mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 19:25:46 +07:00
ef4064bb3f
The return value of dma_map_single() should be checked by dma_mapping_error(). However, in function ccp_init_dm_workarea(), its return value is checked against NULL, which could result in failures. Signed-off-by: Pan Bian <bianpan2016@163.com> Acked-by: Gary R Hook <gary.hook@amd.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2426 lines
60 KiB
C
2426 lines
60 KiB
C
/*
|
|
* AMD Cryptographic Coprocessor (CCP) driver
|
|
*
|
|
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
* Author: Gary R Hook <gary.hook@amd.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/interrupt.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/des.h>
|
|
#include <linux/ccp.h>
|
|
|
|
#include "ccp-dev.h"
|
|
|
|
/* SHA initial context values */
|
|
static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
|
|
cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
|
|
cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
|
|
cpu_to_be32(SHA1_H4),
|
|
};
|
|
|
|
static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
|
|
cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
|
|
cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
|
|
cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
|
|
cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
|
|
};
|
|
|
|
static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
|
|
cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
|
|
cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
|
|
cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
|
|
cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
|
|
};
|
|
|
|
static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
|
|
cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
|
|
cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
|
|
cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
|
|
cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
|
|
};
|
|
|
|
static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
|
|
cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
|
|
cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
|
|
cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
|
|
cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
|
|
};
|
|
|
|
#define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
|
|
ccp_gen_jobid(ccp) : 0)
|
|
|
|
static u32 ccp_gen_jobid(struct ccp_device *ccp)
|
|
{
|
|
return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
|
|
}
|
|
|
|
static void ccp_sg_free(struct ccp_sg_workarea *wa)
|
|
{
|
|
if (wa->dma_count)
|
|
dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
|
|
|
|
wa->dma_count = 0;
|
|
}
|
|
|
|
static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
|
|
struct scatterlist *sg, u64 len,
|
|
enum dma_data_direction dma_dir)
|
|
{
|
|
memset(wa, 0, sizeof(*wa));
|
|
|
|
wa->sg = sg;
|
|
if (!sg)
|
|
return 0;
|
|
|
|
wa->nents = sg_nents_for_len(sg, len);
|
|
if (wa->nents < 0)
|
|
return wa->nents;
|
|
|
|
wa->bytes_left = len;
|
|
wa->sg_used = 0;
|
|
|
|
if (len == 0)
|
|
return 0;
|
|
|
|
if (dma_dir == DMA_NONE)
|
|
return 0;
|
|
|
|
wa->dma_sg = sg;
|
|
wa->dma_dev = dev;
|
|
wa->dma_dir = dma_dir;
|
|
wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
|
|
if (!wa->dma_count)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
|
|
{
|
|
unsigned int nbytes = min_t(u64, len, wa->bytes_left);
|
|
|
|
if (!wa->sg)
|
|
return;
|
|
|
|
wa->sg_used += nbytes;
|
|
wa->bytes_left -= nbytes;
|
|
if (wa->sg_used == wa->sg->length) {
|
|
wa->sg = sg_next(wa->sg);
|
|
wa->sg_used = 0;
|
|
}
|
|
}
|
|
|
|
static void ccp_dm_free(struct ccp_dm_workarea *wa)
|
|
{
|
|
if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
|
|
if (wa->address)
|
|
dma_pool_free(wa->dma_pool, wa->address,
|
|
wa->dma.address);
|
|
} else {
|
|
if (wa->dma.address)
|
|
dma_unmap_single(wa->dev, wa->dma.address, wa->length,
|
|
wa->dma.dir);
|
|
kfree(wa->address);
|
|
}
|
|
|
|
wa->address = NULL;
|
|
wa->dma.address = 0;
|
|
}
|
|
|
|
static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
|
|
struct ccp_cmd_queue *cmd_q,
|
|
unsigned int len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
memset(wa, 0, sizeof(*wa));
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
wa->dev = cmd_q->ccp->dev;
|
|
wa->length = len;
|
|
|
|
if (len <= CCP_DMAPOOL_MAX_SIZE) {
|
|
wa->dma_pool = cmd_q->dma_pool;
|
|
|
|
wa->address = dma_pool_alloc(wa->dma_pool, GFP_KERNEL,
|
|
&wa->dma.address);
|
|
if (!wa->address)
|
|
return -ENOMEM;
|
|
|
|
wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
|
|
|
|
memset(wa->address, 0, CCP_DMAPOOL_MAX_SIZE);
|
|
} else {
|
|
wa->address = kzalloc(len, GFP_KERNEL);
|
|
if (!wa->address)
|
|
return -ENOMEM;
|
|
|
|
wa->dma.address = dma_map_single(wa->dev, wa->address, len,
|
|
dir);
|
|
if (dma_mapping_error(wa->dev, wa->dma.address))
|
|
return -ENOMEM;
|
|
|
|
wa->dma.length = len;
|
|
}
|
|
wa->dma.dir = dir;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
|
|
struct scatterlist *sg, unsigned int sg_offset,
|
|
unsigned int len)
|
|
{
|
|
WARN_ON(!wa->address);
|
|
|
|
scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
|
|
0);
|
|
}
|
|
|
|
static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
|
|
struct scatterlist *sg, unsigned int sg_offset,
|
|
unsigned int len)
|
|
{
|
|
WARN_ON(!wa->address);
|
|
|
|
scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
|
|
1);
|
|
}
|
|
|
|
static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
|
|
unsigned int wa_offset,
|
|
struct scatterlist *sg,
|
|
unsigned int sg_offset,
|
|
unsigned int len)
|
|
{
|
|
u8 *p, *q;
|
|
|
|
ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
|
|
|
|
p = wa->address + wa_offset;
|
|
q = p + len - 1;
|
|
while (p < q) {
|
|
*p = *p ^ *q;
|
|
*q = *p ^ *q;
|
|
*p = *p ^ *q;
|
|
p++;
|
|
q--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
|
|
unsigned int wa_offset,
|
|
struct scatterlist *sg,
|
|
unsigned int sg_offset,
|
|
unsigned int len)
|
|
{
|
|
u8 *p, *q;
|
|
|
|
p = wa->address + wa_offset;
|
|
q = p + len - 1;
|
|
while (p < q) {
|
|
*p = *p ^ *q;
|
|
*q = *p ^ *q;
|
|
*p = *p ^ *q;
|
|
p++;
|
|
q--;
|
|
}
|
|
|
|
ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
|
|
}
|
|
|
|
static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
|
|
{
|
|
ccp_dm_free(&data->dm_wa);
|
|
ccp_sg_free(&data->sg_wa);
|
|
}
|
|
|
|
static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
|
|
struct scatterlist *sg, u64 sg_len,
|
|
unsigned int dm_len,
|
|
enum dma_data_direction dir)
|
|
{
|
|
int ret;
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
|
|
ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
|
|
dir);
|
|
if (ret)
|
|
goto e_err;
|
|
|
|
ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
|
|
if (ret)
|
|
goto e_err;
|
|
|
|
return 0;
|
|
|
|
e_err:
|
|
ccp_free_data(data, cmd_q);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
|
|
{
|
|
struct ccp_sg_workarea *sg_wa = &data->sg_wa;
|
|
struct ccp_dm_workarea *dm_wa = &data->dm_wa;
|
|
unsigned int buf_count, nbytes;
|
|
|
|
/* Clear the buffer if setting it */
|
|
if (!from)
|
|
memset(dm_wa->address, 0, dm_wa->length);
|
|
|
|
if (!sg_wa->sg)
|
|
return 0;
|
|
|
|
/* Perform the copy operation
|
|
* nbytes will always be <= UINT_MAX because dm_wa->length is
|
|
* an unsigned int
|
|
*/
|
|
nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
|
|
scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
|
|
nbytes, from);
|
|
|
|
/* Update the structures and generate the count */
|
|
buf_count = 0;
|
|
while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
|
|
nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
|
|
dm_wa->length - buf_count);
|
|
nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
|
|
|
|
buf_count += nbytes;
|
|
ccp_update_sg_workarea(sg_wa, nbytes);
|
|
}
|
|
|
|
return buf_count;
|
|
}
|
|
|
|
static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
|
|
{
|
|
return ccp_queue_buf(data, 0);
|
|
}
|
|
|
|
static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
|
|
{
|
|
return ccp_queue_buf(data, 1);
|
|
}
|
|
|
|
static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
|
|
struct ccp_op *op, unsigned int block_size,
|
|
bool blocksize_op)
|
|
{
|
|
unsigned int sg_src_len, sg_dst_len, op_len;
|
|
|
|
/* The CCP can only DMA from/to one address each per operation. This
|
|
* requires that we find the smallest DMA area between the source
|
|
* and destination. The resulting len values will always be <= UINT_MAX
|
|
* because the dma length is an unsigned int.
