mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 14:05:08 +07:00
89c83fb539
THP allocation mode is quite complex and it depends on the defrag mode. This complexity is hidden in alloc_hugepage_direct_gfpmask from a large part currently. The NUMA special casing (namely __GFP_THISNODE) is however independent and placed in alloc_pages_vma currently. This both adds an unnecessary branch to all vma based page allocation requests and it makes the code more complex unnecessarily as well. Not to mention that e.g. shmem THP used to do the node reclaiming unconditionally regardless of the defrag mode until recently. This was not only unexpected behavior but it was also hardly a good default behavior and I strongly suspect it was just a side effect of the code sharing more than a deliberate decision which suggests that such a layering is wrong. Get rid of the thp special casing from alloc_pages_vma and move the logic to alloc_hugepage_direct_gfpmask. __GFP_THISNODE is applied to the resulting gfp mask only when the direct reclaim is not requested and when there is no explicit numa binding to preserve the current logic. Please note that there's also a slight difference wrt MPOL_BIND now. The previous code would avoid using __GFP_THISNODE if the local node was outside of policy_nodemask(). After this patch __GFP_THISNODE is avoided for all MPOL_BIND policies. So there's a difference that if local node is actually allowed by the bind policy's nodemask, previously __GFP_THISNODE would be added, but now it won't be. From the behavior POV this is still correct because the policy nodemask is used. Link: http://lkml.kernel.org/r/20180925120326.24392-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Alex Williamson <alex.williamson@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Stefan Priebe - Profihost AG <s.priebe@profihost.ag> Cc: Zi Yan <zi.yan@cs.rutgers.edu> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2957 lines
82 KiB
C
2957 lines
82 KiB
C
/*
|
|
* Copyright (C) 2009 Red Hat, Inc.
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/numa_balancing.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/shrinker.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/dax.h>
|
|
#include <linux/khugepaged.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pfn_t.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/migrate.h>
|
|
#include <linux/hashtable.h>
|
|
#include <linux/userfaultfd_k.h>
|
|
#include <linux/page_idle.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/oom.h>
|
|
|
|
#include <asm/tlb.h>
|
|
#include <asm/pgalloc.h>
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* By default, transparent hugepage support is disabled in order to avoid
|
|
* risking an increased memory footprint for applications that are not
|
|
* guaranteed to benefit from it. When transparent hugepage support is
|
|
* enabled, it is for all mappings, and khugepaged scans all mappings.
|
|
* Defrag is invoked by khugepaged hugepage allocations and by page faults
|
|
* for all hugepage allocations.
|
|
*/
|
|
unsigned long transparent_hugepage_flags __read_mostly =
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
|
|
(1<<TRANSPARENT_HUGEPAGE_FLAG)|
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
|
|
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
|
|
#endif
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
|
|
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
|
|
static struct shrinker deferred_split_shrinker;
|
|
|
|
static atomic_t huge_zero_refcount;
|
|
struct page *huge_zero_page __read_mostly;
|
|
|
|
static struct page *get_huge_zero_page(void)
|
|
{
|
|
struct page *zero_page;
|
|
retry:
|
|
if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
|
|
return READ_ONCE(huge_zero_page);
|
|
|
|
zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
|
|
HPAGE_PMD_ORDER);
|
|
if (!zero_page) {
|
|
count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
|
|
return NULL;
|
|
}
|
|
count_vm_event(THP_ZERO_PAGE_ALLOC);
|
|
preempt_disable();
|
|
if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
|
|
preempt_enable();
|
|
__free_pages(zero_page, compound_order(zero_page));
|
|
goto retry;
|
|
}
|
|
|
|
/* We take additional reference here. It will be put back by shrinker */
|
|
atomic_set(&huge_zero_refcount, 2);
|
|
preempt_enable();
|
|
return READ_ONCE(huge_zero_page);
|
|
}
|
|
|
|
static void put_huge_zero_page(void)
|
|
{
|
|
/*
|
|
* Counter should never go to zero here. Only shrinker can put
|
|
* last reference.
