mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 20:26:48 +07:00
14b05c5106
u8 and u64 aren't exported to userspace, while __u8 and __u64 are. Signed-off-by: Jeff Mahoney <jeffm@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: David Sterba <dsterba@suse.com>
967 lines
24 KiB
C
967 lines
24 KiB
C
#ifndef _BTRFS_CTREE_H_
|
|
#define _BTRFS_CTREE_H_
|
|
|
|
/*
|
|
* This header contains the structure definitions and constants used
|
|
* by file system objects that can be retrieved using
|
|
* the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
|
|
* is needed to describe a leaf node's key or item contents.
|
|
*/
|
|
|
|
/* holds pointers to all of the tree roots */
|
|
#define BTRFS_ROOT_TREE_OBJECTID 1ULL
|
|
|
|
/* stores information about which extents are in use, and reference counts */
|
|
#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
|
|
|
|
/*
|
|
* chunk tree stores translations from logical -> physical block numbering
|
|
* the super block points to the chunk tree
|
|
*/
|
|
#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
|
|
|
|
/*
|
|
* stores information about which areas of a given device are in use.
|
|
* one per device. The tree of tree roots points to the device tree
|
|
*/
|
|
#define BTRFS_DEV_TREE_OBJECTID 4ULL
|
|
|
|
/* one per subvolume, storing files and directories */
|
|
#define BTRFS_FS_TREE_OBJECTID 5ULL
|
|
|
|
/* directory objectid inside the root tree */
|
|
#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
|
|
|
|
/* holds checksums of all the data extents */
|
|
#define BTRFS_CSUM_TREE_OBJECTID 7ULL
|
|
|
|
/* holds quota configuration and tracking */
|
|
#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
|
|
|
|
/* for storing items that use the BTRFS_UUID_KEY* types */
|
|
#define BTRFS_UUID_TREE_OBJECTID 9ULL
|
|
|
|
/* tracks free space in block groups. */
|
|
#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
|
|
|
|
/* device stats in the device tree */
|
|
#define BTRFS_DEV_STATS_OBJECTID 0ULL
|
|
|
|
/* for storing balance parameters in the root tree */
|
|
#define BTRFS_BALANCE_OBJECTID -4ULL
|
|
|
|
/* orhpan objectid for tracking unlinked/truncated files */
|
|
#define BTRFS_ORPHAN_OBJECTID -5ULL
|
|
|
|
/* does write ahead logging to speed up fsyncs */
|
|
#define BTRFS_TREE_LOG_OBJECTID -6ULL
|
|
#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
|
|
|
|
/* for space balancing */
|
|
#define BTRFS_TREE_RELOC_OBJECTID -8ULL
|
|
#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
|
|
|
|
/*
|
|
* extent checksums all have this objectid
|
|
* this allows them to share the logging tree
|
|
* for fsyncs
|
|
*/
|
|
#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
|
|
|
|
/* For storing free space cache */
|
|
#define BTRFS_FREE_SPACE_OBJECTID -11ULL
|
|
|
|
/*
|
|
* The inode number assigned to the special inode for storing
|
|
* free ino cache
|
|
*/
|
|
#define BTRFS_FREE_INO_OBJECTID -12ULL
|
|
|
|
/* dummy objectid represents multiple objectids */
|
|
#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
|
|
|
|
/*
|
|
* All files have objectids in this range.