|
|
*/
|
|
sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
|
|
sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
|
|
|
|
if (dst) {
|
|
sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
|
|
sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
|
|
op_len = min(sg_src_len, sg_dst_len);
|
|
} else {
|
|
op_len = sg_src_len;
|
|
}
|
|
|
|
/* The data operation length will be at least block_size in length
|
|
* or the smaller of available sg room remaining for the source or
|
|
* the destination
|
|
*/
|
|
op_len = max(op_len, block_size);
|
|
|
|
/* Unless we have to buffer data, there's no reason to wait */
|
|
op->soc = 0;
|
|
|
|
if (sg_src_len < block_size) {
|
|
/* Not enough data in the sg element, so it
|
|
* needs to be buffered into a blocksize chunk
|
|
*/
|
|
int cp_len = ccp_fill_queue_buf(src);
|
|
|
|
op->soc = 1;
|
|
op->src.u.dma.address = src->dm_wa.dma.address;
|
|
op->src.u.dma.offset = 0;
|
|
op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
|
|
} else {
|
|
/* Enough data in the sg element, but we need to
|
|
* adjust for any previously copied data
|
|
*/
|
|
op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
|
|
op->src.u.dma.offset = src->sg_wa.sg_used;
|
|
op->src.u.dma.length = op_len & ~(block_size - 1);
|
|
|
|
ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
|
|
}
|
|
|
|
if (dst) {
|
|
if (sg_dst_len < block_size) {
|
|
/* Not enough room in the sg element or we're on the
|
|
* last piece of data (when using padding), so the
|
|
* output needs to be buffered into a blocksize chunk
|
|
*/
|
|
op->soc = 1;
|
|
op->dst.u.dma.address = dst->dm_wa.dma.address;
|
|
op->dst.u.dma.offset = 0;
|
|
op->dst.u.dma.length = op->src.u.dma.length;
|
|
} else {
|
|
/* Enough room in the sg element, but we need to
|
|
* adjust for any previously used area
|
|
*/
|
|
op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
|
|
op->dst.u.dma.offset = dst->sg_wa.sg_used;
|
|
op->dst.u.dma.length = op->src.u.dma.length;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
|
|
struct ccp_op *op)
|
|
{
|
|
op->init = 0;
|
|
|
|
if (dst) {
|
|
if (op->dst.u.dma.address == dst->dm_wa.dma.address)
|
|
ccp_empty_queue_buf(dst);
|
|
else
|
|
ccp_update_sg_workarea(&dst->sg_wa,
|
|
op->dst.u.dma.length);
|
|
}
|
|
}
|
|
|
|
static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
|
|
u32 byte_swap, bool from)
|
|
{
|
|
struct ccp_op op;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = jobid;
|
|
op.eom = 1;
|
|
|
|
if (from) {
|
|
op.soc = 1;
|
|
op.src.type = CCP_MEMTYPE_SB;
|
|
op.src.u.sb = sb;
|
|
op.dst.type = CCP_MEMTYPE_SYSTEM;
|
|
op.dst.u.dma.address = wa->dma.address;
|
|
op.dst.u.dma.length = wa->length;
|
|
} else {
|
|
op.src.type = CCP_MEMTYPE_SYSTEM;
|
|
op.src.u.dma.address = wa->dma.address;
|
|
op.src.u.dma.length = wa->length;
|
|
op.dst.type = CCP_MEMTYPE_SB;
|
|
op.dst.u.sb = sb;
|
|
}
|
|
|
|
op.u.passthru.byte_swap = byte_swap;
|
|
|
|
return cmd_q->ccp->vdata->perform->passthru(&op);
|
|
}
|
|
|
|
static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
|
|
u32 byte_swap)
|
|
{
|
|
return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
|
|
}
|
|
|
|
static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
|
|
u32 byte_swap)
|
|
{
|
|
return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
|
|
}
|
|
|
|
static int ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_aes_engine *aes = &cmd->u.aes;
|
|
struct ccp_dm_workarea key, ctx;
|
|
struct ccp_data src;
|
|
struct ccp_op op;
|
|
unsigned int dm_offset;
|
|
int ret;
|
|
|
|
if (!((aes->key_len == AES_KEYSIZE_128) ||
|
|
(aes->key_len == AES_KEYSIZE_192) ||
|
|
(aes->key_len == AES_KEYSIZE_256)))
|
|
return -EINVAL;
|
|
|
|
if (aes->src_len & (AES_BLOCK_SIZE - 1))
|
|
return -EINVAL;
|
|
|
|
if (aes->iv_len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!aes->key || !aes->iv || !aes->src)
|
|
return -EINVAL;
|
|
|
|
if (aes->cmac_final) {
|
|
if (aes->cmac_key_len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!aes->cmac_key)
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
|
|
BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
|
|
|
|
ret = -EIO;
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
op.sb_key = cmd_q->sb_key;
|
|
op.sb_ctx = cmd_q->sb_ctx;
|
|
op.init = 1;
|
|
op.u.aes.type = aes->type;
|
|
op.u.aes.mode = aes->mode;
|
|
op.u.aes.action = aes->action;
|
|
|
|
/* All supported key sizes fit in a single (32-byte) SB entry
|
|
* and must be in little endian format. Use the 256-bit byte
|
|
* swap passthru option to convert from big endian to little
|
|
* endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&key, cmd_q,
|
|
CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dm_offset = CCP_SB_BYTES - aes->key_len;
|
|
ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
|
|
ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_key;
|
|
}
|
|
|
|
/* The AES context fits in a single (32-byte) SB entry and
|
|
* must be in little endian format. Use the 256-bit byte swap
|
|
* passthru option to convert from big endian to little endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_key;
|
|
|
|
dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
|
|
/* Send data to the CCP AES engine */
|
|
ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
|
|
AES_BLOCK_SIZE, DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
|
|
if (aes->cmac_final && !src.sg_wa.bytes_left) {
|
|
op.eom = 1;
|
|
|
|
/* Push the K1/K2 key to the CCP now */
|
|
ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
|
|
op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_src;
|
|
}
|
|
|
|
ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
|
|
aes->cmac_key_len);
|
|
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_src;
|
|
}
|
|
}
|
|
|
|
ret = cmd_q->ccp->vdata->perform->aes(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_src;
|
|
}
|
|
|
|
ccp_process_data(&src, NULL, &op);
|
|
}
|
|
|
|
/* Retrieve the AES context - convert from LE to BE using
|
|
* 32-byte (256-bit) byteswapping
|
|
*/
|
|
ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_src;
|
|
}
|
|
|
|
/* ...but we only need AES_BLOCK_SIZE bytes */
|
|
dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
e_key:
|
|
ccp_dm_free(&key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_aes_engine *aes = &cmd->u.aes;
|
|
struct ccp_dm_workarea key, ctx, final_wa, tag;
|
|
struct ccp_data src, dst;
|
|
struct ccp_data aad;
|
|
struct ccp_op op;
|
|
|
|
unsigned long long *final;
|
|
unsigned int dm_offset;
|
|
unsigned int ilen;
|
|
bool in_place = true; /* Default value */
|
|
int ret;
|
|
|
|
struct scatterlist *p_inp, sg_inp[2];
|
|
struct scatterlist *p_tag, sg_tag[2];
|
|
struct scatterlist *p_outp, sg_outp[2];
|
|
struct scatterlist *p_aad;
|
|
|
|
if (!aes->iv)
|
|
return -EINVAL;
|
|
|
|
if (!((aes->key_len == AES_KEYSIZE_128) ||
|
|
(aes->key_len == AES_KEYSIZE_192) ||
|
|
(aes->key_len == AES_KEYSIZE_256)))
|
|
return -EINVAL;
|
|
|
|
if (!aes->key) /* Gotta have a key SGL */
|
|
return -EINVAL;
|
|
|
|
/* First, decompose the source buffer into AAD & PT,
|
|
* and the destination buffer into AAD, CT & tag, or
|
|
* the input into CT & tag.