|
|
*/
|
|
BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
|
|
}
|
|
|
|
struct page *mm_get_huge_zero_page(struct mm_struct *mm)
|
|
{
|
|
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
return READ_ONCE(huge_zero_page);
|
|
|
|
if (!get_huge_zero_page())
|
|
return NULL;
|
|
|
|
if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
put_huge_zero_page();
|
|
|
|
return READ_ONCE(huge_zero_page);
|
|
}
|
|
|
|
void mm_put_huge_zero_page(struct mm_struct *mm)
|
|
{
|
|
if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
|
|
put_huge_zero_page();
|
|
}
|
|
|
|
static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
/* we can free zero page only if last reference remains */
|
|
return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
|
|
}
|
|
|
|
static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
|
|
struct page *zero_page = xchg(&huge_zero_page, NULL);
|
|
BUG_ON(zero_page == NULL);
|
|
__free_pages(zero_page, compound_order(zero_page));
|
|
return HPAGE_PMD_NR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct shrinker huge_zero_page_shrinker = {
|
|
.count_objects = shrink_huge_zero_page_count,
|
|
.scan_objects = shrink_huge_zero_page_scan,
|
|
.seeks = DEFAULT_SEEKS,
|
|
};
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t enabled_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "[always] madvise never\n");
|
|
else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "always [madvise] never\n");
|
|
else
|
|
return sprintf(buf, "always madvise [never]\n");
|
|
}
|
|
|
|
static ssize_t enabled_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
ssize_t ret = count;
|
|
|
|
if (!memcmp("always", buf,
|
|
min(sizeof("always")-1, count))) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
} else if (!memcmp("madvise", buf,
|
|
min(sizeof("madvise")-1, count))) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (!memcmp("never", buf,
|
|
min(sizeof("never")-1, count))) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else
|
|
ret = -EINVAL;
|
|
|
|
if (ret > 0) {
|
|
int err = start_stop_khugepaged();
|
|
if (err)
|
|
ret = err;
|
|
}
|
|
return ret;
|
|
}
|
|
static struct kobj_attribute enabled_attr =
|
|
__ATTR(enabled, 0644, enabled_show, enabled_store);
|
|
|
|
ssize_t single_hugepage_flag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
return sprintf(buf, "%d\n",
|
|
!!test_bit(flag, &transparent_hugepage_flags));
|
|
}
|
|
|
|
ssize_t single_hugepage_flag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count,
|
|
enum transparent_hugepage_flag flag)
|
|
{
|
|
unsigned long value;
|
|
int ret;
|
|
|
|
ret = kstrtoul(buf, 10, &value);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (value > 1)
|
|
return -EINVAL;
|
|
|
|
if (value)
|
|
set_bit(flag, &transparent_hugepage_flags);
|
|
else
|
|
clear_bit(flag, &transparent_hugepage_flags);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t defrag_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "[always] defer defer+madvise madvise never\n");
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "always [defer] defer+madvise madvise never\n");
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "always defer [defer+madvise] madvise never\n");
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
|
|
return sprintf(buf, "always defer defer+madvise [madvise] never\n");
|
|
return sprintf(buf, "always defer defer+madvise madvise [never]\n");
|
|
}
|
|
|
|
static ssize_t defrag_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
if (!memcmp("always", buf,
|
|
min(sizeof("always")-1, count))) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
} else if (!memcmp("defer+madvise", buf,
|
|
min(sizeof("defer+madvise")-1, count))) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (!memcmp("defer", buf,
|
|
min(sizeof("defer")-1, count))) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
} else if (!memcmp("madvise", buf,
|
|
min(sizeof("madvise")-1, count))) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else if (!memcmp("never", buf,
|
|
min(sizeof("never")-1, count))) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
static struct kobj_attribute defrag_attr =
|
|
__ATTR(defrag, 0644, defrag_show, defrag_store);
|
|
|
|
static ssize_t use_zero_page_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_hugepage_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
}
|
|
static ssize_t use_zero_page_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr, const char *buf, size_t count)
|
|
{
|
|
return single_hugepage_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
|
|
}
|
|
static struct kobj_attribute use_zero_page_attr =
|
|
__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
|
|
|
|
