linux_dsm_epyc7002/fs/crypto/keyinfo.c
Linus Torvalds d407574e79 Merge tag 'for-f2fs-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs
Pull f2fs updates from Jaegeuk Kim:
 "New Features:
   - uplift filesystem encryption into fs/crypto/
   - give sysfs entries to control memroy consumption

  Enhancements:
   - aio performance by preallocating blocks in ->write_iter
   - use writepages lock for only WB_SYNC_ALL
   - avoid redundant inline_data conversion
   - enhance forground GC
   - use wait_for_stable_page as possible
   - speed up SEEK_DATA and fiiemap

  Bug Fixes:
   - corner case in terms of -ENOSPC for inline_data
   - hung task caused by long latency in shrinker
   - corruption between atomic write and f2fs_trace_pid
   - avoid garbage lengths in dentries
   - revoke atomicly written pages if an error occurs

  In addition, there are various minor bug fixes and clean-ups"

* tag 'for-f2fs-4.6' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (81 commits)
  f2fs: submit node page write bios when really required
  f2fs: add missing argument to f2fs_setxattr stub
  f2fs: fix to avoid unneeded unlock_new_inode
  f2fs: clean up opened code with f2fs_update_dentry
  f2fs: declare static functions
  f2fs: use cryptoapi crc32 functions
  f2fs: modify the readahead method in ra_node_page()
  f2fs crypto: sync ext4_lookup and ext4_file_open
  fs crypto: move per-file encryption from f2fs tree to fs/crypto
  f2fs: mutex can't be used by down_write_nest_lock()
  f2fs: recovery missing dot dentries in root directory
  f2fs: fix to avoid deadlock when merging inline data
  f2fs: introduce f2fs_flush_merged_bios for cleanup
  f2fs: introduce f2fs_update_data_blkaddr for cleanup
  f2fs crypto: fix incorrect positioning for GCing encrypted data page
  f2fs: fix incorrect upper bound when iterating inode mapping tree
  f2fs: avoid hungtask problem caused by losing wake_up
  f2fs: trace old block address for CoWed page
  f2fs: try to flush inode after merging inline data
  f2fs: show more info about superblock recovery
  ...
2016-03-21 11:03:02 -07:00