|
|
* It is expected that the input and output SGs will
|
|
* be valid, even if the AAD and input lengths are 0.
|
|
*/
|
|
p_aad = aes->src;
|
|
p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
|
|
p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
|
|
if (aes->action == CCP_AES_ACTION_ENCRYPT) {
|
|
ilen = aes->src_len;
|
|
p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
|
|
} else {
|
|
/* Input length for decryption includes tag */
|
|
ilen = aes->src_len - AES_BLOCK_SIZE;
|
|
p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
|
|
}
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
op.sb_key = cmd_q->sb_key; /* Pre-allocated */
|
|
op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
|
|
op.init = 1;
|
|
op.u.aes.type = aes->type;
|
|
|
|
/* Copy the key to the LSB */
|
|
ret = ccp_init_dm_workarea(&key, cmd_q,
|
|
CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dm_offset = CCP_SB_BYTES - aes->key_len;
|
|
ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
|
|
ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_key;
|
|
}
|
|
|
|
/* Copy the context (IV) to the LSB.
|
|
* There is an assumption here that the IV is 96 bits in length, plus
|
|
* a nonce of 32 bits. If no IV is present, use a zeroed buffer.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_key;
|
|
|
|
dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
|
|
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
|
|
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
|
|
op.init = 1;
|
|
if (aes->aad_len > 0) {
|
|
/* Step 1: Run a GHASH over the Additional Authenticated Data */
|
|
ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
|
|
AES_BLOCK_SIZE,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
op.u.aes.mode = CCP_AES_MODE_GHASH;
|
|
op.u.aes.action = CCP_AES_GHASHAAD;
|
|
|
|
while (aad.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
|
|
|
|
ret = cmd_q->ccp->vdata->perform->aes(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_aad;
|
|
}
|
|
|
|
ccp_process_data(&aad, NULL, &op);
|
|
op.init = 0;
|
|
}
|
|
}
|
|
|
|
op.u.aes.mode = CCP_AES_MODE_GCTR;
|
|
op.u.aes.action = aes->action;
|
|
|
|
if (ilen > 0) {
|
|
/* Step 2: Run a GCTR over the plaintext */
|
|
in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
|
|
|
|
ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
|
|
AES_BLOCK_SIZE,
|
|
in_place ? DMA_BIDIRECTIONAL
|
|
: DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
if (in_place) {
|
|
dst = src;
|
|
} else {
|
|
ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
|
|
AES_BLOCK_SIZE, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
}
|
|
|
|
op.soc = 0;
|
|
op.eom = 0;
|
|
op.init = 1;
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
|
|
if (!src.sg_wa.bytes_left) {
|
|
unsigned int nbytes = aes->src_len
|
|
% AES_BLOCK_SIZE;
|
|
|
|
if (nbytes) {
|
|
op.eom = 1;
|
|
op.u.aes.size = (nbytes * 8) - 1;
|
|
}
|
|
}
|
|
|
|
ret = cmd_q->ccp->vdata->perform->aes(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_process_data(&src, &dst, &op);
|
|
op.init = 0;
|
|
}
|
|
}
|
|
|
|
/* Step 3: Update the IV portion of the context with the original IV */
|
|
ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
|
|
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* Step 4: Concatenate the lengths of the AAD and source, and
|
|
* hash that 16 byte buffer.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_dst;
|
|
final = (unsigned long long *) final_wa.address;
|
|
final[0] = cpu_to_be64(aes->aad_len * 8);
|
|
final[1] = cpu_to_be64(ilen * 8);
|
|
|
|
op.u.aes.mode = CCP_AES_MODE_GHASH;
|
|
op.u.aes.action = CCP_AES_GHASHFINAL;
|
|
op.src.type = CCP_MEMTYPE_SYSTEM;
|
|
op.src.u.dma.address = final_wa.dma.address;
|
|
op.src.u.dma.length = AES_BLOCK_SIZE;
|
|
op.dst.type = CCP_MEMTYPE_SYSTEM;
|
|
op.dst.u.dma.address = final_wa.dma.address;
|
|
op.dst.u.dma.length = AES_BLOCK_SIZE;
|
|
op.eom = 1;
|
|
op.u.aes.size = 0;
|
|
ret = cmd_q->ccp->vdata->perform->aes(&op);
|
|
if (ret)
|
|
goto e_dst;
|
|
|
|
if (aes->action == CCP_AES_ACTION_ENCRYPT) {
|
|
/* Put the ciphered tag after the ciphertext. */
|
|
ccp_get_dm_area(&final_wa, 0, p_tag, 0, AES_BLOCK_SIZE);
|
|
} else {
|
|
/* Does this ciphered tag match the input? */
|
|
ret = ccp_init_dm_workarea(&tag, cmd_q, AES_BLOCK_SIZE,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_tag;
|
|
ccp_set_dm_area(&tag, 0, p_tag, 0, AES_BLOCK_SIZE);
|
|
|
|
ret = memcmp(tag.address, final_wa.address, AES_BLOCK_SIZE);
|
|
ccp_dm_free(&tag);
|
|
}
|
|
|
|
e_tag:
|
|
ccp_dm_free(&final_wa);
|
|
|
|
e_dst:
|
|
if (aes->src_len && !in_place)
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
if (aes->src_len)
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_aad:
|
|
if (aes->aad_len)
|
|
ccp_free_data(&aad, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
e_key:
|
|
ccp_dm_free(&key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_aes_engine *aes = &cmd->u.aes;
|
|
struct ccp_dm_workarea key, ctx;
|
|
struct ccp_data src, dst;
|
|
struct ccp_op op;
|
|
unsigned int dm_offset;
|
|
bool in_place = false;
|
|
int ret;
|
|
|
|
if (aes->mode == CCP_AES_MODE_CMAC)
|
|
return ccp_run_aes_cmac_cmd(cmd_q, cmd);
|
|
|
|
if (aes->mode == CCP_AES_MODE_GCM)
|
|
return ccp_run_aes_gcm_cmd(cmd_q, cmd);
|
|
|
|
if (!((aes->key_len == AES_KEYSIZE_128) ||
|
|
(aes->key_len == AES_KEYSIZE_192) ||
|
|
(aes->key_len == AES_KEYSIZE_256)))
|
|
return -EINVAL;
|
|
|
|
if (((aes->mode == CCP_AES_MODE_ECB) ||
|
|
(aes->mode == CCP_AES_MODE_CBC) ||
|
|
(aes->mode == CCP_AES_MODE_CFB)) &&
|
|
(aes->src_len & (AES_BLOCK_SIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (!aes->key || !aes->src || !aes->dst)
|
|
return -EINVAL;
|
|
|
|
if (aes->mode != CCP_AES_MODE_ECB) {
|
|
if (aes->iv_len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!aes->iv)
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
|
|
BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
|
|
|
|
ret = -EIO;
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
op.sb_key = cmd_q->sb_key;
|
|
op.sb_ctx = cmd_q->sb_ctx;
|
|
op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
|
|
op.u.aes.type = aes->type;
|
|
op.u.aes.mode = aes->mode;
|
|
op.u.aes.action = aes->action;
|
|
|
|
/* All supported key sizes fit in a single (32-byte) SB entry
|
|
* and must be in little endian format. Use the 256-bit byte
|
|
* swap passthru option to convert from big endian to little
|
|
* endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&key, cmd_q,
|
|
CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dm_offset = CCP_SB_BYTES - aes->key_len;
|
|
ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
|
|
ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_key;
|
|
}
|
|
|
|
/* The AES context fits in a single (32-byte) SB entry and
|
|
* must be in little endian format. Use the 256-bit byte swap
|
|
* passthru option to convert from big endian to little endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_key;
|
|
|
|
if (aes->mode != CCP_AES_MODE_ECB) {
|
|
/* Load the AES context - convert to LE */
|
|
dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
}
|
|
switch (aes->mode) {
|
|
case CCP_AES_MODE_CFB: /* CFB128 only */
|
|
case CCP_AES_MODE_CTR:
|
|
op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
|
|
break;
|
|
default:
|
|
op.u.aes.size = 0;
|
|
}
|
|
|
|
/* Prepare the input and output data workareas. For in-place
|
|
* operations we need to set the dma direction to BIDIRECTIONAL
|
|
* and copy the src workarea to the dst workarea.