static ssize_t hpage_pmd_size_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
|
|
}
|
|
static struct kobj_attribute hpage_pmd_size_attr =
|
|
__ATTR_RO(hpage_pmd_size);
|
|
|
|
#ifdef CONFIG_DEBUG_VM
|
|
static ssize_t debug_cow_show(struct kobject *kobj,
|
|
struct kobj_attribute *attr, char *buf)
|
|
{
|
|
return single_hugepage_flag_show(kobj, attr, buf,
|
|
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
|
|
}
|
|
static ssize_t debug_cow_store(struct kobject *kobj,
|
|
struct kobj_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
return single_hugepage_flag_store(kobj, attr, buf, count,
|
|
TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
|
|
}
|
|
static struct kobj_attribute debug_cow_attr =
|
|
__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
|
|
#endif /* CONFIG_DEBUG_VM */
|
|
|
|
static struct attribute *hugepage_attr[] = {
|
|
&enabled_attr.attr,
|
|
&defrag_attr.attr,
|
|
&use_zero_page_attr.attr,
|
|
&hpage_pmd_size_attr.attr,
|
|
#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
|
|
&shmem_enabled_attr.attr,
|
|
#endif
|
|
#ifdef CONFIG_DEBUG_VM
|
|
&debug_cow_attr.attr,
|
|
#endif
|
|
NULL,
|
|
};
|
|
|
|
static const struct attribute_group hugepage_attr_group = {
|
|
.attrs = hugepage_attr,
|
|
};
|
|
|
|
static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
int err;
|
|
|
|
*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
|
|
if (unlikely(!*hugepage_kobj)) {
|
|
pr_err("failed to create transparent hugepage kobject\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register transparent hugepage group\n");
|
|
goto delete_obj;
|
|
}
|
|
|
|
err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
|
|
if (err) {
|
|
pr_err("failed to register transparent hugepage group\n");
|
|
goto remove_hp_group;
|
|
}
|
|
|
|
return 0;
|
|
|
|
remove_hp_group:
|
|
sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
|
|
delete_obj:
|
|
kobject_put(*hugepage_kobj);
|
|
return err;
|
|
}
|
|
|
|
static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
|
|
sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
|
|
kobject_put(hugepage_kobj);
|
|
}
|
|
#else
|
|
static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
|
|
{
|
|
}
|
|
#endif /* CONFIG_SYSFS */
|
|
|
|
static int __init hugepage_init(void)
|
|
{
|
|
int err;
|
|
struct kobject *hugepage_kobj;
|
|
|
|
if (!has_transparent_hugepage()) {
|
|
transparent_hugepage_flags = 0;
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* hugepages can't be allocated by the buddy allocator
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
|
|
/*
|
|
* we use page->mapping and page->index in second tail page
|
|
* as list_head: assuming THP order >= 2
|
|
*/
|
|
MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
|
|
|
|
err = hugepage_init_sysfs(&hugepage_kobj);
|
|
if (err)
|
|
goto err_sysfs;
|
|
|
|
err = khugepaged_init();
|
|
if (err)
|
|
goto err_slab;
|
|
|
|
err = register_shrinker(&huge_zero_page_shrinker);
|
|
if (err)
|
|
goto err_hzp_shrinker;
|
|
err = register_shrinker(&deferred_split_shrinker);
|
|
if (err)
|
|
goto err_split_shrinker;
|
|
|
|
/*
|
|
* By default disable transparent hugepages on smaller systems,
|
|
* where the extra memory used could hurt more than TLB overhead
|
|
* is likely to save. The admin can still enable it through /sys.
|
|
*/
|
|
if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
|
|
transparent_hugepage_flags = 0;
|
|
return 0;
|
|
}
|
|
|
|
err = start_stop_khugepaged();
|
|
if (err)
|
|
goto err_khugepaged;
|
|
|
|
return 0;
|
|
err_khugepaged:
|
|
unregister_shrinker(&deferred_split_shrinker);
|
|
err_split_shrinker:
|
|
unregister_shrinker(&huge_zero_page_shrinker);
|
|
err_hzp_shrinker:
|
|
khugepaged_destroy();
|
|
err_slab:
|
|
hugepage_exit_sysfs(hugepage_kobj);
|
|
err_sysfs:
|
|
return err;
|
|
}
|
|
subsys_initcall(hugepage_init);
|
|
|
|
static int __init setup_transparent_hugepage(char *str)
|
|
{
|
|
int ret = 0;
|
|
if (!str)
|
|
goto out;
|
|
if (!strcmp(str, "always")) {
|
|
set_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "madvise")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
} else if (!strcmp(str, "never")) {
|
|
clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
|
|
&transparent_hugepage_flags);
|
|
clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
|
|
&transparent_hugepage_flags);
|
|
ret = 1;
|
|
}
|
|
out:
|
|
if (!ret)
|
|
pr_warn("transparent_hugepage= cannot parse, ignored\n");
|
|
return ret;
|
|
}
|
|
__setup("transparent_hugepage=", setup_transparent_hugepage);
|
|
|
|
pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pmd = pmd_mkwrite(pmd);
|
|
return pmd;
|
|
}
|
|
|
|
static inline struct list_head *page_deferred_list(struct page *page)
|
|
{
|
|
/* ->lru in the tail pages is occupied by compound_head. */
