|
|
} else {
|
|
if (PageUptodate(page))
|
|
ASSERT(buffer_mapped(bh));
|
|
/*
|
|
* This buffer is not uptodate and will not be
|
|
* written to disk. Ensure that we will put any
|
|
* subsequent writeable buffers into a new
|
|
* ioend.
|
|
*/
|
|
wpc->imap_valid = false;
|
|
continue;
|
|
}
|
|
|
|
if (wpc->imap_valid)
|
|
wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
|
|
offset);
|
|
if (!wpc->imap_valid) {
|
|
error = xfs_map_blocks(inode, offset, &wpc->imap,
|
|
wpc->io_type);
|
|
if (error)
|
|
goto out;
|
|
wpc->imap_valid = xfs_imap_valid(inode, &wpc->imap,
|
|
offset);
|
|
}
|
|
if (wpc->imap_valid) {
|
|
lock_buffer(bh);
|
|
if (wpc->io_type != XFS_IO_OVERWRITE)
|
|
xfs_map_at_offset(inode, bh, &wpc->imap, offset);
|
|
xfs_add_to_ioend(inode, bh, offset, wpc, &submit_list);
|
|
count++;
|
|
}
|
|
|
|
} while (offset += len, ((bh = bh->b_this_page) != head));
|
|
|
|
if (uptodate && bh == head)
|
|
SetPageUptodate(page);
|
|
|
|
ASSERT(wpc->ioend || list_empty(&submit_list));
|
|
|
|
out:
|
|
/*
|
|
* On error, we have to fail the ioend here because we have locked
|
|
* buffers in the ioend. If we don't do this, we'll deadlock
|
|
* invalidating the page as that tries to lock the buffers on the page.
|
|
* Also, because we may have set pages under writeback, we have to make
|
|
* sure we run IO completion to mark the error state of the IO
|
|
* appropriately, so we can't cancel the ioend directly here. That means
|
|
* we have to mark this page as under writeback if we included any
|
|
* buffers from it in the ioend chain so that completion treats it
|
|
* correctly.
|
|
*
|
|
* If we didn't include the page in the ioend, the on error we can
|
|
* simply discard and unlock it as there are no other users of the page
|
|
* or it's buffers right now. The caller will still need to trigger
|
|
* submission of outstanding ioends on the writepage context so they are
|
|
* treated correctly on error.
|
|
*/
|
|
if (count) {
|
|
xfs_start_page_writeback(page, !error);
|
|
|
|
/*
|
|
* Preserve the original error if there was one, otherwise catch
|
|
* submission errors here and propagate into subsequent ioend
|
|
* submissions.
|
|
*/
|
|
list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
|
|
int error2;
|
|
|
|
list_del_init(&ioend->io_list);
|
|
error2 = xfs_submit_ioend(wbc, ioend, error);
|
|
if (error2 && !error)
|
|
error = error2;
|
|
}
|
|
} else if (error) {
|
|
xfs_aops_discard_page(page);
|
|
ClearPageUptodate(page);
|
|
unlock_page(page);
|
|
} else {
|
|
/*
|
|
* We can end up here with no error and nothing to write if we
|
|
* race with a partial page truncate on a sub-page block sized
|
|
* filesystem. In that case we need to mark the page clean.
|
|
*/
|
|
xfs_start_page_writeback(page, 1);
|
|
end_page_writeback(page);
|
|
}
|
|
|
|
mapping_set_error(page->mapping, error);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Write out a dirty page.
|
|
*
|
|
* For delalloc space on the page we need to allocate space and flush it.
|
|
* For unwritten space on the page we need to start the conversion to
|
|
* regular allocated space.
|
|
* For any other dirty buffer heads on the page we should flush them.
|
|
*/
|
|
STATIC int
|
|
xfs_do_writepage(
|
|
struct page *page,
|
|
struct writeback_control *wbc,
|
|
void *data)
|
|
{
|
|
struct xfs_writepage_ctx *wpc = data;
|
|
struct inode *inode = page->mapping->host;
|
|
loff_t offset;
|
|
__uint64_t end_offset;
|
|
pgoff_t end_index;
|
|
|
|
trace_xfs_writepage(inode, page, 0, 0);
|
|
|
|
ASSERT(page_has_buffers(page));
|
|
|
|
/*
|
|
* Refuse to write the page out if we are called from reclaim context.