|
|
*/
|
|
if (sg_virt(aes->src) == sg_virt(aes->dst))
|
|
in_place = true;
|
|
|
|
ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
|
|
AES_BLOCK_SIZE,
|
|
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
if (in_place) {
|
|
dst = src;
|
|
} else {
|
|
ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
|
|
AES_BLOCK_SIZE, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
}
|
|
|
|
/* Send data to the CCP AES engine */
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
|
|
if (!src.sg_wa.bytes_left) {
|
|
op.eom = 1;
|
|
|
|
/* Since we don't retrieve the AES context in ECB
|
|
* mode we have to wait for the operation to complete
|
|
* on the last piece of data
|
|
*/
|
|
if (aes->mode == CCP_AES_MODE_ECB)
|
|
op.soc = 1;
|
|
}
|
|
|
|
ret = cmd_q->ccp->vdata->perform->aes(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_process_data(&src, &dst, &op);
|
|
}
|
|
|
|
if (aes->mode != CCP_AES_MODE_ECB) {
|
|
/* Retrieve the AES context - convert from LE to BE using
|
|
* 32-byte (256-bit) byteswapping
|
|
*/
|
|
ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* ...but we only need AES_BLOCK_SIZE bytes */
|
|
dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
|
|
}
|
|
|
|
e_dst:
|
|
if (!in_place)
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
e_key:
|
|
ccp_dm_free(&key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_xts_aes_engine *xts = &cmd->u.xts;
|
|
struct ccp_dm_workarea key, ctx;
|
|
struct ccp_data src, dst;
|
|
struct ccp_op op;
|
|
unsigned int unit_size, dm_offset;
|
|
bool in_place = false;
|
|
unsigned int sb_count;
|
|
enum ccp_aes_type aestype;
|
|
int ret;
|
|
|
|
switch (xts->unit_size) {
|
|
case CCP_XTS_AES_UNIT_SIZE_16:
|
|
unit_size = 16;
|
|
break;
|
|
case CCP_XTS_AES_UNIT_SIZE_512:
|
|
unit_size = 512;
|
|
break;
|
|
case CCP_XTS_AES_UNIT_SIZE_1024:
|
|
unit_size = 1024;
|
|
break;
|
|
case CCP_XTS_AES_UNIT_SIZE_2048:
|
|
unit_size = 2048;
|
|
break;
|
|
case CCP_XTS_AES_UNIT_SIZE_4096:
|
|
unit_size = 4096;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (xts->key_len == AES_KEYSIZE_128)
|
|
aestype = CCP_AES_TYPE_128;
|
|
else if (xts->key_len == AES_KEYSIZE_256)
|
|
aestype = CCP_AES_TYPE_256;
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (xts->iv_len != AES_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!xts->key || !xts->iv || !xts->src || !xts->dst)
|
|
return -EINVAL;
|
|
|
|
BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
|
|
BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
|
|
|
|
ret = -EIO;
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
op.sb_key = cmd_q->sb_key;
|
|
op.sb_ctx = cmd_q->sb_ctx;
|
|
op.init = 1;
|
|
op.u.xts.type = aestype;
|
|
op.u.xts.action = xts->action;
|
|
op.u.xts.unit_size = xts->unit_size;
|
|
|
|
/* A version 3 device only supports 128-bit keys, which fits into a
|
|
* single SB entry. A version 5 device uses a 512-bit vector, so two
|
|
* SB entries.
|
|
*/
|
|
if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
|
|
sb_count = CCP_XTS_AES_KEY_SB_COUNT;
|
|
else
|
|
sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
|
|
ret = ccp_init_dm_workarea(&key, cmd_q,
|
|
sb_count * CCP_SB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
|
|
/* All supported key sizes must be in little endian format.
|
|
* Use the 256-bit byte swap passthru option to convert from
|
|
* big endian to little endian.
|
|
*/
|
|
dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
|
|
ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
|
|
ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
|
|
} else {
|
|
/* Version 5 CCPs use a 512-bit space for the key: each portion
|
|
* occupies 256 bits, or one entire slot, and is zero-padded.
|
|
*/
|
|
unsigned int pad;
|
|
|
|
dm_offset = CCP_SB_BYTES;
|
|
pad = dm_offset - xts->key_len;
|
|
ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
|
|
ccp_set_dm_area(&key, dm_offset + pad, xts->key, xts->key_len,
|
|
xts->key_len);
|
|
}
|
|
ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_key;
|
|
}
|
|
|
|
/* The AES context fits in a single (32-byte) SB entry and
|
|
* for XTS is already in little endian format so no byte swapping
|
|
* is needed.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_key;
|
|
|
|
ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
|
|
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_NOOP);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
|
|
/* Prepare the input and output data workareas. For in-place
|
|
* operations we need to set the dma direction to BIDIRECTIONAL
|
|
* and copy the src workarea to the dst workarea.