273 lines
7.1 KiB
C

/*
* key management facility for FS encryption support.
*
* Copyright (C) 2015, Google, Inc.
*
* This contains encryption key functions.
*
* Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
*/
#include <keys/encrypted-type.h>
#include <keys/user-type.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <uapi/linux/keyctl.h>
#include <linux/fscrypto.h>
static void derive_crypt_complete(struct crypto_async_request *req, int rc)
{
struct fscrypt_completion_result *ecr = req->data;
if (rc == -EINPROGRESS)
return;
ecr->res = rc;
complete(&ecr->completion);
}
/**
* derive_key_aes() - Derive a key using AES-128-ECB
* @deriving_key: Encryption key used for derivation.
* @source_key: Source key to which to apply derivation.
* @derived_key: Derived key.
*
* Return: Zero on success; non-zero otherwise.
*/
static int derive_key_aes(u8 deriving_key[FS_AES_128_ECB_KEY_SIZE],
u8 source_key[FS_AES_256_XTS_KEY_SIZE],
u8 derived_key[FS_AES_256_XTS_KEY_SIZE])
{
int res = 0;
struct skcipher_request *req = NULL;
DECLARE_FS_COMPLETION_RESULT(ecr);
struct scatterlist src_sg, dst_sg;
struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
if (IS_ERR(tfm)) {
res = PTR_ERR(tfm);
tfm = NULL;
goto out;
}
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
req = skcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
res = -ENOMEM;
goto out;
}
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
derive_crypt_complete, &ecr);
res = crypto_skcipher_setkey(tfm, deriving_key,
FS_AES_128_ECB_KEY_SIZE);
if (res < 0)
goto out;
sg_init_one(&src_sg, source_key, FS_AES_256_XTS_KEY_SIZE);
sg_init_one(&dst_sg, derived_key, FS_AES_256_XTS_KEY_SIZE);
skcipher_request_set_crypt(req, &src_sg, &dst_sg,
FS_AES_256_XTS_KEY_SIZE, NULL);
res = crypto_skcipher_encrypt(req);
if (res == -EINPROGRESS || res == -EBUSY) {
wait_for_completion(&ecr.completion);
res = ecr.res;
}
out:
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return res;
}
static void put_crypt_info(struct fscrypt_info *ci)
{
if (!ci)
return;
key_put(ci->ci_keyring_key);
crypto_free_skcipher(ci->ci_ctfm);
kmem_cache_free(fscrypt_info_cachep, ci);
}
int get_crypt_info(struct inode *inode)
{
struct fscrypt_info *crypt_info;
u8 full_key_descriptor[FS_KEY_DESC_PREFIX_SIZE +
(FS_KEY_DESCRIPTOR_SIZE * 2) + 1];
struct key *keyring_key = NULL;
struct fscrypt_key *master_key;
struct fscrypt_context ctx;
const struct user_key_payload *ukp;
struct crypto_skcipher *ctfm;
const char *cipher_str;
u8 raw_key[FS_MAX_KEY_SIZE];
u8 mode;
int res;
res = fscrypt_initialize();
if (res)
return res;
if (!inode->i_sb->s_cop->get_context)
return -EOPNOTSUPP;
retry:
crypt_info = ACCESS_ONCE(inode->i_crypt_info);
if (crypt_info) {
if (!crypt_info->ci_keyring_key ||
key_validate(crypt_info->ci_keyring_key) == 0)
return 0;
fscrypt_put_encryption_info(inode, crypt_info);
goto retry;
}
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
if (res < 0) {
if (!fscrypt_dummy_context_enabled(inode))
return res;
ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
ctx.flags = 0;
} else if (res != sizeof(ctx)) {
return -EINVAL;
}
res = 0;
crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS);
if (!crypt_info)
return -ENOMEM;
crypt_info->ci_flags = ctx.flags;
crypt_info->ci_data_mode = ctx.contents_encryption_mode;
crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
crypt_info->ci_ctfm = NULL;
crypt_info->ci_keyring_key = NULL;
memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
sizeof(crypt_info->ci_master_key));
if (S_ISREG(inode->i_mode))
mode = crypt_info->ci_data_mode;
else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
mode = crypt_info->ci_filename_mode;
else
BUG();
switch (mode) {
case FS_ENCRYPTION_MODE_AES_256_XTS:
cipher_str = "xts(aes)";
break;
case FS_ENCRYPTION_MODE_AES_256_CTS:
cipher_str = "cts(cbc(aes))";
break;
default:
printk_once(KERN_WARNING
"%s: unsupported key mode %d (ino %u)\n",
__func__, mode, (unsigned) inode->i_ino);
res = -ENOKEY;
goto out;
}
if (fscrypt_dummy_context_enabled(inode)) {
memset(raw_key, 0x42, FS_AES_256_XTS_KEY_SIZE);
goto got_key;
}
memcpy(full_key_descriptor, FS_KEY_DESC_PREFIX,
FS_KEY_DESC_PREFIX_SIZE);
sprintf(full_key_descriptor + FS_KEY_DESC_PREFIX_SIZE,
"%*phN", FS_KEY_DESCRIPTOR_SIZE,
ctx.master_key_descriptor);
full_key_descriptor[FS_KEY_DESC_PREFIX_SIZE +
(2 * FS_KEY_DESCRIPTOR_SIZE)] = '\0';
keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL);
if (IS_ERR(keyring_key)) {
res = PTR_ERR(keyring_key);
keyring_key = NULL;
goto out;
}
crypt_info->ci_keyring_key = keyring_key;
if (keyring_key->type != &key_type_logon) {
printk_once(KERN_WARNING
"%s: key type must be logon\n", __func__);
res = -ENOKEY;
goto out;
}
down_read(&keyring_key->sem);
ukp = user_key_payload(keyring_key);
if (ukp->datalen != sizeof(struct fscrypt_key)) {
res = -EINVAL;
up_read(&keyring_key->sem);
goto out;
}
master_key = (struct fscrypt_key *)ukp->data;
BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE);
if (master_key->size != FS_AES_256_XTS_KEY_SIZE) {
printk_once(KERN_WARNING
"%s: key size incorrect: %d\n",
__func__, master_key->size);
res = -ENOKEY;
up_read(&keyring_key->sem);
goto out;
}
res = derive_key_aes(ctx.nonce, master_key->raw, raw_key);
up_read(&keyring_key->sem);
if (res)
goto out;
got_key:
ctfm = crypto_alloc_skcipher(cipher_str, 0, 0);
if (!ctfm || IS_ERR(ctfm)) {
res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
printk(KERN_DEBUG
"%s: error %d (inode %u) allocating crypto tfm\n",
__func__, res, (unsigned) inode->i_ino);
goto out;
}
crypt_info->ci_ctfm = ctfm;
crypto_skcipher_clear_flags(ctfm, ~0);
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_REQ_WEAK_KEY);
res = crypto_skcipher_setkey(ctfm, raw_key, fscrypt_key_size(mode));
if (res)
goto out;
memzero_explicit(raw_key, sizeof(raw_key));
if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) != NULL) {
put_crypt_info(crypt_info);
goto retry;
}
return 0;
out:
if (res == -ENOKEY)
res = 0;
put_crypt_info(crypt_info);
memzero_explicit(raw_key, sizeof(raw_key));
return res;
}
void fscrypt_put_encryption_info(struct inode *inode, struct fscrypt_info *ci)
{
struct fscrypt_info *prev;
if (ci == NULL)
ci = ACCESS_ONCE(inode->i_crypt_info);
if (ci == NULL)
return;
prev = cmpxchg(&inode->i_crypt_info, ci, NULL);
if (prev != ci)
return;
put_crypt_info(ci);
}
EXPORT_SYMBOL(fscrypt_put_encryption_info);
int fscrypt_get_encryption_info(struct inode *inode)
{
struct fscrypt_info *ci = inode->i_crypt_info;
if (!ci ||
(ci->ci_keyring_key &&
(ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
(1 << KEY_FLAG_REVOKED) |
(1 << KEY_FLAG_DEAD)))))
return get_crypt_info(inode);
return 0;
}
EXPORT_SYMBOL(fscrypt_get_encryption_info);