|
|
*
|
|
* This avoids stack overflows when called from deeply used stacks in
|
|
* random callers for direct reclaim or memcg reclaim. We explicitly
|
|
* allow reclaim from kswapd as the stack usage there is relatively low.
|
|
*
|
|
* This should never happen except in the case of a VM regression so
|
|
* warn about it.
|
|
*/
|
|
if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
|
|
PF_MEMALLOC))
|
|
goto redirty;
|
|
|
|
/*
|
|
* Given that we do not allow direct reclaim to call us, we should
|
|
* never be called while in a filesystem transaction.
|
|
*/
|
|
if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
|
|
goto redirty;
|
|
|
|
/*
|
|
* Is this page beyond the end of the file?
|
|
*
|
|
* The page index is less than the end_index, adjust the end_offset
|
|
* to the highest offset that this page should represent.
|
|
* -----------------------------------------------------
|
|
* | file mapping | <EOF> |
|
|
* -----------------------------------------------------
|
|
* | Page ... | Page N-2 | Page N-1 | Page N | |
|
|
* ^--------------------------------^----------|--------
|
|
* | desired writeback range | see else |
|
|
* ---------------------------------^------------------|
|
|
*/
|
|
offset = i_size_read(inode);
|
|
end_index = offset >> PAGE_CACHE_SHIFT;
|
|
if (page->index < end_index)
|
|
end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
|
|
else {
|
|
/*
|
|
* Check whether the page to write out is beyond or straddles
|
|
* i_size or not.
|
|
* -------------------------------------------------------
|
|
* | file mapping | <EOF> |
|
|
* -------------------------------------------------------
|
|
* | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
|
|
* ^--------------------------------^-----------|---------
|
|
* | | Straddles |
|
|
* ---------------------------------^-----------|--------|
|
|
*/
|
|
unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
|
|
|
|
/*
|
|
* Skip the page if it is fully outside i_size, e.g. due to a
|
|
* truncate operation that is in progress. We must redirty the
|
|
* page so that reclaim stops reclaiming it. Otherwise
|
|
* xfs_vm_releasepage() is called on it and gets confused.
|
|
*
|
|
* Note that the end_index is unsigned long, it would overflow
|
|
* if the given offset is greater than 16TB on 32-bit system
|
|
* and if we do check the page is fully outside i_size or not
|
|
* via "if (page->index >= end_index + 1)" as "end_index + 1"
|
|
* will be evaluated to 0. Hence this page will be redirtied
|
|
* and be written out repeatedly which would result in an
|
|
* infinite loop, the user program that perform this operation
|
|
* will hang. Instead, we can verify this situation by checking
|
|
* if the page to write is totally beyond the i_size or if it's
|
|
* offset is just equal to the EOF.
|
|
*/
|
|
if (page->index > end_index ||
|
|
(page->index == end_index && offset_into_page == 0))
|
|
goto redirty;
|
|
|
|
/*
|
|
* The page straddles i_size. It must be zeroed out on each
|
|
* and every writepage invocation because it may be mmapped.
|
|
* "A file is mapped in multiples of the page size. For a file
|
|
* that is not a multiple of the page size, the remaining
|
|
* memory is zeroed when mapped, and writes to that region are
|
|
* not written out to the file."
|
|
*/
|
|
zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
|
|
|
|
/* Adjust the end_offset to the end of file */
|
|
end_offset = offset;
|
|
}
|
|
|
|
return xfs_writepage_map(wpc, wbc, inode, page, offset, end_offset);
|
|
|
|
redirty:
|
|
redirty_page_for_writepage(wbc, page);
|
|
unlock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_writepage(
|
|
struct page *page,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct xfs_writepage_ctx wpc = {
|
|
.io_type = XFS_IO_INVALID,
|
|
};
|
|
int ret;
|
|
|
|
ret = xfs_do_writepage(page, wbc, &wpc);
|
|
if (wpc.ioend)
|
|
ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
|
|
return ret;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_writepages(
|
|
struct address_space *mapping,
|
|
struct writeback_control *wbc)
|
|
{
|
|
struct xfs_writepage_ctx wpc = {
|
|
.io_type = XFS_IO_INVALID,
|
|
};
|
|
int ret;
|
|
|
|
xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
|
|
if (dax_mapping(mapping))
|
|
return dax_writeback_mapping_range(mapping,
|
|
xfs_find_bdev_for_inode(mapping->host), wbc);
|
|
|
|
ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
|
|
if (wpc.ioend)
|
|
ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Called to move a page into cleanable state - and from there
|
|
* to be released. The page should already be clean. We always
|
|
* have buffer heads in this call.