|
|
*/
|
|
#define BTRFS_FIRST_FREE_OBJECTID 256ULL
|
|
#define BTRFS_LAST_FREE_OBJECTID -256ULL
|
|
#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
|
|
|
|
|
|
/*
|
|
* the device items go into the chunk tree. The key is in the form
|
|
* [ 1 BTRFS_DEV_ITEM_KEY device_id ]
|
|
*/
|
|
#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
|
|
|
|
#define BTRFS_BTREE_INODE_OBJECTID 1
|
|
|
|
#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
|
|
|
|
#define BTRFS_DEV_REPLACE_DEVID 0ULL
|
|
|
|
/*
|
|
* inode items have the data typically returned from stat and store other
|
|
* info about object characteristics. There is one for every file and dir in
|
|
* the FS
|
|
*/
|
|
#define BTRFS_INODE_ITEM_KEY 1
|
|
#define BTRFS_INODE_REF_KEY 12
|
|
#define BTRFS_INODE_EXTREF_KEY 13
|
|
#define BTRFS_XATTR_ITEM_KEY 24
|
|
#define BTRFS_ORPHAN_ITEM_KEY 48
|
|
/* reserve 2-15 close to the inode for later flexibility */
|
|
|
|
/*
|
|
* dir items are the name -> inode pointers in a directory. There is one
|
|
* for every name in a directory.
|
|
*/
|
|
#define BTRFS_DIR_LOG_ITEM_KEY 60
|
|
#define BTRFS_DIR_LOG_INDEX_KEY 72
|
|
#define BTRFS_DIR_ITEM_KEY 84
|
|
#define BTRFS_DIR_INDEX_KEY 96
|
|
/*
|
|
* extent data is for file data
|
|
*/
|
|
#define BTRFS_EXTENT_DATA_KEY 108
|
|
|
|
/*
|
|
* extent csums are stored in a separate tree and hold csums for
|
|
* an entire extent on disk.
|
|
*/
|
|
#define BTRFS_EXTENT_CSUM_KEY 128
|
|
|
|
/*
|
|
* root items point to tree roots. They are typically in the root
|
|
* tree used by the super block to find all the other trees
|
|
*/
|
|
#define BTRFS_ROOT_ITEM_KEY 132
|
|
|
|
/*
|
|
* root backrefs tie subvols and snapshots to the directory entries that
|
|
* reference them
|
|
*/
|
|
#define BTRFS_ROOT_BACKREF_KEY 144
|
|
|
|
/*
|
|
* root refs make a fast index for listing all of the snapshots and
|
|
* subvolumes referenced by a given root. They point directly to the
|
|
* directory item in the root that references the subvol
|
|
*/
|
|
#define BTRFS_ROOT_REF_KEY 156
|
|
|
|
/*
|
|
* extent items are in the extent map tree. These record which blocks
|
|
* are used, and how many references there are to each block
|
|
*/
|
|
#define BTRFS_EXTENT_ITEM_KEY 168
|
|
|
|
/*
|
|
* The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
|
|
* the length, so we save the level in key->offset instead of the length.
|
|
*/
|
|
#define BTRFS_METADATA_ITEM_KEY 169
|
|
|
|
#define BTRFS_TREE_BLOCK_REF_KEY 176
|
|
|
|
#define BTRFS_EXTENT_DATA_REF_KEY 178
|
|
|
|
#define BTRFS_EXTENT_REF_V0_KEY 180
|
|
|
|
#define BTRFS_SHARED_BLOCK_REF_KEY 182
|
|
|
|
#define BTRFS_SHARED_DATA_REF_KEY 184
|
|
|
|
/*
|
|
* block groups give us hints into the extent allocation trees. Which
|
|
* blocks are free etc etc
|
|
*/
|
|
#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
|
|
|
|
/*
|
|
* Every block group is represented in the free space tree by a free space info
|
|
* item, which stores some accounting information. It is keyed on
|
|
* (block_group_start, FREE_SPACE_INFO, block_group_length).
|
|
*/
|
|
#define BTRFS_FREE_SPACE_INFO_KEY 198
|
|
|
|
/*
|
|
* A free space extent tracks an extent of space that is free in a block group.
|
|
* It is keyed on (start, FREE_SPACE_EXTENT, length).
|
|
*/
|
|
#define BTRFS_FREE_SPACE_EXTENT_KEY 199
|
|
|
|
/*
|
|
* When a block group becomes very fragmented, we convert it to use bitmaps
|
|
* instead of extents. A free space bitmap is keyed on
|
|
* (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
|
|
* (length / sectorsize) bits.
