linux_dsm_epyc7002/arch/powerpc/sysdev/tsi108_pci.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

445 lines
11 KiB
C

/*
* Common routines for Tundra Semiconductor TSI108 host bridge.
*
* 2004-2005 (c) Tundra Semiconductor Corp.
* Author: Alex Bounine (alexandreb@tundra.com)
* Author: Roy Zang (tie-fei.zang@freescale.com)
* Add pci interrupt router host
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
#include <asm/machdep.h>
#include <asm/pci-bridge.h>
#include <asm/tsi108.h>
#include <asm/tsi108_pci.h>
#include <asm/tsi108_irq.h>
#include <asm/prom.h>
#undef DEBUG
#ifdef DEBUG
#define DBG(x...) printk(x)
#else
#define DBG(x...)
#endif
#define tsi_mk_config_addr(bus, devfunc, offset) \
((((bus)<<16) | ((devfunc)<<8) | (offset & 0xfc)) + tsi108_pci_cfg_base)
u32 tsi108_pci_cfg_base;
static u32 tsi108_pci_cfg_phys;
u32 tsi108_csr_vir_base;
static struct irq_host *pci_irq_host;
extern u32 get_vir_csrbase(void);
extern u32 tsi108_read_reg(u32 reg_offset);
extern void tsi108_write_reg(u32 reg_offset, u32 val);
int
tsi108_direct_write_config(struct pci_bus *bus, unsigned int devfunc,
int offset, int len, u32 val)
{
volatile unsigned char *cfg_addr;
struct pci_controller *hose = pci_bus_to_host(bus);
if (ppc_md.pci_exclude_device)
if (ppc_md.pci_exclude_device(hose, bus->number, devfunc))
return PCIBIOS_DEVICE_NOT_FOUND;
cfg_addr = (unsigned char *)(tsi_mk_config_addr(bus->number,
devfunc, offset) |
(offset & 0x03));
#ifdef DEBUG
printk("PCI CFG write : ");
printk("%d:0x%x:0x%x ", bus->number, devfunc, offset);
printk("%d ADDR=0x%08x ", len, (uint) cfg_addr);
printk("data = 0x%08x\n", val);
#endif
switch (len) {
case 1:
out_8((u8 *) cfg_addr, val);
break;
case 2:
out_le16((u16 *) cfg_addr, val);
break;
default:
out_le32((u32 *) cfg_addr, val);
break;
}
return PCIBIOS_SUCCESSFUL;
}
void tsi108_clear_pci_error(u32 pci_cfg_base)
{
u32 err_stat, err_addr, pci_stat;
/*
* Quietly clear PB and PCI error flags set as result
* of PCI/X configuration read requests.
*/
/* Read PB Error Log Registers */
err_stat = tsi108_read_reg(TSI108_PB_OFFSET + TSI108_PB_ERRCS);
err_addr = tsi108_read_reg(TSI108_PB_OFFSET + TSI108_PB_AERR);
if (err_stat & TSI108_PB_ERRCS_ES) {
/* Clear error flag */
tsi108_write_reg(TSI108_PB_OFFSET + TSI108_PB_ERRCS,
TSI108_PB_ERRCS_ES);
/* Clear read error reported in PB_ISR */
tsi108_write_reg(TSI108_PB_OFFSET + TSI108_PB_ISR,
TSI108_PB_ISR_PBS_RD_ERR);
/* Clear PCI/X bus cfg errors if applicable */
if ((err_addr & 0xFF000000) == pci_cfg_base) {
pci_stat =
tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_CSR);
tsi108_write_reg(TSI108_PCI_OFFSET + TSI108_PCI_CSR,
pci_stat);
}
}
return;
}
#define __tsi108_read_pci_config(x, addr, op) \
__asm__ __volatile__( \
" "op" %0,0,%1\n" \
"1: eieio\n" \
"2:\n" \
".section .fixup,\"ax\"\n" \
"3: li %0,-1\n" \
" b 2b\n" \
".section __ex_table,\"a\"\n" \
" .align 2\n" \
" .long 1b,3b\n" \
".text" \
: "=r"(x) : "r"(addr))
int
tsi108_direct_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
int len, u32 * val)
{
volatile unsigned char *cfg_addr;
struct pci_controller *hose = pci_bus_to_host(bus);
u32 temp;
if (ppc_md.pci_exclude_device)
if (ppc_md.pci_exclude_device(hose, bus->number, devfn))
return PCIBIOS_DEVICE_NOT_FOUND;
cfg_addr = (unsigned char *)(tsi_mk_config_addr(bus->number,
devfn,
offset) | (offset &
0x03));
switch (len) {
case 1:
__tsi108_read_pci_config(temp, cfg_addr, "lbzx");
break;
case 2:
__tsi108_read_pci_config(temp, cfg_addr, "lhbrx");
break;
default:
__tsi108_read_pci_config(temp, cfg_addr, "lwbrx");
break;
}
*val = temp;
#ifdef DEBUG
if ((0xFFFFFFFF != temp) && (0xFFFF != temp) && (0xFF != temp)) {
printk("PCI CFG read : ");
printk("%d:0x%x:0x%x ", bus->number, devfn, offset);
printk("%d ADDR=0x%08x ", len, (uint) cfg_addr);
printk("data = 0x%x\n", *val);
}
#endif
return PCIBIOS_SUCCESSFUL;
}
void tsi108_clear_pci_cfg_error(void)
{
tsi108_clear_pci_error(tsi108_pci_cfg_phys);
}
static struct pci_ops tsi108_direct_pci_ops = {
.read = tsi108_direct_read_config,
.write = tsi108_direct_write_config,
};
int __init tsi108_setup_pci(struct device_node *dev, u32 cfg_phys, int primary)
{
int len;
struct pci_controller *hose;
struct resource rsrc;
const int *bus_range;
int has_address = 0;
/* PCI Config mapping */
tsi108_pci_cfg_base = (u32)ioremap(cfg_phys, TSI108_PCI_CFG_SIZE);
tsi108_pci_cfg_phys = cfg_phys;
DBG("TSI_PCI: %s tsi108_pci_cfg_base=0x%x\n", __func__,
tsi108_pci_cfg_base);
/* Fetch host bridge registers address */
has_address = (of_address_to_resource(dev, 0, &rsrc) == 0);
/* Get bus range if any */
bus_range = of_get_property(dev, "bus-range", &len);
if (bus_range == NULL || len < 2 * sizeof(int)) {
printk(KERN_WARNING "Can't get bus-range for %s, assume"
" bus 0\n", dev->full_name);
}
hose = pcibios_alloc_controller(dev);
if (!hose) {
printk("PCI Host bridge init failed\n");
return -ENOMEM;
}
hose->first_busno = bus_range ? bus_range[0] : 0;
hose->last_busno = bus_range ? bus_range[1] : 0xff;
(hose)->ops = &tsi108_direct_pci_ops;
printk(KERN_INFO "Found tsi108 PCI host bridge at 0x%08x. "
"Firmware bus number: %d->%d\n",
rsrc.start, hose->first_busno, hose->last_busno);
/* Interpret the "ranges" property */
/* This also maps the I/O region and sets isa_io/mem_base */
pci_process_bridge_OF_ranges(hose, dev, primary);
return 0;
}
/*
* Low level utility functions
*/
static void tsi108_pci_int_mask(u_int irq)
{
u_int irp_cfg;
int int_line = (irq - IRQ_PCI_INTAD_BASE);
irp_cfg = tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_CFG_CTL);
mb();
irp_cfg |= (1 << int_line); /* INTx_DIR = output */
irp_cfg &= ~(3 << (8 + (int_line * 2))); /* INTx_TYPE = unused */
tsi108_write_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_CFG_CTL, irp_cfg);
mb();
irp_cfg = tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_CFG_CTL);
}
static void tsi108_pci_int_unmask(u_int irq)
{
u_int irp_cfg;
int int_line = (irq - IRQ_PCI_INTAD_BASE);
irp_cfg = tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_CFG_CTL);
mb();
irp_cfg &= ~(1 << int_line);
irp_cfg |= (3 << (8 + (int_line * 2)));
tsi108_write_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_CFG_CTL, irp_cfg);
mb();
}
static void init_pci_source(void)
{
tsi108_write_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_CFG_CTL,
0x0000ff00);
tsi108_write_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_ENABLE,
TSI108_PCI_IRP_ENABLE_P_INT);
mb();
}
static inline unsigned int get_pci_source(void)
{
u_int temp = 0;
int irq = -1;
int i;
u_int pci_irp_stat;
static int mask = 0;
/* Read PCI/X block interrupt status register */
pci_irp_stat = tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_STAT);
mb();
if (pci_irp_stat & TSI108_PCI_IRP_STAT_P_INT) {
/* Process Interrupt from PCI bus INTA# - INTD# lines */