|
|
*
|
|
* Returns 1 if the page is ok to release, 0 otherwise.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_releasepage(
|
|
struct page *page,
|
|
gfp_t gfp_mask)
|
|
{
|
|
int delalloc, unwritten;
|
|
|
|
trace_xfs_releasepage(page->mapping->host, page, 0, 0);
|
|
|
|
xfs_count_page_state(page, &delalloc, &unwritten);
|
|
|
|
if (WARN_ON_ONCE(delalloc))
|
|
return 0;
|
|
if (WARN_ON_ONCE(unwritten))
|
|
return 0;
|
|
|
|
return try_to_free_buffers(page);
|
|
}
|
|
|
|
/*
|
|
* When we map a DIO buffer, we may need to pass flags to
|
|
* xfs_end_io_direct_write to tell it what kind of write IO we are doing.
|
|
*
|
|
* Note that for DIO, an IO to the highest supported file block offset (i.e.
|
|
* 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
|
|
* bit variable. Hence if we see this overflow, we have to assume that the IO is
|
|
* extending the file size. We won't know for sure until IO completion is run
|
|
* and the actual max write offset is communicated to the IO completion
|
|
* routine.
|
|
*/
|
|
static void
|
|
xfs_map_direct(
|
|
struct inode *inode,
|
|
struct buffer_head *bh_result,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset)
|
|
{
|
|
uintptr_t *flags = (uintptr_t *)&bh_result->b_private;
|
|
xfs_off_t size = bh_result->b_size;
|
|
|
|
trace_xfs_get_blocks_map_direct(XFS_I(inode), offset, size,
|
|
ISUNWRITTEN(imap) ? XFS_IO_UNWRITTEN : XFS_IO_OVERWRITE, imap);
|
|
|
|
if (ISUNWRITTEN(imap)) {
|
|
*flags |= XFS_DIO_FLAG_UNWRITTEN;
|
|
set_buffer_defer_completion(bh_result);
|
|
} else if (offset + size > i_size_read(inode) || offset + size < 0) {
|
|
*flags |= XFS_DIO_FLAG_APPEND;
|
|
set_buffer_defer_completion(bh_result);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is O_DIRECT or the mpage code calling tell them how large the mapping
|
|
* is, so that we can avoid repeated get_blocks calls.
|
|
*
|
|
* If the mapping spans EOF, then we have to break the mapping up as the mapping
|
|
* for blocks beyond EOF must be marked new so that sub block regions can be
|
|
* correctly zeroed. We can't do this for mappings within EOF unless the mapping
|
|
* was just allocated or is unwritten, otherwise the callers would overwrite
|
|
* existing data with zeros. Hence we have to split the mapping into a range up
|
|
* to and including EOF, and a second mapping for beyond EOF.
|
|
*/
|
|
static void
|
|
xfs_map_trim_size(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
struct xfs_bmbt_irec *imap,
|
|
xfs_off_t offset,
|
|
ssize_t size)
|
|
{
|
|
xfs_off_t mapping_size;
|
|
|
|
mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
|
|
mapping_size <<= inode->i_blkbits;
|
|
|
|
ASSERT(mapping_size > 0);
|
|
if (mapping_size > size)
|
|
mapping_size = size;
|
|
if (offset < i_size_read(inode) &&
|
|
offset + mapping_size >= i_size_read(inode)) {
|
|
/* limit mapping to block that spans EOF */
|
|
mapping_size = roundup_64(i_size_read(inode) - offset,
|
|
1 << inode->i_blkbits);
|
|
}
|
|
if (mapping_size > LONG_MAX)
|
|
mapping_size = LONG_MAX;
|
|
|
|
bh_result->b_size = mapping_size;
|
|
}
|
|
|
|
STATIC int
|
|
__xfs_get_blocks(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create,
|
|
bool direct,
|
|
bool dax_fault)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
xfs_fileoff_t offset_fsb, end_fsb;
|
|
int error = 0;
|
|
int lockmode = 0;
|
|
struct xfs_bmbt_irec imap;
|
|
int nimaps = 1;
|
|
xfs_off_t offset;
|
|
ssize_t size;
|
|
int new = 0;
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
offset = (xfs_off_t)iblock << inode->i_blkbits;
|
|
ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
|
|
size = bh_result->b_size;
|
|
|
|
if (!create && direct && offset >= i_size_read(inode))
|
|
return 0;
|
|
|
|
/*
|
|
* Direct I/O is usually done on preallocated files, so try getting
|
|
* a block mapping without an exclusive lock first. For buffered
|
|
* writes we already have the exclusive iolock anyway, so avoiding
|
|
* a lock roundtrip here by taking the ilock exclusive from the
|
|
* beginning is a useful micro optimization.