|
|
*/
|
|
#define BTRFS_FREE_SPACE_BITMAP_KEY 200
|
|
|
|
#define BTRFS_DEV_EXTENT_KEY 204
|
|
#define BTRFS_DEV_ITEM_KEY 216
|
|
#define BTRFS_CHUNK_ITEM_KEY 228
|
|
|
|
/*
|
|
* Records the overall state of the qgroups.
|
|
* There's only one instance of this key present,
|
|
* (0, BTRFS_QGROUP_STATUS_KEY, 0)
|
|
*/
|
|
#define BTRFS_QGROUP_STATUS_KEY 240
|
|
/*
|
|
* Records the currently used space of the qgroup.
|
|
* One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
|
|
*/
|
|
#define BTRFS_QGROUP_INFO_KEY 242
|
|
/*
|
|
* Contains the user configured limits for the qgroup.
|
|
* One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
|
|
*/
|
|
#define BTRFS_QGROUP_LIMIT_KEY 244
|
|
/*
|
|
* Records the child-parent relationship of qgroups. For
|
|
* each relation, 2 keys are present:
|
|
* (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
|
|
* (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
|
|
*/
|
|
#define BTRFS_QGROUP_RELATION_KEY 246
|
|
|
|
/*
|
|
* Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
|
|
*/
|
|
#define BTRFS_BALANCE_ITEM_KEY 248
|
|
|
|
/*
|
|
* The key type for tree items that are stored persistently, but do not need to
|
|
* exist for extended period of time. The items can exist in any tree.
|
|
*
|
|
* [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
|
|
*
|
|
* Existing items:
|
|
*
|
|
* - balance status item
|
|
* (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
|
|
*/
|
|
#define BTRFS_TEMPORARY_ITEM_KEY 248
|
|
|
|
/*
|
|
* Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
|
|
*/
|
|
#define BTRFS_DEV_STATS_KEY 249
|
|
|
|
/*
|
|
* The key type for tree items that are stored persistently and usually exist
|
|
* for a long period, eg. filesystem lifetime. The item kinds can be status
|
|
* information, stats or preference values. The item can exist in any tree.
|
|
*
|
|
* [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
|
|
*
|
|
* Existing items:
|
|
*
|
|
* - device statistics, store IO stats in the device tree, one key for all
|
|
* stats
|
|
* (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
|
|
*/
|
|
#define BTRFS_PERSISTENT_ITEM_KEY 249
|
|
|
|
/*
|
|
* Persistantly stores the device replace state in the device tree.
|
|
* The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
|
|
*/
|
|
#define BTRFS_DEV_REPLACE_KEY 250
|
|
|
|
/*
|
|
* Stores items that allow to quickly map UUIDs to something else.
|
|
* These items are part of the filesystem UUID tree.
|
|
* The key is built like this:
|
|
* (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
|
|
*/
|
|
#if BTRFS_UUID_SIZE != 16
|
|
#error "UUID items require BTRFS_UUID_SIZE == 16!"
|
|
#endif
|
|
#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
|
|
#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
|
|
* received subvols */
|
|
|
|
/*
|
|
* string items are for debugging. They just store a short string of
|
|
* data in the FS
|
|
*/
|
|
#define BTRFS_STRING_ITEM_KEY 253
|
|
|
|
|
|
|
|
/* 32 bytes in various csum fields */
|
|
#define BTRFS_CSUM_SIZE 32
|
|
|
|
/* csum types */
|
|
#define BTRFS_CSUM_TYPE_CRC32 0
|
|
|
|
/*
|
|
* flags definitions for directory entry item type
|
|
*
|
|
* Used by:
|
|
* struct btrfs_dir_item.type
|
|
*/
|
|
#define BTRFS_FT_UNKNOWN 0
|
|
#define BTRFS_FT_REG_FILE 1
|
|
#define BTRFS_FT_DIR 2
|
|
#define BTRFS_FT_CHRDEV 3
|
|
#define BTRFS_FT_BLKDEV 4
|
|
#define BTRFS_FT_FIFO 5
|
|
#define BTRFS_FT_SOCK 6
|
|
#define BTRFS_FT_SYMLINK 7
|
|
#define BTRFS_FT_XATTR 8
|
|
#define BTRFS_FT_MAX 9
|
|
|
|
/*
|
|
* The key defines the order in the tree, and so it also defines (optimal)
|
|
* block layout.