|
|
*/
|
|
if (sg_virt(xts->src) == sg_virt(xts->dst))
|
|
in_place = true;
|
|
|
|
ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
|
|
unit_size,
|
|
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
if (in_place) {
|
|
dst = src;
|
|
} else {
|
|
ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
|
|
unit_size, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
}
|
|
|
|
/* Send data to the CCP AES engine */
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, &dst, &op, unit_size, true);
|
|
if (!src.sg_wa.bytes_left)
|
|
op.eom = 1;
|
|
|
|
ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_process_data(&src, &dst, &op);
|
|
}
|
|
|
|
/* Retrieve the AES context - convert from LE to BE using
|
|
* 32-byte (256-bit) byteswapping
|
|
*/
|
|
ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* ...but we only need AES_BLOCK_SIZE bytes */
|
|
dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
|
|
ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
|
|
|
|
e_dst:
|
|
if (!in_place)
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
e_key:
|
|
ccp_dm_free(&key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_des3_engine *des3 = &cmd->u.des3;
|
|
|
|
struct ccp_dm_workarea key, ctx;
|
|
struct ccp_data src, dst;
|
|
struct ccp_op op;
|
|
unsigned int dm_offset;
|
|
unsigned int len_singlekey;
|
|
bool in_place = false;
|
|
int ret;
|
|
|
|
/* Error checks */
|
|
if (!cmd_q->ccp->vdata->perform->des3)
|
|
return -EINVAL;
|
|
|
|
if (des3->key_len != DES3_EDE_KEY_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (((des3->mode == CCP_DES3_MODE_ECB) ||
|
|
(des3->mode == CCP_DES3_MODE_CBC)) &&
|
|
(des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (!des3->key || !des3->src || !des3->dst)
|
|
return -EINVAL;
|
|
|
|
if (des3->mode != CCP_DES3_MODE_ECB) {
|
|
if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
|
|
return -EINVAL;
|
|
|
|
if (!des3->iv)
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = -EIO;
|
|
/* Zero out all the fields of the command desc */
|
|
memset(&op, 0, sizeof(op));
|
|
|
|
/* Set up the Function field */
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
op.sb_key = cmd_q->sb_key;
|
|
|
|
op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
|
|
op.u.des3.type = des3->type;
|
|
op.u.des3.mode = des3->mode;
|
|
op.u.des3.action = des3->action;
|
|
|
|
/*
|
|
* All supported key sizes fit in a single (32-byte) KSB entry and
|
|
* (like AES) must be in little endian format. Use the 256-bit byte
|
|
* swap passthru option to convert from big endian to little endian.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&key, cmd_q,
|
|
CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* The contents of the key triplet are in the reverse order of what
|
|
* is required by the engine. Copy the 3 pieces individually to put
|
|
* them where they belong.
|
|
*/
|
|
dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
|
|
|
|
len_singlekey = des3->key_len / 3;
|
|
ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
|
|
des3->key, 0, len_singlekey);
|
|
ccp_set_dm_area(&key, dm_offset + len_singlekey,
|
|
des3->key, len_singlekey, len_singlekey);
|
|
ccp_set_dm_area(&key, dm_offset,
|
|
des3->key, 2 * len_singlekey, len_singlekey);
|
|
|
|
/* Copy the key to the SB */
|
|
ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_key;
|
|
}
|
|
|
|
/*
|
|
* The DES3 context fits in a single (32-byte) KSB entry and
|
|
* must be in little endian format. Use the 256-bit byte swap
|
|
* passthru option to convert from big endian to little endian.
|
|
*/
|
|
if (des3->mode != CCP_DES3_MODE_ECB) {
|
|
u32 load_mode;
|
|
|
|
op.sb_ctx = cmd_q->sb_ctx;
|
|
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q,
|
|
CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
goto e_key;
|
|
|
|
/* Load the context into the LSB */
|
|
dm_offset = CCP_SB_BYTES - des3->iv_len;
|
|
ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0, des3->iv_len);
|
|
|
|
if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
|
|
load_mode = CCP_PASSTHRU_BYTESWAP_NOOP;
|
|
else
|
|
load_mode = CCP_PASSTHRU_BYTESWAP_256BIT;
|
|
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
load_mode);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare the input and output data workareas. For in-place
|
|
* operations we need to set the dma direction to BIDIRECTIONAL
|
|
* and copy the src workarea to the dst workarea.
|
|
*/
|
|
if (sg_virt(des3->src) == sg_virt(des3->dst))
|
|
in_place = true;
|
|
|
|
ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
|
|
DES3_EDE_BLOCK_SIZE,
|
|
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
if (in_place)
|
|
dst = src;
|
|
else {
|
|
ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
|
|
DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
}
|
|
|
|
/* Send data to the CCP DES3 engine */
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
|
|
if (!src.sg_wa.bytes_left) {
|
|
op.eom = 1;
|
|
|
|
/* Since we don't retrieve the context in ECB mode
|
|
* we have to wait for the operation to complete
|
|
* on the last piece of data
|
|
*/
|
|
op.soc = 0;
|
|
}
|
|
|
|
ret = cmd_q->ccp->vdata->perform->des3(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_process_data(&src, &dst, &op);
|
|
}
|
|
|
|
if (des3->mode != CCP_DES3_MODE_ECB) {
|
|
/* Retrieve the context and make BE */
|
|
ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
|
|
if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
|
|
dm_offset = CCP_SB_BYTES - des3->iv_len;
|
|
else
|
|
dm_offset = 0;
|
|
ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
|
|
DES3_EDE_BLOCK_SIZE);
|
|
}
|
|
e_dst:
|
|
if (!in_place)
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
if (des3->mode != CCP_DES3_MODE_ECB)
|
|
ccp_dm_free(&ctx);
|
|
|
|
e_key:
|
|
ccp_dm_free(&key);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_sha_engine *sha = &cmd->u.sha;
|
|
struct ccp_dm_workarea ctx;
|
|
struct ccp_data src;
|
|
struct ccp_op op;
|
|
unsigned int ioffset, ooffset;
|
|
unsigned int digest_size;
|
|
int sb_count;
|
|
const void *init;
|
|
u64 block_size;
|
|
int ctx_size;
|
|
int ret;
|
|
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
if (sha->ctx_len < SHA1_DIGEST_SIZE)
|
|
return -EINVAL;
|
|
block_size = SHA1_BLOCK_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_224:
|
|
if (sha->ctx_len < SHA224_DIGEST_SIZE)
|
|
return -EINVAL;
|
|
block_size = SHA224_BLOCK_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_256:
|
|
if (sha->ctx_len < SHA256_DIGEST_SIZE)
|
|
return -EINVAL;
|
|
block_size = SHA256_BLOCK_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_384:
|
|
if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
|
|
|| sha->ctx_len < SHA384_DIGEST_SIZE)
|
|
return -EINVAL;
|
|
block_size = SHA384_BLOCK_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_512:
|
|
if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
|
|
|| sha->ctx_len < SHA512_DIGEST_SIZE)
|
|
return -EINVAL;
|
|
block_size = SHA512_BLOCK_SIZE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!sha->ctx)
|
|
return -EINVAL;
|
|
|
|
if (!sha->final && (sha->src_len & (block_size - 1)))
|
|
return -EINVAL;
|
|
|
|
/* The version 3 device can't handle zero-length input */
|
|
if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
|
|
|
|
if (!sha->src_len) {
|
|
unsigned int digest_len;
|
|
const u8 *sha_zero;
|
|
|
|
/* Not final, just return */
|
|
if (!sha->final)
|
|
return 0;
|
|
|
|
/* CCP can't do a zero length sha operation so the
|
|
* caller must buffer the data.
|
|
*/
|
|
if (sha->msg_bits)
|
|
return -EINVAL;
|
|
|
|
/* The CCP cannot perform zero-length sha operations
|
|
* so the caller is required to buffer data for the
|
|
* final operation. However, a sha operation for a
|
|
* message with a total length of zero is valid so
|
|
* known values are required to supply the result.