|
|
*/
|
|
if (create && !direct) {
|
|
lockmode = XFS_ILOCK_EXCL;
|
|
xfs_ilock(ip, lockmode);
|
|
} else {
|
|
lockmode = xfs_ilock_data_map_shared(ip);
|
|
}
|
|
|
|
ASSERT(offset <= mp->m_super->s_maxbytes);
|
|
if (offset + size > mp->m_super->s_maxbytes)
|
|
size = mp->m_super->s_maxbytes - offset;
|
|
end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
|
|
offset_fsb = XFS_B_TO_FSBT(mp, offset);
|
|
|
|
error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
|
|
&imap, &nimaps, XFS_BMAPI_ENTIRE);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
/* for DAX, we convert unwritten extents directly */
|
|
if (create &&
|
|
(!nimaps ||
|
|
(imap.br_startblock == HOLESTARTBLOCK ||
|
|
imap.br_startblock == DELAYSTARTBLOCK) ||
|
|
(IS_DAX(inode) && ISUNWRITTEN(&imap)))) {
|
|
if (direct || xfs_get_extsz_hint(ip)) {
|
|
/*
|
|
* xfs_iomap_write_direct() expects the shared lock. It
|
|
* is unlocked on return.
|
|
*/
|
|
if (lockmode == XFS_ILOCK_EXCL)
|
|
xfs_ilock_demote(ip, lockmode);
|
|
|
|
error = xfs_iomap_write_direct(ip, offset, size,
|
|
&imap, nimaps);
|
|
if (error)
|
|
return error;
|
|
new = 1;
|
|
|
|
} else {
|
|
/*
|
|
* Delalloc reservations do not require a transaction,
|
|
* we can go on without dropping the lock here. If we
|
|
* are allocating a new delalloc block, make sure that
|
|
* we set the new flag so that we mark the buffer new so
|
|
* that we know that it is newly allocated if the write
|
|
* fails.
|
|
*/
|
|
if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
|
|
new = 1;
|
|
error = xfs_iomap_write_delay(ip, offset, size, &imap);
|
|
if (error)
|
|
goto out_unlock;
|
|
|
|
xfs_iunlock(ip, lockmode);
|
|
}
|
|
trace_xfs_get_blocks_alloc(ip, offset, size,
|
|
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
|
|
: XFS_IO_DELALLOC, &imap);
|
|
} else if (nimaps) {
|
|
trace_xfs_get_blocks_found(ip, offset, size,
|
|
ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
|
|
: XFS_IO_OVERWRITE, &imap);
|
|
xfs_iunlock(ip, lockmode);
|
|
} else {
|
|
trace_xfs_get_blocks_notfound(ip, offset, size);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (IS_DAX(inode) && create) {
|
|
ASSERT(!ISUNWRITTEN(&imap));
|
|
/* zeroing is not needed at a higher layer */
|
|
new = 0;
|
|
}
|
|
|
|
/* trim mapping down to size requested */
|
|
if (direct || size > (1 << inode->i_blkbits))
|
|
xfs_map_trim_size(inode, iblock, bh_result,
|
|
&imap, offset, size);
|
|
|
|
/*
|
|
* For unwritten extents do not report a disk address in the buffered
|
|
* read case (treat as if we're reading into a hole).
|
|
*/
|
|
if (imap.br_startblock != HOLESTARTBLOCK &&
|
|
imap.br_startblock != DELAYSTARTBLOCK &&
|
|
(create || !ISUNWRITTEN(&imap))) {
|
|
xfs_map_buffer(inode, bh_result, &imap, offset);
|
|
if (ISUNWRITTEN(&imap))
|
|
set_buffer_unwritten(bh_result);
|
|
/* direct IO needs special help */
|
|
if (create && direct) {
|
|
if (dax_fault)
|
|
ASSERT(!ISUNWRITTEN(&imap));
|
|
else
|
|
xfs_map_direct(inode, bh_result, &imap, offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is a realtime file, data may be on a different device.