|
|
*
|
|
* objectid corresponds to the inode number.
|
|
*
|
|
* type tells us things about the object, and is a kind of stream selector.
|
|
* so for a given inode, keys with type of 1 might refer to the inode data,
|
|
* type of 2 may point to file data in the btree and type == 3 may point to
|
|
* extents.
|
|
*
|
|
* offset is the starting byte offset for this key in the stream.
|
|
*
|
|
* btrfs_disk_key is in disk byte order. struct btrfs_key is always
|
|
* in cpu native order. Otherwise they are identical and their sizes
|
|
* should be the same (ie both packed)
|
|
*/
|
|
struct btrfs_disk_key {
|
|
__le64 objectid;
|
|
__u8 type;
|
|
__le64 offset;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_key {
|
|
__u64 objectid;
|
|
__u8 type;
|
|
__u64 offset;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_dev_item {
|
|
/* the internal btrfs device id */
|
|
__le64 devid;
|
|
|
|
/* size of the device */
|
|
__le64 total_bytes;
|
|
|
|
/* bytes used */
|
|
__le64 bytes_used;
|
|
|
|
/* optimal io alignment for this device */
|
|
__le32 io_align;
|
|
|
|
/* optimal io width for this device */
|
|
__le32 io_width;
|
|
|
|
/* minimal io size for this device */
|
|
__le32 sector_size;
|
|
|
|
/* type and info about this device */
|
|
__le64 type;
|
|
|
|
/* expected generation for this device */
|
|
__le64 generation;
|
|
|
|
/*
|
|
* starting byte of this partition on the device,
|
|
* to allow for stripe alignment in the future
|
|
*/
|
|
__le64 start_offset;
|
|
|
|
/* grouping information for allocation decisions */
|
|
__le32 dev_group;
|
|
|
|
/* seek speed 0-100 where 100 is fastest */
|
|
__u8 seek_speed;
|
|
|
|
/* bandwidth 0-100 where 100 is fastest */
|
|
__u8 bandwidth;
|
|
|
|
/* btrfs generated uuid for this device */
|
|
__u8 uuid[BTRFS_UUID_SIZE];
|
|
|
|
/* uuid of FS who owns this device */
|
|
__u8 fsid[BTRFS_UUID_SIZE];
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_stripe {
|
|
__le64 devid;
|
|
__le64 offset;
|
|
__u8 dev_uuid[BTRFS_UUID_SIZE];
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_chunk {
|
|
/* size of this chunk in bytes */
|
|
__le64 length;
|
|
|
|
/* objectid of the root referencing this chunk */
|
|
__le64 owner;
|
|
|
|
__le64 stripe_len;
|
|
__le64 type;
|
|
|
|
/* optimal io alignment for this chunk */
|
|
__le32 io_align;
|
|
|
|
/* optimal io width for this chunk */
|
|
__le32 io_width;
|
|
|
|
/* minimal io size for this chunk */
|
|
__le32 sector_size;
|
|
|
|
/* 2^16 stripes is quite a lot, a second limit is the size of a single
|
|
* item in the btree
|
|
*/
|
|
__le16 num_stripes;
|
|
|
|
/* sub stripes only matter for raid10 */
|
|
__le16 sub_stripes;
|
|
struct btrfs_stripe stripe;
|
|
/* additional stripes go here */
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_FREE_SPACE_EXTENT 1
|
|
#define BTRFS_FREE_SPACE_BITMAP 2
|
|
|
|
struct btrfs_free_space_entry {
|
|
__le64 offset;
|
|
__le64 bytes;
|
|
__u8 type;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_free_space_header {
|
|
struct btrfs_disk_key location;
|
|
__le64 generation;
|
|
__le64 num_entries;
|
|
__le64 num_bitmaps;
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
|
|
#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
|
|
|
|
/* Super block flags */
|
|
/* Errors detected */
|
|
#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
|
|
|
|
#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
|
|
#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
|
|
|
|
|
|
/*
|
|
* items in the extent btree are used to record the objectid of the
|
|
* owner of the block and the number of references
|
|
*/
|
|
|
|
struct btrfs_extent_item {
|
|
__le64 refs;
|
|
__le64 generation;
|
|