|
|
*/
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
sha_zero = sha1_zero_message_hash;
|
|
digest_len = SHA1_DIGEST_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_224:
|
|
sha_zero = sha224_zero_message_hash;
|
|
digest_len = SHA224_DIGEST_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_256:
|
|
sha_zero = sha256_zero_message_hash;
|
|
digest_len = SHA256_DIGEST_SIZE;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
|
|
digest_len, 1);
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Set variables used throughout */
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
digest_size = SHA1_DIGEST_SIZE;
|
|
init = (void *) ccp_sha1_init;
|
|
ctx_size = SHA1_DIGEST_SIZE;
|
|
sb_count = 1;
|
|
if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
|
|
ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
|
|
else
|
|
ooffset = ioffset = 0;
|
|
break;
|
|
case CCP_SHA_TYPE_224:
|
|
digest_size = SHA224_DIGEST_SIZE;
|
|
init = (void *) ccp_sha224_init;
|
|
ctx_size = SHA256_DIGEST_SIZE;
|
|
sb_count = 1;
|
|
ioffset = 0;
|
|
if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
|
|
ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
|
|
else
|
|
ooffset = 0;
|
|
break;
|
|
case CCP_SHA_TYPE_256:
|
|
digest_size = SHA256_DIGEST_SIZE;
|
|
init = (void *) ccp_sha256_init;
|
|
ctx_size = SHA256_DIGEST_SIZE;
|
|
sb_count = 1;
|
|
ooffset = ioffset = 0;
|
|
break;
|
|
case CCP_SHA_TYPE_384:
|
|
digest_size = SHA384_DIGEST_SIZE;
|
|
init = (void *) ccp_sha384_init;
|
|
ctx_size = SHA512_DIGEST_SIZE;
|
|
sb_count = 2;
|
|
ioffset = 0;
|
|
ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
|
|
break;
|
|
case CCP_SHA_TYPE_512:
|
|
digest_size = SHA512_DIGEST_SIZE;
|
|
init = (void *) ccp_sha512_init;
|
|
ctx_size = SHA512_DIGEST_SIZE;
|
|
sb_count = 2;
|
|
ooffset = ioffset = 0;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto e_data;
|
|
}
|
|
|
|
/* For zero-length plaintext the src pointer is ignored;
|
|
* otherwise both parts must be valid
|
|
*/
|
|
if (sha->src_len && !sha->src)
|
|
return -EINVAL;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
|
|
op.u.sha.type = sha->type;
|
|
op.u.sha.msg_bits = sha->msg_bits;
|
|
|
|
/* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
|
|
* SHA384/512 require 2 adjacent SB slots, with the right half in the
|
|
* first slot, and the left half in the second. Each portion must then
|
|
* be in little endian format: use the 256-bit byte swap option.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
|
|
DMA_BIDIRECTIONAL);
|
|
if (ret)
|
|
return ret;
|
|
if (sha->first) {
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
case CCP_SHA_TYPE_224:
|
|
case CCP_SHA_TYPE_256:
|
|
memcpy(ctx.address + ioffset, init, ctx_size);
|
|
break;
|
|
case CCP_SHA_TYPE_384:
|
|
case CCP_SHA_TYPE_512:
|
|
memcpy(ctx.address + ctx_size / 2, init,
|
|
ctx_size / 2);
|
|
memcpy(ctx.address, init + ctx_size / 2,
|
|
ctx_size / 2);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto e_ctx;
|
|
}
|
|
} else {
|
|
/* Restore the context */
|
|
ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
|
|
sb_count * CCP_SB_BYTES);
|
|
}
|
|
|
|
ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_ctx;
|
|
}
|
|
|
|
if (sha->src) {
|
|
/* Send data to the CCP SHA engine; block_size is set above */
|
|
ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
|
|
block_size, DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_ctx;
|
|
|
|
while (src.sg_wa.bytes_left) {
|
|
ccp_prepare_data(&src, NULL, &op, block_size, false);
|
|
if (sha->final && !src.sg_wa.bytes_left)
|
|
op.eom = 1;
|
|
|
|
ret = cmd_q->ccp->vdata->perform->sha(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_data;
|
|
}
|
|
|
|
ccp_process_data(&src, NULL, &op);
|
|
}
|
|
} else {
|
|
op.eom = 1;
|
|
ret = cmd_q->ccp->vdata->perform->sha(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_data;
|
|
}
|
|
}
|
|
|
|
/* Retrieve the SHA context - convert from LE to BE using
|
|
* 32-byte (256-bit) byteswapping to BE
|
|
*/
|
|
ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
|
|
CCP_PASSTHRU_BYTESWAP_256BIT);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_data;
|
|
}
|
|
|
|
if (sha->final) {
|
|
/* Finishing up, so get the digest */
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
case CCP_SHA_TYPE_224:
|
|
case CCP_SHA_TYPE_256:
|
|
ccp_get_dm_area(&ctx, ooffset,
|
|
sha->ctx, 0,
|
|
digest_size);
|
|
break;
|
|
case CCP_SHA_TYPE_384:
|
|
case CCP_SHA_TYPE_512:
|
|
ccp_get_dm_area(&ctx, 0,
|
|
sha->ctx, LSB_ITEM_SIZE - ooffset,
|
|
LSB_ITEM_SIZE);
|
|
ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
|
|
sha->ctx, 0,
|
|
LSB_ITEM_SIZE - ooffset);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto e_ctx;
|
|
}
|
|
} else {
|
|
/* Stash the context */
|
|
ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
|
|
sb_count * CCP_SB_BYTES);
|
|
}
|
|
|
|
if (sha->final && sha->opad) {
|
|
/* HMAC operation, recursively perform final SHA */
|
|
struct ccp_cmd hmac_cmd;
|
|
struct scatterlist sg;
|
|
u8 *hmac_buf;
|
|
|
|
if (sha->opad_len != block_size) {
|
|
ret = -EINVAL;
|
|
goto e_data;
|
|
}
|
|
|
|
hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
|
|
if (!hmac_buf) {
|
|
ret = -ENOMEM;
|
|
goto e_data;
|
|
}
|
|
sg_init_one(&sg, hmac_buf, block_size + digest_size);
|
|
|
|
scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
|
|
switch (sha->type) {
|
|
case CCP_SHA_TYPE_1:
|
|
case CCP_SHA_TYPE_224:
|
|
case CCP_SHA_TYPE_256:
|
|
memcpy(hmac_buf + block_size,
|
|
ctx.address + ooffset,
|
|
digest_size);
|
|
break;
|
|
case CCP_SHA_TYPE_384:
|
|
case CCP_SHA_TYPE_512:
|
|
memcpy(hmac_buf + block_size,
|
|
ctx.address + LSB_ITEM_SIZE + ooffset,
|
|
LSB_ITEM_SIZE);
|
|
memcpy(hmac_buf + block_size +
|
|
(LSB_ITEM_SIZE - ooffset),
|
|
ctx.address,
|
|
LSB_ITEM_SIZE);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
goto e_ctx;
|
|
}
|
|
|
|
memset(&hmac_cmd, 0, sizeof(hmac_cmd));
|
|
hmac_cmd.engine = CCP_ENGINE_SHA;
|
|
hmac_cmd.u.sha.type = sha->type;
|
|
hmac_cmd.u.sha.ctx = sha->ctx;
|
|
hmac_cmd.u.sha.ctx_len = sha->ctx_len;
|
|
hmac_cmd.u.sha.src = &sg;
|
|
hmac_cmd.u.sha.src_len = block_size + digest_size;
|
|
hmac_cmd.u.sha.opad = NULL;
|
|
hmac_cmd.u.sha.opad_len = 0;
|
|
hmac_cmd.u.sha.first = 1;
|
|
hmac_cmd.u.sha.final = 1;
|
|
hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
|
|
|
|
ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
|
|
if (ret)
|
|
cmd->engine_error = hmac_cmd.engine_error;
|
|
|
|
kfree(hmac_buf);
|
|
}
|
|
|
|
e_data:
|
|
if (sha->src)
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_ctx:
|
|
ccp_dm_free(&ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_rsa_engine *rsa = &cmd->u.rsa;
|
|
struct ccp_dm_workarea exp, src, dst;
|
|
struct ccp_op op;
|
|
unsigned int sb_count, i_len, o_len;
|
|
int ret;
|
|
|
|
/* Check against the maximum allowable size, in bits */
|
|
if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
|
|
return -EINVAL;
|
|
|
|
if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
|
|
return -EINVAL;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
|
|
/* The RSA modulus must precede the message being acted upon, so
|
|
* it must be copied to a DMA area where the message and the
|
|
* modulus can be concatenated. Therefore the input buffer
|
|
* length required is twice the output buffer length (which
|
|
* must be a multiple of 256-bits). Compute o_len, i_len in bytes.