|
|
* to that pointed to from the buffer_head b_bdev currently.
|
|
*/
|
|
bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
|
|
|
|
/*
|
|
* If we previously allocated a block out beyond eof and we are now
|
|
* coming back to use it then we will need to flag it as new even if it
|
|
* has a disk address.
|
|
*
|
|
* With sub-block writes into unwritten extents we also need to mark
|
|
* the buffer as new so that the unwritten parts of the buffer gets
|
|
* correctly zeroed.
|
|
*/
|
|
if (create &&
|
|
((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
|
|
(offset >= i_size_read(inode)) ||
|
|
(new || ISUNWRITTEN(&imap))))
|
|
set_buffer_new(bh_result);
|
|
|
|
if (imap.br_startblock == DELAYSTARTBLOCK) {
|
|
BUG_ON(direct);
|
|
if (create) {
|
|
set_buffer_uptodate(bh_result);
|
|
set_buffer_mapped(bh_result);
|
|
set_buffer_delay(bh_result);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
out_unlock:
|
|
xfs_iunlock(ip, lockmode);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
xfs_get_blocks(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create)
|
|
{
|
|
return __xfs_get_blocks(inode, iblock, bh_result, create, false, false);
|
|
}
|
|
|
|
int
|
|
xfs_get_blocks_direct(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create)
|
|
{
|
|
return __xfs_get_blocks(inode, iblock, bh_result, create, true, false);
|
|
}
|
|
|
|
int
|
|
xfs_get_blocks_dax_fault(
|
|
struct inode *inode,
|
|
sector_t iblock,
|
|
struct buffer_head *bh_result,
|
|
int create)
|
|
{
|
|
return __xfs_get_blocks(inode, iblock, bh_result, create, true, true);
|
|
}
|
|
|
|
/*
|
|
* Complete a direct I/O write request.
|
|
*
|
|
* xfs_map_direct passes us some flags in the private data to tell us what to
|
|
* do. If no flags are set, then the write IO is an overwrite wholly within
|
|
* the existing allocated file size and so there is nothing for us to do.
|
|
*
|
|
* Note that in this case the completion can be called in interrupt context,
|
|
* whereas if we have flags set we will always be called in task context
|
|
* (i.e. from a workqueue).
|
|
*/
|
|
STATIC int
|
|
xfs_end_io_direct_write(
|
|
struct kiocb *iocb,
|
|
loff_t offset,
|
|
ssize_t size,
|
|
void *private)
|
|
{
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
struct xfs_mount *mp = ip->i_mount;
|
|
uintptr_t flags = (uintptr_t)private;
|
|
int error = 0;
|
|
|
|
trace_xfs_end_io_direct_write(ip, offset, size);
|
|
|
|
if (XFS_FORCED_SHUTDOWN(mp))
|
|
return -EIO;
|
|
|
|
if (size <= 0)
|
|
return size;
|
|
|
|
/*
|
|
* The flags tell us whether we are doing unwritten extent conversions
|
|
* or an append transaction that updates the on-disk file size. These
|
|
* cases are the only cases where we should *potentially* be needing
|
|
* to update the VFS inode size.
|
|
*/
|
|
if (flags == 0) {
|
|
ASSERT(offset + size <= i_size_read(inode));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We need to update the in-core inode size here so that we don't end up
|
|
* with the on-disk inode size being outside the in-core inode size. We
|
|
* have no other method of updating EOF for AIO, so always do it here
|
|
* if necessary.
|
|
*
|
|
* We need to lock the test/set EOF update as we can be racing with
|
|
* other IO completions here to update the EOF. Failing to serialise
|
|
* here can result in EOF moving backwards and Bad Things Happen when
|
|
* that occurs.