__le64 flags;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_extent_item_v0 {
|
|
__le32 refs;
|
|
} __attribute__ ((__packed__));
|
|
|
|
|
|
#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
|
|
#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
|
|
|
|
/* following flags only apply to tree blocks */
|
|
|
|
/* use full backrefs for extent pointers in the block */
|
|
#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
|
|
|
|
/*
|
|
* this flag is only used internally by scrub and may be changed at any time
|
|
* it is only declared here to avoid collisions
|
|
*/
|
|
#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
|
|
|
|
struct btrfs_tree_block_info {
|
|
struct btrfs_disk_key key;
|
|
__u8 level;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_extent_data_ref {
|
|
__le64 root;
|
|
__le64 objectid;
|
|
__le64 offset;
|
|
__le32 count;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_shared_data_ref {
|
|
__le32 count;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_extent_inline_ref {
|
|
__u8 type;
|
|
__le64 offset;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/* old style backrefs item */
|
|
struct btrfs_extent_ref_v0 {
|
|
__le64 root;
|
|
__le64 generation;
|
|
__le64 objectid;
|
|
__le32 count;
|
|
} __attribute__ ((__packed__));
|
|
|
|
|
|
/* dev extents record free space on individual devices. The owner
|
|
* field points back to the chunk allocation mapping tree that allocated
|
|
* the extent. The chunk tree uuid field is a way to double check the owner
|
|
*/
|
|
struct btrfs_dev_extent {
|
|
__le64 chunk_tree;
|
|
__le64 chunk_objectid;
|
|
__le64 chunk_offset;
|
|
__le64 length;
|
|
__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_inode_ref {
|
|
__le64 index;
|
|
__le16 name_len;
|
|
/* name goes here */
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_inode_extref {
|
|
__le64 parent_objectid;
|
|
__le64 index;
|
|
__le16 name_len;
|
|
__u8 name[0];
|
|
/* name goes here */
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_timespec {
|
|
__le64 sec;
|
|
__le32 nsec;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_inode_item {
|
|
/* nfs style generation number */
|
|
__le64 generation;
|
|
/* transid that last touched this inode */
|
|
__le64 transid;
|
|
__le64 size;
|
|
__le64 nbytes;
|
|
__le64 block_group;
|
|
__le32 nlink;
|
|
__le32 uid;
|
|
__le32 gid;
|
|
__le32 mode;
|
|
__le64 rdev;
|
|
__le64 flags;
|
|
|
|
/* modification sequence number for NFS */
|
|
__le64 sequence;
|
|
|
|
/*
|
|
* a little future expansion, for more than this we can
|
|
* just grow the inode item and version it
|
|
*/
|
|
__le64 reserved[4];
|
|
struct btrfs_timespec atime;
|
|
struct btrfs_timespec ctime;
|
|
struct btrfs_timespec mtime;
|
|
struct btrfs_timespec otime;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_dir_log_item {
|
|
__le64 end;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_dir_item {
|
|
struct btrfs_disk_key location;
|
|
__le64 transid;
|
|
__le16 data_len;
|
|
__le16 name_len;
|
|
__u8 type;
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
|
|
|
|
/*
|
|
* Internal in-memory flag that a subvolume has been marked for deletion but
|
|
* still visible as a directory
|
|
*/
|
|
#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
|
|
|
|
struct btrfs_root_item {
|
|
struct btrfs_inode_item inode;
|
|
__le64 generation;
|
|
__le64 root_dirid;
|
|
__le64 bytenr;
|
|
__le64 byte_limit;
|
|
__le64 bytes_used;
|
|
__le64 last_snapshot;
|
|
__le64 flags;
|
|
__le32 refs;
|
|
struct btrfs_disk_key drop_progress;
|
|
__u8 drop_level;
|
|
__u8 level;
|
|
|
|
/*
|
|
* The following fields appear after subvol_uuids+subvol_times
|
|
* were introduced.