|
|
return &page[2].deferred_list;
|
|
}
|
|
|
|
void prep_transhuge_page(struct page *page)
|
|
{
|
|
/*
|
|
* we use page->mapping and page->indexlru in second tail page
|
|
* as list_head: assuming THP order >= 2
|
|
*/
|
|
|
|
INIT_LIST_HEAD(page_deferred_list(page));
|
|
set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
|
|
}
|
|
|
|
unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
|
|
loff_t off, unsigned long flags, unsigned long size)
|
|
{
|
|
unsigned long addr;
|
|
loff_t off_end = off + len;
|
|
loff_t off_align = round_up(off, size);
|
|
unsigned long len_pad;
|
|
|
|
if (off_end <= off_align || (off_end - off_align) < size)
|
|
return 0;
|
|
|
|
len_pad = len + size;
|
|
if (len_pad < len || (off + len_pad) < off)
|
|
return 0;
|
|
|
|
addr = current->mm->get_unmapped_area(filp, 0, len_pad,
|
|
off >> PAGE_SHIFT, flags);
|
|
if (IS_ERR_VALUE(addr))
|
|
return 0;
|
|
|
|
addr += (off - addr) & (size - 1);
|
|
return addr;
|
|
}
|
|
|
|
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
|
|
unsigned long len, unsigned long pgoff, unsigned long flags)
|
|
{
|
|
loff_t off = (loff_t)pgoff << PAGE_SHIFT;
|
|
|
|
if (addr)
|
|
goto out;
|
|
if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
|
|
goto out;
|
|
|
|
addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
|
|
if (addr)
|
|
return addr;
|
|
|
|
out:
|
|
return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
|
|
}
|
|
EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
|
|
|
|
static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
|
|
struct page *page, gfp_t gfp)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct mem_cgroup *memcg;
|
|
pgtable_t pgtable;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
vm_fault_t ret = 0;
|
|
|
|
VM_BUG_ON_PAGE(!PageCompound(page), page);
|
|
|
|
if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
|
|
put_page(page);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
|
|
pgtable = pte_alloc_one(vma->vm_mm, haddr);
|
|
if (unlikely(!pgtable)) {
|
|
ret = VM_FAULT_OOM;
|
|
goto release;
|
|
}
|
|
|
|
clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
|
|
/*
|
|
* The memory barrier inside __SetPageUptodate makes sure that
|
|
* clear_huge_page writes become visible before the set_pmd_at()
|
|
* write.
|
|
*/
|
|
__SetPageUptodate(page);
|
|
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_none(*vmf->pmd))) {
|
|
goto unlock_release;
|
|
} else {
|
|
pmd_t entry;
|
|
|
|
ret = check_stable_address_space(vma->vm_mm);
|
|
if (ret)
|
|
goto unlock_release;
|
|
|
|
/* Deliver the page fault to userland */
|
|
if (userfaultfd_missing(vma)) {
|
|
vm_fault_t ret2;
|
|
|
|
spin_unlock(vmf->ptl);
|
|
mem_cgroup_cancel_charge(page, memcg, true);
|
|
put_page(page);
|
|
pte_free(vma->vm_mm, pgtable);
|
|
ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
|
|
VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
|
|
return ret2;
|
|
}
|
|
|
|
entry = mk_huge_pmd(page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
page_add_new_anon_rmap(page, vma, haddr, true);
|
|
mem_cgroup_commit_charge(page, memcg, false, true);
|
|
lru_cache_add_active_or_unevictable(page, vma);
|
|
pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
|
|
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
|
|
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
mm_inc_nr_ptes(vma->vm_mm);
|
|
spin_unlock(vmf->ptl);
|
|
count_vm_event(THP_FAULT_ALLOC);
|
|
}
|
|
|
|
return 0;
|
|
unlock_release:
|
|
spin_unlock(vmf->ptl);
|
|
release:
|
|
if (pgtable)
|
|
pte_free(vma->vm_mm, pgtable);
|
|
mem_cgroup_cancel_charge(page, memcg, true);
|
|
put_page(page);
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* always: directly stall for all thp allocations
|
|
* defer: wake kswapd and fail if not immediately available
|
|
* defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
|
|
* fail if not immediately available
|
|
* madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
|
|
* available
|
|
* never: never stall for any thp allocation
|
|
*/
|
|
static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
|
|
gfp_t this_node = 0;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
struct mempolicy *pol;
|
|
/*
|
|
* __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
|
|
* specified, to express a general desire to stay on the current
|
|
* node for optimistic allocation attempts. If the defrag mode
|
|
* and/or madvise hint requires the direct reclaim then we prefer
|
|
* to fallback to other node rather than node reclaim because that
|
|
* can lead to excessive reclaim even though there is free memory
|
|
* on other nodes. We expect that NUMA preferences are specified
|
|
* by memory policies.