|
|
*/
|
|
spin_lock(&ip->i_flags_lock);
|
|
if (offset + size > i_size_read(inode))
|
|
i_size_write(inode, offset + size);
|
|
spin_unlock(&ip->i_flags_lock);
|
|
|
|
if (flags & XFS_DIO_FLAG_UNWRITTEN) {
|
|
trace_xfs_end_io_direct_write_unwritten(ip, offset, size);
|
|
|
|
error = xfs_iomap_write_unwritten(ip, offset, size);
|
|
} else if (flags & XFS_DIO_FLAG_APPEND) {
|
|
struct xfs_trans *tp;
|
|
|
|
trace_xfs_end_io_direct_write_append(ip, offset, size);
|
|
|
|
tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
|
|
error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
|
|
if (error) {
|
|
xfs_trans_cancel(tp);
|
|
return error;
|
|
}
|
|
error = xfs_setfilesize(ip, tp, offset, size);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
STATIC ssize_t
|
|
xfs_vm_direct_IO(
|
|
struct kiocb *iocb,
|
|
struct iov_iter *iter,
|
|
loff_t offset)
|
|
{
|
|
struct inode *inode = iocb->ki_filp->f_mapping->host;
|
|
dio_iodone_t *endio = NULL;
|
|
int flags = 0;
|
|
struct block_device *bdev;
|
|
|
|
if (iov_iter_rw(iter) == WRITE) {
|
|
endio = xfs_end_io_direct_write;
|
|
flags = DIO_ASYNC_EXTEND;
|
|
}
|
|
|
|
if (IS_DAX(inode)) {
|
|
return dax_do_io(iocb, inode, iter, offset,
|
|
xfs_get_blocks_direct, endio, 0);
|
|
}
|
|
|
|
bdev = xfs_find_bdev_for_inode(inode);
|
|
return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
|
|
xfs_get_blocks_direct, endio, NULL, flags);
|
|
}
|
|
|
|
/*
|
|
* Punch out the delalloc blocks we have already allocated.
|
|
*
|
|
* Don't bother with xfs_setattr given that nothing can have made it to disk yet
|
|
* as the page is still locked at this point.
|
|
*/
|
|
STATIC void
|
|
xfs_vm_kill_delalloc_range(
|
|
struct inode *inode,
|
|
loff_t start,
|
|
loff_t end)
|
|
{
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
xfs_fileoff_t start_fsb;
|
|
xfs_fileoff_t end_fsb;
|
|
int error;
|
|
|
|
start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
|
|
end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
|
|
if (end_fsb <= start_fsb)
|
|
return;
|
|
|
|
xfs_ilock(ip, XFS_ILOCK_EXCL);
|
|
error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
|
|
end_fsb - start_fsb);
|
|
if (error) {
|
|
/* something screwed, just bail */
|
|
if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
|
|
xfs_alert(ip->i_mount,
|
|
"xfs_vm_write_failed: unable to clean up ino %lld",
|
|
ip->i_ino);
|
|
}
|
|
}
|
|
xfs_iunlock(ip, XFS_ILOCK_EXCL);
|
|
}
|
|
|
|
STATIC void
|
|
xfs_vm_write_failed(
|
|
struct inode *inode,
|
|
struct page *page,
|
|
loff_t pos,
|
|
unsigned len)
|
|
{
|
|
loff_t block_offset;
|
|
loff_t block_start;
|
|
loff_t block_end;
|
|
loff_t from = pos & (PAGE_CACHE_SIZE - 1);
|
|
loff_t to = from + len;
|
|
struct buffer_head *bh, *head;
|
|
struct xfs_mount *mp = XFS_I(inode)->i_mount;
|
|
|
|
/*
|
|
* The request pos offset might be 32 or 64 bit, this is all fine
|
|
* on 64-bit platform. However, for 64-bit pos request on 32-bit
|
|
* platform, the high 32-bit will be masked off if we evaluate the
|
|
* block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
|
|
* 0xfffff000 as an unsigned long, hence the result is incorrect
|
|
* which could cause the following ASSERT failed in most cases.
|
|
* In order to avoid this, we can evaluate the block_offset of the
|
|
* start of the page by using shifts rather than masks the mismatch
|
|
* problem.
|
|
*/
|
|
block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
|
|
|
|
ASSERT(block_offset + from == pos);
|
|
|
|
head = page_buffers(page);
|
|
block_start = 0;
|
|
for (bh = head; bh != head || !block_start;
|
|
bh = bh->b_this_page, block_start = block_end,
|
|
block_offset += bh->b_size) {
|
|
block_end = block_start + bh->b_size;
|
|
|
|
/* skip buffers before the write */
|
|
if (block_end <= from)
|
|
continue;
|
|
|
|
/* if the buffer is after the write, we're done */
|
|
if (block_start >= to)
|
|
break;
|
|
|
|
/*
|
|
* Process delalloc and unwritten buffers beyond EOF. We can
|
|
* encounter unwritten buffers in the event that a file has
|
|
* post-EOF unwritten extents and an extending write happens to
|
|
* fail (e.g., an unaligned write that also involves a delalloc
|
|
* to the same page).