|
|
*/
|
|
|
|
/*
|
|
* This generation number is used to test if the new fields are valid
|
|
* and up to date while reading the root item. Every time the root item
|
|
* is written out, the "generation" field is copied into this field. If
|
|
* anyone ever mounted the fs with an older kernel, we will have
|
|
* mismatching generation values here and thus must invalidate the
|
|
* new fields. See btrfs_update_root and btrfs_find_last_root for
|
|
* details.
|
|
* the offset of generation_v2 is also used as the start for the memset
|
|
* when invalidating the fields.
|
|
*/
|
|
__le64 generation_v2;
|
|
__u8 uuid[BTRFS_UUID_SIZE];
|
|
__u8 parent_uuid[BTRFS_UUID_SIZE];
|
|
__u8 received_uuid[BTRFS_UUID_SIZE];
|
|
__le64 ctransid; /* updated when an inode changes */
|
|
__le64 otransid; /* trans when created */
|
|
__le64 stransid; /* trans when sent. non-zero for received subvol */
|
|
__le64 rtransid; /* trans when received. non-zero for received subvol */
|
|
struct btrfs_timespec ctime;
|
|
struct btrfs_timespec otime;
|
|
struct btrfs_timespec stime;
|
|
struct btrfs_timespec rtime;
|
|
__le64 reserved[8]; /* for future */
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* this is used for both forward and backward root refs
|
|
*/
|
|
struct btrfs_root_ref {
|
|
__le64 dirid;
|
|
__le64 sequence;
|
|
__le16 name_len;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_disk_balance_args {
|
|
/*
|
|
* profiles to operate on, single is denoted by
|
|
* BTRFS_AVAIL_ALLOC_BIT_SINGLE
|
|
*/
|
|
__le64 profiles;
|
|
|
|
/*
|
|
* usage filter
|
|
* BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
|
|
* BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
|
|
*/
|
|
union {
|
|
__le64 usage;
|
|
struct {
|
|
__le32 usage_min;
|
|
__le32 usage_max;
|
|
};
|
|
};
|
|
|
|
/* devid filter */
|
|
__le64 devid;
|
|
|
|
/* devid subset filter [pstart..pend) */
|
|
__le64 pstart;
|
|
__le64 pend;
|
|
|
|
/* btrfs virtual address space subset filter [vstart..vend) */
|
|
__le64 vstart;
|
|
__le64 vend;
|
|
|
|
/*
|
|
* profile to convert to, single is denoted by
|
|
* BTRFS_AVAIL_ALLOC_BIT_SINGLE
|
|
*/
|
|
__le64 target;
|
|
|
|
/* BTRFS_BALANCE_ARGS_* */
|
|
__le64 flags;
|
|
|
|
/*
|
|
* BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
|
|
* BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
|
|
* and maximum
|
|
*/
|
|
union {
|
|
__le64 limit;
|
|
struct {
|
|
__le32 limit_min;
|
|
__le32 limit_max;
|
|
};
|
|
};
|
|
|
|
/*
|
|
* Process chunks that cross stripes_min..stripes_max devices,
|
|
* BTRFS_BALANCE_ARGS_STRIPES_RANGE
|
|
*/
|
|
__le32 stripes_min;
|
|
__le32 stripes_max;
|
|
|
|
__le64 unused[6];
|
|
} __attribute__ ((__packed__));
|
|
|
|
/*
|
|
* store balance parameters to disk so that balance can be properly
|
|
* resumed after crash or unmount
|
|
*/
|
|
struct btrfs_balance_item {
|
|
/* BTRFS_BALANCE_* */
|
|
__le64 flags;
|
|
|
|
struct btrfs_disk_balance_args data;
|
|
struct btrfs_disk_balance_args meta;
|
|
struct btrfs_disk_balance_args sys;
|
|
|
|
__le64 unused[4];
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_FILE_EXTENT_INLINE 0
|
|
#define BTRFS_FILE_EXTENT_REG 1
|
|
#define BTRFS_FILE_EXTENT_PREALLOC 2
|
|
|
|
struct btrfs_file_extent_item {
|
|
/*
|
|
* transaction id that created this extent
|
|
*/
|
|
__le64 generation;
|
|
/*
|
|
* max number of bytes to hold this extent in ram
|
|
* when we split a compressed extent we can't know how big
|
|
* each of the resulting pieces will be. So, this is
|
|
* an upper limit on the size of the extent in ram instead of
|
|
* an exact limit.