temp =
tsi108_read_reg(TSI108_PCI_OFFSET +
TSI108_PCI_IRP_INTAD) & 0xf;
mb();
for (i = 0; i < 4; i++, mask++) {
if (temp & (1 << mask % 4)) {
irq = IRQ_PCI_INTA + mask % 4;
mask++;
break;
}
}
/* Disable interrupts from PCI block */
temp = tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_ENABLE);
tsi108_write_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_ENABLE,
temp & ~TSI108_PCI_IRP_ENABLE_P_INT);
mb();
(void)tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_ENABLE);
mb();
}
#ifdef DEBUG
else {
printk("TSI108_PIC: error in TSI108_PCI_IRP_STAT\n");
pci_irp_stat =
tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_STAT);
temp =
tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_INTAD);
mb();
printk(">> stat=0x%08x intad=0x%08x ", pci_irp_stat, temp);
temp =
tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_CFG_CTL);
mb();
printk("cfg_ctl=0x%08x ", temp);
temp =
tsi108_read_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_ENABLE);
mb();
printk("irp_enable=0x%08x\n", temp);
}
#endif /* end of DEBUG */
return irq;
}
/*
* Linux descriptor level callbacks
*/
static void tsi108_pci_irq_enable(u_int irq)
{
tsi108_pci_int_unmask(irq);
}
static void tsi108_pci_irq_disable(u_int irq)
{
tsi108_pci_int_mask(irq);
}
static void tsi108_pci_irq_ack(u_int irq)
{
tsi108_pci_int_mask(irq);
}
static void tsi108_pci_irq_end(u_int irq)
{
tsi108_pci_int_unmask(irq);
/* Enable interrupts from PCI block */
tsi108_write_reg(TSI108_PCI_OFFSET + TSI108_PCI_IRP_ENABLE,
tsi108_read_reg(TSI108_PCI_OFFSET +
TSI108_PCI_IRP_ENABLE) |
TSI108_PCI_IRP_ENABLE_P_INT);
mb();
}
/*
* Interrupt controller descriptor for cascaded PCI interrupt controller.
*/
static struct irq_chip tsi108_pci_irq = {
.name = "tsi108_PCI_int",
.mask = tsi108_pci_irq_disable,
.ack = tsi108_pci_irq_ack,
.end = tsi108_pci_irq_end,
.unmask = tsi108_pci_irq_enable,
};
static int pci_irq_host_xlate(struct irq_host *h, struct device_node *ct,
const u32 *intspec, unsigned int intsize,
irq_hw_number_t *out_hwirq, unsigned int *out_flags)
{
*out_hwirq = intspec[0];
*out_flags = IRQ_TYPE_LEVEL_HIGH;
return 0;
}
static int pci_irq_host_map(struct irq_host *h, unsigned int virq,
irq_hw_number_t hw)
{ unsigned int irq;
DBG("%s(%d, 0x%lx)\n", __func__, virq, hw);
if ((virq >= 1) && (virq <= 4)){
irq = virq + IRQ_PCI_INTAD_BASE - 1;
irq_to_desc(irq)->status |= IRQ_LEVEL;
set_irq_chip(irq, &tsi108_pci_irq);
}
return 0;
}
static struct irq_host_ops pci_irq_host_ops = {
.map = pci_irq_host_map,
.xlate = pci_irq_host_xlate,
};
/*
* Exported functions
*/
/*
* The Tsi108 PCI interrupts initialization routine.
*
* The INTA# - INTD# interrupts on the PCI bus are reported by the PCI block
* to the MPIC using single interrupt source (IRQ_TSI108_PCI). Therefore the
* PCI block has to be treated as a cascaded interrupt controller connected
* to the MPIC.
*/
void __init tsi108_pci_int_init(struct device_node *node)
{
DBG("Tsi108_pci_int_init: initializing PCI interrupts\n");
pci_irq_host = irq_alloc_host(node, IRQ_HOST_MAP_LEGACY,
0, &pci_irq_host_ops, 0);
if (pci_irq_host == NULL) {
printk(KERN_ERR "pci_irq_host: failed to allocate irq host !\n");
return;
}
init_pci_source();
}
void tsi108_irq_cascade(unsigned int irq, struct irq_desc *desc)
{
unsigned int cascade_irq = get_pci_source();
if (cascade_irq != NO_IRQ)
generic_handle_irq(cascade_irq);
desc->chip->eoi(irq);
}