|
|
*/
|
|
pol = get_vma_policy(vma, addr);
|
|
if (pol->mode != MPOL_BIND)
|
|
this_node = __GFP_THISNODE;
|
|
mpol_cond_put(pol);
|
|
#endif
|
|
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
|
|
__GFP_KSWAPD_RECLAIM | this_node);
|
|
if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
|
|
return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
|
|
this_node);
|
|
return GFP_TRANSHUGE_LIGHT | this_node;
|
|
}
|
|
|
|
/* Caller must hold page table lock. */
|
|
static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
|
|
struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
|
|
struct page *zero_page)
|
|
{
|
|
pmd_t entry;
|
|
if (!pmd_none(*pmd))
|
|
return false;
|
|
entry = mk_pmd(zero_page, vma->vm_page_prot);
|
|
entry = pmd_mkhuge(entry);
|
|
if (pgtable)
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
set_pmd_at(mm, haddr, pmd, entry);
|
|
mm_inc_nr_ptes(mm);
|
|
return true;
|
|
}
|
|
|
|
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
gfp_t gfp;
|
|
struct page *page;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
|
|
if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
|
|
return VM_FAULT_FALLBACK;
|
|
if (unlikely(anon_vma_prepare(vma)))
|
|
return VM_FAULT_OOM;
|
|
if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
|
|
return VM_FAULT_OOM;
|
|
if (!(vmf->flags & FAULT_FLAG_WRITE) &&
|
|
!mm_forbids_zeropage(vma->vm_mm) &&
|
|
transparent_hugepage_use_zero_page()) {
|
|
pgtable_t pgtable;
|
|
struct page *zero_page;
|
|
bool set;
|
|
vm_fault_t ret;
|
|
pgtable = pte_alloc_one(vma->vm_mm, haddr);
|
|
if (unlikely(!pgtable))
|
|
return VM_FAULT_OOM;
|
|
zero_page = mm_get_huge_zero_page(vma->vm_mm);
|
|
if (unlikely(!zero_page)) {
|
|
pte_free(vma->vm_mm, pgtable);
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
ret = 0;
|
|
set = false;
|
|
if (pmd_none(*vmf->pmd)) {
|
|
ret = check_stable_address_space(vma->vm_mm);
|
|
if (ret) {
|
|
spin_unlock(vmf->ptl);
|
|
} else if (userfaultfd_missing(vma)) {
|
|
spin_unlock(vmf->ptl);
|
|
ret = handle_userfault(vmf, VM_UFFD_MISSING);
|
|
VM_BUG_ON(ret & VM_FAULT_FALLBACK);
|
|
} else {
|
|
set_huge_zero_page(pgtable, vma->vm_mm, vma,
|
|
haddr, vmf->pmd, zero_page);
|
|
spin_unlock(vmf->ptl);
|
|
set = true;
|
|
}
|
|
} else
|
|
spin_unlock(vmf->ptl);
|
|
if (!set)
|
|
pte_free(vma->vm_mm, pgtable);
|
|
return ret;
|
|
}
|
|
gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
|
|
page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
|
|
if (unlikely(!page)) {
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
return VM_FAULT_FALLBACK;
|
|
}
|
|
prep_transhuge_page(page);
|
|
return __do_huge_pmd_anonymous_page(vmf, page, gfp);
|
|
}
|
|
|
|
static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
|
|
pgtable_t pgtable)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pmd_t entry;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pmd_lock(mm, pmd);
|
|
entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
|
|
if (pfn_t_devmap(pfn))
|
|
entry = pmd_mkdevmap(entry);
|
|
if (write) {
|
|
entry = pmd_mkyoung(pmd_mkdirty(entry));
|
|
entry = maybe_pmd_mkwrite(entry, vma);
|
|
}
|
|
|
|
if (pgtable) {
|
|
pgtable_trans_huge_deposit(mm, pmd, pgtable);
|
|
mm_inc_nr_ptes(mm);
|
|
}
|
|
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, pfn_t pfn, bool write)
|
|
{
|
|
pgprot_t pgprot = vma->vm_page_prot;
|
|
pgtable_t pgtable = NULL;
|
|
/*
|
|
* If we had pmd_special, we could avoid all these restrictions,
|
|
* but we need to be consistent with PTEs and architectures that
|
|
* can't support a 'special' bit.