|
|
*/
|
|
__le64 ram_bytes;
|
|
|
|
/*
|
|
* 32 bits for the various ways we might encode the data,
|
|
* including compression and encryption. If any of these
|
|
* are set to something a given disk format doesn't understand
|
|
* it is treated like an incompat flag for reading and writing,
|
|
* but not for stat.
|
|
*/
|
|
__u8 compression;
|
|
__u8 encryption;
|
|
__le16 other_encoding; /* spare for later use */
|
|
|
|
/* are we inline data or a real extent? */
|
|
__u8 type;
|
|
|
|
/*
|
|
* disk space consumed by the extent, checksum blocks are included
|
|
* in these numbers
|
|
*
|
|
* At this offset in the structure, the inline extent data start.
|
|
*/
|
|
__le64 disk_bytenr;
|
|
__le64 disk_num_bytes;
|
|
/*
|
|
* the logical offset in file blocks (no csums)
|
|
* this extent record is for. This allows a file extent to point
|
|
* into the middle of an existing extent on disk, sharing it
|
|
* between two snapshots (useful if some bytes in the middle of the
|
|
* extent have changed
|
|
*/
|
|
__le64 offset;
|
|
/*
|
|
* the logical number of file blocks (no csums included). This
|
|
* always reflects the size uncompressed and without encoding.
|
|
*/
|
|
__le64 num_bytes;
|
|
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_csum_item {
|
|
__u8 csum;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_dev_stats_item {
|
|
/*
|
|
* grow this item struct at the end for future enhancements and keep
|
|
* the existing values unchanged
|
|
*/
|
|
__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
|
|
#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
|
|
#define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0
|
|
#define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1
|
|
#define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2
|
|
#define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3
|
|
#define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4
|
|
|
|
struct btrfs_dev_replace_item {
|
|
/*
|
|
* grow this item struct at the end for future enhancements and keep
|
|
* the existing values unchanged
|
|
*/
|
|
__le64 src_devid;
|
|
__le64 cursor_left;
|
|
__le64 cursor_right;
|
|
__le64 cont_reading_from_srcdev_mode;
|
|
|
|
__le64 replace_state;
|
|
__le64 time_started;
|
|
__le64 time_stopped;
|
|
__le64 num_write_errors;
|
|
__le64 num_uncorrectable_read_errors;
|
|
} __attribute__ ((__packed__));
|
|
|
|
/* different types of block groups (and chunks) */
|
|
#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
|
|
#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
|
|
#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
|
|
#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
|
|
#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
|
|
#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
|
|
#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
|
|
#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
|
|
#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
|
|
#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
|
|
BTRFS_SPACE_INFO_GLOBAL_RSV)
|
|
|
|
enum btrfs_raid_types {
|
|
BTRFS_RAID_RAID10,
|
|
BTRFS_RAID_RAID1,
|
|
BTRFS_RAID_DUP,
|
|
BTRFS_RAID_RAID0,
|
|
BTRFS_RAID_SINGLE,
|
|
BTRFS_RAID_RAID5,
|
|
BTRFS_RAID_RAID6,
|
|
BTRFS_NR_RAID_TYPES
|
|
};
|
|
|
|
#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
|
|
BTRFS_BLOCK_GROUP_SYSTEM | \
|
|
BTRFS_BLOCK_GROUP_METADATA)
|
|
|
|
#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
|
|
BTRFS_BLOCK_GROUP_RAID1 | \
|
|
BTRFS_BLOCK_GROUP_RAID5 | \
|
|
BTRFS_BLOCK_GROUP_RAID6 | \
|
|
BTRFS_BLOCK_GROUP_DUP | \
|
|
BTRFS_BLOCK_GROUP_RAID10)
|
|
#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
|
|
BTRFS_BLOCK_GROUP_RAID6)
|
|
|
|
/*
|
|
* We need a bit for restriper to be able to tell when chunks of type
|
|
* SINGLE are available. This "extended" profile format is used in
|
|
* fs_info->avail_*_alloc_bits (in-memory) and balance item fields
|
|
* (on-disk). The corresponding on-disk bit in chunk.type is reserved
|
|
* to avoid remappings between two formats in future.