|
|
*/
|
|
if (!buffer_delay(bh) && !buffer_unwritten(bh))
|
|
continue;
|
|
|
|
if (!xfs_mp_fail_writes(mp) && !buffer_new(bh) &&
|
|
block_offset < i_size_read(inode))
|
|
continue;
|
|
|
|
if (buffer_delay(bh))
|
|
xfs_vm_kill_delalloc_range(inode, block_offset,
|
|
block_offset + bh->b_size);
|
|
|
|
/*
|
|
* This buffer does not contain data anymore. make sure anyone
|
|
* who finds it knows that for certain.
|
|
*/
|
|
clear_buffer_delay(bh);
|
|
clear_buffer_uptodate(bh);
|
|
clear_buffer_mapped(bh);
|
|
clear_buffer_new(bh);
|
|
clear_buffer_dirty(bh);
|
|
clear_buffer_unwritten(bh);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* This used to call block_write_begin(), but it unlocks and releases the page
|
|
* on error, and we need that page to be able to punch stale delalloc blocks out
|
|
* on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
|
|
* the appropriate point.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_write_begin(
|
|
struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos,
|
|
unsigned len,
|
|
unsigned flags,
|
|
struct page **pagep,
|
|
void **fsdata)
|
|
{
|
|
pgoff_t index = pos >> PAGE_CACHE_SHIFT;
|
|
struct page *page;
|
|
int status;
|
|
struct xfs_mount *mp = XFS_I(mapping->host)->i_mount;
|
|
|
|
ASSERT(len <= PAGE_CACHE_SIZE);
|
|
|
|
page = grab_cache_page_write_begin(mapping, index, flags);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
status = __block_write_begin(page, pos, len, xfs_get_blocks);
|
|
if (xfs_mp_fail_writes(mp))
|
|
status = -EIO;
|
|
if (unlikely(status)) {
|
|
struct inode *inode = mapping->host;
|
|
size_t isize = i_size_read(inode);
|
|
|
|
xfs_vm_write_failed(inode, page, pos, len);
|
|
unlock_page(page);
|
|
|
|
/*
|
|
* If the write is beyond EOF, we only want to kill blocks
|
|
* allocated in this write, not blocks that were previously
|
|
* written successfully.
|
|
*/
|
|
if (xfs_mp_fail_writes(mp))
|
|
isize = 0;
|
|
if (pos + len > isize) {
|
|
ssize_t start = max_t(ssize_t, pos, isize);
|
|
|
|
truncate_pagecache_range(inode, start, pos + len);
|
|
}
|
|
|
|
page_cache_release(page);
|
|
page = NULL;
|
|
}
|
|
|
|
*pagep = page;
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* On failure, we only need to kill delalloc blocks beyond EOF in the range of
|
|
* this specific write because they will never be written. Previous writes
|
|
* beyond EOF where block allocation succeeded do not need to be trashed, so
|
|
* only new blocks from this write should be trashed. For blocks within
|
|
* EOF, generic_write_end() zeros them so they are safe to leave alone and be
|
|
* written with all the other valid data.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_write_end(
|
|
struct file *file,
|
|
struct address_space *mapping,
|
|
loff_t pos,
|
|
unsigned len,
|
|
unsigned copied,
|
|
struct page *page,
|
|
void *fsdata)
|
|
{
|
|
int ret;
|
|
|
|
ASSERT(len <= PAGE_CACHE_SIZE);
|
|
|
|
ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
|
|
if (unlikely(ret < len)) {
|
|
struct inode *inode = mapping->host;
|
|
size_t isize = i_size_read(inode);
|
|
loff_t to = pos + len;
|
|
|
|
if (to > isize) {
|
|
/* only kill blocks in this write beyond EOF */
|
|
if (pos > isize)
|
|
isize = pos;
|
|
xfs_vm_kill_delalloc_range(inode, isize, to);
|
|
truncate_pagecache_range(inode, isize, to);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
STATIC sector_t
|
|
xfs_vm_bmap(
|
|
struct address_space *mapping,
|
|
sector_t block)
|
|
{
|
|
struct inode *inode = (struct inode *)mapping->host;
|
|
struct xfs_inode *ip = XFS_I(inode);
|
|
|
|