|
|
* Buffer sizes must be a multiple of 32 bytes; rounding up may be
|
|
* required.
|
|
*/
|
|
o_len = 32 * ((rsa->key_size + 255) / 256);
|
|
i_len = o_len * 2;
|
|
|
|
sb_count = 0;
|
|
if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
|
|
/* sb_count is the number of storage block slots required
|
|
* for the modulus.
|
|
*/
|
|
sb_count = o_len / CCP_SB_BYTES;
|
|
op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
|
|
sb_count);
|
|
if (!op.sb_key)
|
|
return -EIO;
|
|
} else {
|
|
/* A version 5 device allows a modulus size that will not fit
|
|
* in the LSB, so the command will transfer it from memory.
|
|
* Set the sb key to the default, even though it's not used.
|
|
*/
|
|
op.sb_key = cmd_q->sb_key;
|
|
}
|
|
|
|
/* The RSA exponent must be in little endian format. Reverse its
|
|
* byte order.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_sb;
|
|
|
|
ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
|
|
if (ret)
|
|
goto e_exp;
|
|
|
|
if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
|
|
/* Copy the exponent to the local storage block, using
|
|
* as many 32-byte blocks as were allocated above. It's
|
|
* already little endian, so no further change is required.
|
|
*/
|
|
ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
|
|
CCP_PASSTHRU_BYTESWAP_NOOP);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_exp;
|
|
}
|
|
} else {
|
|
/* The exponent can be retrieved from memory via DMA. */
|
|
op.exp.u.dma.address = exp.dma.address;
|
|
op.exp.u.dma.offset = 0;
|
|
}
|
|
|
|
/* Concatenate the modulus and the message. Both the modulus and
|
|
* the operands must be in little endian format. Since the input
|
|
* is in big endian format it must be converted.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_exp;
|
|
|
|
ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
|
|
if (ret)
|
|
goto e_src;
|
|
ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
|
|
if (ret)
|
|
goto e_src;
|
|
|
|
/* Prepare the output area for the operation */
|
|
ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
|
|
op.soc = 1;
|
|
op.src.u.dma.address = src.dma.address;
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = i_len;
|
|
op.dst.u.dma.address = dst.dma.address;
|
|
op.dst.u.dma.offset = 0;
|
|
op.dst.u.dma.length = o_len;
|
|
|
|
op.u.rsa.mod_size = rsa->key_size;
|
|
op.u.rsa.input_len = i_len;
|
|
|
|
ret = cmd_q->ccp->vdata->perform->rsa(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
|
|
|
|
e_dst:
|
|
ccp_dm_free(&dst);
|
|
|
|
e_src:
|
|
ccp_dm_free(&src);
|
|
|
|
e_exp:
|
|
ccp_dm_free(&exp);
|
|
|
|
e_sb:
|
|
if (sb_count)
|
|
cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_passthru_engine *pt = &cmd->u.passthru;
|
|
struct ccp_dm_workarea mask;
|
|
struct ccp_data src, dst;
|
|
struct ccp_op op;
|
|
bool in_place = false;
|
|
unsigned int i;
|
|
int ret = 0;
|
|
|
|
if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (!pt->src || !pt->dst)
|
|
return -EINVAL;
|
|
|
|
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
|
|
if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
|
|
return -EINVAL;
|
|
if (!pt->mask)
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
|
|
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
|
|
/* Load the mask */
|
|
op.sb_key = cmd_q->sb_key;
|
|
|
|
ret = ccp_init_dm_workarea(&mask, cmd_q,
|
|
CCP_PASSTHRU_SB_COUNT *
|
|
CCP_SB_BYTES,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
|
|
ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
|
|
CCP_PASSTHRU_BYTESWAP_NOOP);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_mask;
|
|
}
|
|
}
|
|
|
|
/* Prepare the input and output data workareas. For in-place
|
|
* operations we need to set the dma direction to BIDIRECTIONAL
|
|
* and copy the src workarea to the dst workarea.
|
|
*/
|
|
if (sg_virt(pt->src) == sg_virt(pt->dst))
|
|
in_place = true;
|
|
|
|
ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
|
|
CCP_PASSTHRU_MASKSIZE,
|
|
in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
|
|
if (ret)
|
|
goto e_mask;
|
|
|
|
if (in_place) {
|
|
dst = src;
|
|
} else {
|
|
ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
|
|
CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
}
|
|
|
|
/* Send data to the CCP Passthru engine
|
|
* Because the CCP engine works on a single source and destination
|
|
* dma address at a time, each entry in the source scatterlist
|
|
* (after the dma_map_sg call) must be less than or equal to the
|
|
* (remaining) length in the destination scatterlist entry and the
|
|
* length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
|
|
*/
|
|
dst.sg_wa.sg_used = 0;
|
|
for (i = 1; i <= src.sg_wa.dma_count; i++) {
|
|
if (!dst.sg_wa.sg ||
|
|
(dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
|
|
ret = -EINVAL;
|
|
goto e_dst;
|
|
}
|
|
|
|
if (i == src.sg_wa.dma_count) {
|
|
op.eom = 1;
|
|
op.soc = 1;
|
|
}
|
|
|
|
op.src.type = CCP_MEMTYPE_SYSTEM;
|
|
op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
|
|
|
|
op.dst.type = CCP_MEMTYPE_SYSTEM;
|
|
op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
|
|
op.dst.u.dma.offset = dst.sg_wa.sg_used;
|
|
op.dst.u.dma.length = op.src.u.dma.length;
|
|
|
|
ret = cmd_q->ccp->vdata->perform->passthru(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
dst.sg_wa.sg_used += src.sg_wa.sg->length;
|
|
if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
|
|
dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
|
|
dst.sg_wa.sg_used = 0;
|
|
}
|
|
src.sg_wa.sg = sg_next(src.sg_wa.sg);
|
|
}
|
|
|
|
e_dst:
|
|
if (!in_place)
|
|
ccp_free_data(&dst, cmd_q);
|
|
|
|
e_src:
|
|
ccp_free_data(&src, cmd_q);
|
|
|
|
e_mask:
|
|
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
|
|
ccp_dm_free(&mask);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
|
|
struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
|
|
struct ccp_dm_workarea mask;
|
|
struct ccp_op op;
|
|
int ret;
|
|
|
|
if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
|
|
return -EINVAL;
|
|
|
|
if (!pt->src_dma || !pt->dst_dma)
|
|
return -EINVAL;
|
|
|
|
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
|
|
if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
|
|
return -EINVAL;
|
|
if (!pt->mask)
|
|
return -EINVAL;
|
|
}
|
|
|
|
BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
|
|
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
|
|
/* Load the mask */
|
|
op.sb_key = cmd_q->sb_key;
|
|
|
|
mask.length = pt->mask_len;
|
|
mask.dma.address = pt->mask;
|
|
mask.dma.length = pt->mask_len;
|
|
|
|
ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
|
|
CCP_PASSTHRU_BYTESWAP_NOOP);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Send data to the CCP Passthru engine */
|
|
op.eom = 1;
|
|
op.soc = 1;
|
|
|
|
op.src.type = CCP_MEMTYPE_SYSTEM;
|
|
op.src.u.dma.address = pt->src_dma;
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = pt->src_len;
|
|
|
|
op.dst.type = CCP_MEMTYPE_SYSTEM;
|
|
op.dst.u.dma.address = pt->dst_dma;
|
|
op.dst.u.dma.offset = 0;
|
|
op.dst.u.dma.length = pt->src_len;
|
|
|
|
ret = cmd_q->ccp->vdata->perform->passthru(&op);
|
|
if (ret)
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_ecc_engine *ecc = &cmd->u.ecc;
|
|
struct ccp_dm_workarea src, dst;
|
|
struct ccp_op op;
|
|
int ret;
|
|
u8 *save;
|
|
|
|
if (!ecc->u.mm.operand_1 ||
|
|
(ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
|
|
if (!ecc->u.mm.operand_2 ||
|
|
(ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
if (!ecc->u.mm.result ||
|
|
(ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