|
|
*/
|
|
#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
|
|
|
|
/*
|
|
* A fake block group type that is used to communicate global block reserve
|
|
* size to userspace via the SPACE_INFO ioctl.
|
|
*/
|
|
#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
|
|
|
|
#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
|
|
BTRFS_AVAIL_ALLOC_BIT_SINGLE)
|
|
|
|
static inline __u64 chunk_to_extended(__u64 flags)
|
|
{
|
|
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
|
|
flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
|
|
|
|
return flags;
|
|
}
|
|
static inline __u64 extended_to_chunk(__u64 flags)
|
|
{
|
|
return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
|
|
}
|
|
|
|
struct btrfs_block_group_item {
|
|
__le64 used;
|
|
__le64 chunk_objectid;
|
|
__le64 flags;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_free_space_info {
|
|
__le32 extent_count;
|
|
__le32 flags;
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
|
|
|
|
#define BTRFS_QGROUP_LEVEL_SHIFT 48
|
|
static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
|
|
{
|
|
return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* is subvolume quota turned on?
|
|
*/
|
|
#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
|
|
/*
|
|
* RESCAN is set during the initialization phase
|
|
*/
|
|
#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
|
|
/*
|
|
* Some qgroup entries are known to be out of date,
|
|
* either because the configuration has changed in a way that
|
|
* makes a rescan necessary, or because the fs has been mounted
|
|
* with a non-qgroup-aware version.
|
|
* Turning qouta off and on again makes it inconsistent, too.
|
|
*/
|
|
#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
|
|
|
|
#define BTRFS_QGROUP_STATUS_VERSION 1
|
|
|
|
struct btrfs_qgroup_status_item {
|
|
__le64 version;
|
|
/*
|
|
* the generation is updated during every commit. As older
|
|
* versions of btrfs are not aware of qgroups, it will be
|
|
* possible to detect inconsistencies by checking the
|
|
* generation on mount time
|
|
*/
|
|
__le64 generation;
|
|
|
|
/* flag definitions see above */
|
|
__le64 flags;
|
|
|
|
/*
|
|
* only used during scanning to record the progress
|
|
* of the scan. It contains a logical address
|
|
*/
|
|
__le64 rescan;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_qgroup_info_item {
|
|
__le64 generation;
|
|
__le64 rfer;
|
|
__le64 rfer_cmpr;
|
|
__le64 excl;
|
|
__le64 excl_cmpr;
|
|
} __attribute__ ((__packed__));
|
|
|
|
struct btrfs_qgroup_limit_item {
|
|
/*
|
|
* only updated when any of the other values change
|
|
*/
|
|
__le64 flags;
|
|
__le64 max_rfer;
|
|
__le64 max_excl;
|
|
__le64 rsv_rfer;
|
|
__le64 rsv_excl;
|
|
} __attribute__ ((__packed__));
|
|
|
|
#endif /* _BTRFS_CTREE_H_ */
|