trace_xfs_vm_bmap(XFS_I(inode));
|
|
xfs_ilock(ip, XFS_IOLOCK_SHARED);
|
|
filemap_write_and_wait(mapping);
|
|
xfs_iunlock(ip, XFS_IOLOCK_SHARED);
|
|
return generic_block_bmap(mapping, block, xfs_get_blocks);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_readpage(
|
|
struct file *unused,
|
|
struct page *page)
|
|
{
|
|
trace_xfs_vm_readpage(page->mapping->host, 1);
|
|
return mpage_readpage(page, xfs_get_blocks);
|
|
}
|
|
|
|
STATIC int
|
|
xfs_vm_readpages(
|
|
struct file *unused,
|
|
struct address_space *mapping,
|
|
struct list_head *pages,
|
|
unsigned nr_pages)
|
|
{
|
|
trace_xfs_vm_readpages(mapping->host, nr_pages);
|
|
return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
|
|
}
|
|
|
|
/*
|
|
* This is basically a copy of __set_page_dirty_buffers() with one
|
|
* small tweak: buffers beyond EOF do not get marked dirty. If we mark them
|
|
* dirty, we'll never be able to clean them because we don't write buffers
|
|
* beyond EOF, and that means we can't invalidate pages that span EOF
|
|
* that have been marked dirty. Further, the dirty state can leak into
|
|
* the file interior if the file is extended, resulting in all sorts of
|
|
* bad things happening as the state does not match the underlying data.
|
|
*
|
|
* XXX: this really indicates that bufferheads in XFS need to die. Warts like
|
|
* this only exist because of bufferheads and how the generic code manages them.
|
|
*/
|
|
STATIC int
|
|
xfs_vm_set_page_dirty(
|
|
struct page *page)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
struct inode *inode = mapping->host;
|
|
loff_t end_offset;
|
|
loff_t offset;
|
|
int newly_dirty;
|
|
|
|
if (unlikely(!mapping))
|
|
return !TestSetPageDirty(page);
|
|
|
|
end_offset = i_size_read(inode);
|
|
offset = page_offset(page);
|
|
|
|
spin_lock(&mapping->private_lock);
|
|
if (page_has_buffers(page)) {
|
|
struct buffer_head *head = page_buffers(page);
|
|
struct buffer_head *bh = head;
|
|
|
|
do {
|
|
if (offset < end_offset)
|
|
set_buffer_dirty(bh);
|
|
bh = bh->b_this_page;
|
|
offset += 1 << inode->i_blkbits;
|
|
} while (bh != head);
|
|
}
|
|
/*
|
|
* Lock out page->mem_cgroup migration to keep PageDirty
|
|
* synchronized with per-memcg dirty page counters.
|
|
*/
|
|
lock_page_memcg(page);
|
|
newly_dirty = !TestSetPageDirty(page);
|
|
spin_unlock(&mapping->private_lock);
|
|
|
|
if (newly_dirty) {
|
|
/* sigh - __set_page_dirty() is static, so copy it here, too */
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&mapping->tree_lock, flags);
|
|
if (page->mapping) { /* Race with truncate? */
|
|
WARN_ON_ONCE(!PageUptodate(page));
|
|
account_page_dirtied(page, mapping);
|
|
radix_tree_tag_set(&mapping->page_tree,
|
|
page_index(page), PAGECACHE_TAG_DIRTY);
|
|
}
|
|
spin_unlock_irqrestore(&mapping->tree_lock, flags);
|
|
}
|
|
unlock_page_memcg(page);
|
|
if (newly_dirty)
|
|
__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
|
|
return newly_dirty;
|
|
}
|
|
|
|
const struct address_space_operations xfs_address_space_operations = {
|
|
.readpage = xfs_vm_readpage,
|
|
.readpages = xfs_vm_readpages,
|
|
.writepage = xfs_vm_writepage,
|
|
.writepages = xfs_vm_writepages,
|
|
.set_page_dirty = xfs_vm_set_page_dirty,
|
|
.releasepage = xfs_vm_releasepage,
|
|
.invalidatepage = xfs_vm_invalidatepage,
|
|
.write_begin = xfs_vm_write_begin,
|
|
.write_end = xfs_vm_write_end,
|
|
.bmap = xfs_vm_bmap,
|
|
.direct_IO = xfs_vm_direct_IO,
|
|
.migratepage = buffer_migrate_page,
|
|
.is_partially_uptodate = block_is_partially_uptodate,
|
|
.error_remove_page = generic_error_remove_page,
|
|
};
|