|
|
/* Concatenate the modulus and the operands. Both the modulus and
|
|
* the operands must be in little endian format. Since the input
|
|
* is in big endian format it must be converted and placed in a
|
|
* fixed length buffer.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Save the workarea address since it is updated in order to perform
|
|
* the concatenation
|
|
*/
|
|
save = src.address;
|
|
|
|
/* Copy the ECC modulus */
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
/* Copy the first operand */
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
|
|
ecc->u.mm.operand_1_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
|
|
/* Copy the second operand */
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
|
|
ecc->u.mm.operand_2_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
}
|
|
|
|
/* Restore the workarea address */
|
|
src.address = save;
|
|
|
|
/* Prepare the output area for the operation */
|
|
ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
|
|
op.soc = 1;
|
|
op.src.u.dma.address = src.dma.address;
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = src.length;
|
|
op.dst.u.dma.address = dst.dma.address;
|
|
op.dst.u.dma.offset = 0;
|
|
op.dst.u.dma.length = dst.length;
|
|
|
|
op.u.ecc.function = cmd->u.ecc.function;
|
|
|
|
ret = cmd_q->ccp->vdata->perform->ecc(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ecc->ecc_result = le16_to_cpup(
|
|
(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
|
|
if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
|
|
ret = -EIO;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* Save the ECC result */
|
|
ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
|
|
CCP_ECC_MODULUS_BYTES);
|
|
|
|
e_dst:
|
|
ccp_dm_free(&dst);
|
|
|
|
e_src:
|
|
ccp_dm_free(&src);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_ecc_engine *ecc = &cmd->u.ecc;
|
|
struct ccp_dm_workarea src, dst;
|
|
struct ccp_op op;
|
|
int ret;
|
|
u8 *save;
|
|
|
|
if (!ecc->u.pm.point_1.x ||
|
|
(ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
|
|
!ecc->u.pm.point_1.y ||
|
|
(ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
|
|
if (!ecc->u.pm.point_2.x ||
|
|
(ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
|
|
!ecc->u.pm.point_2.y ||
|
|
(ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
} else {
|
|
if (!ecc->u.pm.domain_a ||
|
|
(ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
|
|
if (!ecc->u.pm.scalar ||
|
|
(ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!ecc->u.pm.result.x ||
|
|
(ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
|
|
!ecc->u.pm.result.y ||
|
|
(ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
memset(&op, 0, sizeof(op));
|
|
op.cmd_q = cmd_q;
|
|
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
|
|
|
|
/* Concatenate the modulus and the operands. Both the modulus and
|
|
* the operands must be in little endian format. Since the input
|
|
* is in big endian format it must be converted and placed in a
|
|
* fixed length buffer.
|
|
*/
|
|
ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
|
|
DMA_TO_DEVICE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Save the workarea address since it is updated in order to perform
|
|
* the concatenation
|
|
*/
|
|
save = src.address;
|
|
|
|
/* Copy the ECC modulus */
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
/* Copy the first point X and Y coordinate */
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
|
|
ecc->u.pm.point_1.x_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
|
|
ecc->u.pm.point_1.y_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
/* Set the first point Z coordinate to 1 */
|
|
*src.address = 0x01;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
|
|
/* Copy the second point X and Y coordinate */
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
|
|
ecc->u.pm.point_2.x_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
|
|
ecc->u.pm.point_2.y_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
/* Set the second point Z coordinate to 1 */
|
|
*src.address = 0x01;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
} else {
|
|
/* Copy the Domain "a" parameter */
|
|
ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
|
|
ecc->u.pm.domain_a_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
|
|
if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
|
|
/* Copy the scalar value */
|
|
ret = ccp_reverse_set_dm_area(&src, 0,
|
|
ecc->u.pm.scalar, 0,
|
|
ecc->u.pm.scalar_len);
|
|
if (ret)
|
|
goto e_src;
|
|
src.address += CCP_ECC_OPERAND_SIZE;
|
|
}
|
|
}
|
|
|
|
/* Restore the workarea address */
|
|
src.address = save;
|
|
|
|
/* Prepare the output area for the operation */
|
|
ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
|
|
DMA_FROM_DEVICE);
|
|
if (ret)
|
|
goto e_src;
|
|
|
|
op.soc = 1;
|
|
op.src.u.dma.address = src.dma.address;
|
|
op.src.u.dma.offset = 0;
|
|
op.src.u.dma.length = src.length;
|
|
op.dst.u.dma.address = dst.dma.address;
|
|
op.dst.u.dma.offset = 0;
|
|
op.dst.u.dma.length = dst.length;
|
|
|
|
op.u.ecc.function = cmd->u.ecc.function;
|
|
|
|
ret = cmd_q->ccp->vdata->perform->ecc(&op);
|
|
if (ret) {
|
|
cmd->engine_error = cmd_q->cmd_error;
|
|
goto e_dst;
|
|
}
|
|
|
|
ecc->ecc_result = le16_to_cpup(
|
|
(const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
|
|
if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
|
|
ret = -EIO;
|
|
goto e_dst;
|
|
}
|
|
|
|
/* Save the workarea address since it is updated as we walk through
|
|
* to copy the point math result
|
|
*/
|
|
save = dst.address;
|
|
|
|
/* Save the ECC result X and Y coordinates */
|
|
ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
|
|
CCP_ECC_MODULUS_BYTES);
|
|
dst.address += CCP_ECC_OUTPUT_SIZE;
|
|
ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
|
|
CCP_ECC_MODULUS_BYTES);
|
|
dst.address += CCP_ECC_OUTPUT_SIZE;
|
|
|
|
/* Restore the workarea address */
|
|
dst.address = save;
|
|
|
|
e_dst:
|
|
ccp_dm_free(&dst);
|
|
|
|
e_src:
|
|
ccp_dm_free(&src);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
struct ccp_ecc_engine *ecc = &cmd->u.ecc;
|
|
|
|
ecc->ecc_result = 0;
|
|
|
|
if (!ecc->mod ||
|
|
(ecc->mod_len > CCP_ECC_MODULUS_BYTES))
|
|
return -EINVAL;
|
|
|
|
switch (ecc->function) {
|
|
case CCP_ECC_FUNCTION_MMUL_384BIT:
|
|
case CCP_ECC_FUNCTION_MADD_384BIT:
|
|
case CCP_ECC_FUNCTION_MINV_384BIT:
|
|
return ccp_run_ecc_mm_cmd(cmd_q, cmd);
|
|
|
|
case CCP_ECC_FUNCTION_PADD_384BIT:
|
|
case CCP_ECC_FUNCTION_PMUL_384BIT:
|
|
case CCP_ECC_FUNCTION_PDBL_384BIT:
|
|
return ccp_run_ecc_pm_cmd(cmd_q, cmd);
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
|
|
{
|
|
int ret;
|
|
|
|
cmd->engine_error = 0;
|
|
cmd_q->cmd_error = 0;
|
|
cmd_q->int_rcvd = 0;
|
|
cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
|
|
|
|
switch (cmd->engine) {
|
|
case CCP_ENGINE_AES:
|
|
ret = ccp_run_aes_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_XTS_AES_128:
|
|
ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_DES3:
|
|
ret = ccp_run_des3_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_SHA:
|
|
ret = ccp_run_sha_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_RSA:
|
|
ret = ccp_run_rsa_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_PASSTHRU:
|
|
if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
|
|
ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
|
|
else
|
|
ret = ccp_run_passthru_cmd(cmd_q, cmd);
|
|
break;
|
|
case CCP_ENGINE_ECC:
|
|
ret = ccp_run_ecc_cmd(cmd_q, cmd);
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|