|
|
*/
|
|
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
|
|
!pfn_t_devmap(pfn));
|
|
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
|
|
(VM_PFNMAP|VM_MIXEDMAP));
|
|
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
if (arch_needs_pgtable_deposit()) {
|
|
pgtable = pte_alloc_one(vma->vm_mm, addr);
|
|
if (!pgtable)
|
|
return VM_FAULT_OOM;
|
|
}
|
|
|
|
track_pfn_insert(vma, &pgprot, pfn);
|
|
|
|
insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pud = pud_mkwrite(pud);
|
|
return pud;
|
|
}
|
|
|
|
static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pud_t entry;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pud_lock(mm, pud);
|
|
entry = pud_mkhuge(pfn_t_pud(pfn, prot));
|
|
if (pfn_t_devmap(pfn))
|
|
entry = pud_mkdevmap(entry);
|
|
if (write) {
|
|
entry = pud_mkyoung(pud_mkdirty(entry));
|
|
entry = maybe_pud_mkwrite(entry, vma);
|
|
}
|
|
set_pud_at(mm, addr, pud, entry);
|
|
update_mmu_cache_pud(vma, addr, pud);
|
|
spin_unlock(ptl);
|
|
}
|
|
|
|
vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, pfn_t pfn, bool write)
|
|
{
|
|
pgprot_t pgprot = vma->vm_page_prot;
|
|
/*
|
|
* If we had pud_special, we could avoid all these restrictions,
|
|
* but we need to be consistent with PTEs and architectures that
|
|
* can't support a 'special' bit.
|
|
*/
|
|
BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
|
|
!pfn_t_devmap(pfn));
|
|
BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
|
|
(VM_PFNMAP|VM_MIXEDMAP));
|
|
BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
|
|
|
|
if (addr < vma->vm_start || addr >= vma->vm_end)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
track_pfn_insert(vma, &pgprot, pfn);
|
|
|
|
insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
|
|
return VM_FAULT_NOPAGE;
|
|
}
|
|
EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, int flags)
|
|
{
|
|
pmd_t _pmd;
|
|
|
|
_pmd = pmd_mkyoung(*pmd);
|
|
if (flags & FOLL_WRITE)
|
|
_pmd = pmd_mkdirty(_pmd);
|
|
if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
|
|
pmd, _pmd, flags & FOLL_WRITE))
|
|
update_mmu_cache_pmd(vma, addr, pmd);
|
|
}
|
|
|
|
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
|
|
{
|
|
unsigned long pfn = pmd_pfn(*pmd);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmd));
|
|
|
|
/*
|
|
* When we COW a devmap PMD entry, we split it into PTEs, so we should
|
|
* not be in this function with `flags & FOLL_COW` set.
|
|
*/
|
|
WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
|
|
|
|
if (flags & FOLL_WRITE && !pmd_write(*pmd))
|
|
return NULL;
|
|
|
|
if (pmd_present(*pmd) && pmd_devmap(*pmd))
|
|
/* pass */;
|
|
else
|
|
return NULL;
|
|
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pmd(vma, addr, pmd, flags);
|
|
|
|
/*
|
|
* device mapped pages can only be returned if the
|
|
* caller will manage the page reference count.
|
|
*/
|
|
if (!(flags & FOLL_GET))
|
|
return ERR_PTR(-EEXIST);
|
|
|
|
pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
|
|
*pgmap = get_dev_pagemap(pfn, *pgmap);
|
|
if (!*pgmap)
|
|
return ERR_PTR(-EFAULT);
|
|
page = pfn_to_page(pfn);
|
|
get_page(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *dst_ptl, *src_ptl;
|
|
struct page *src_page;
|
|
pmd_t pmd;
|
|
pgtable_t pgtable = NULL;
|
|
int ret = -ENOMEM;
|
|
|
|
/* Skip if can be re-fill on fault */
|
|
if (!vma_is_anonymous(vma))
|
|
return 0;
|
|
|
|
pgtable = pte_alloc_one(dst_mm, addr);
|
|
if (unlikely(!pgtable))
|
|
goto out;
|
|
|
|
dst_ptl = pmd_lock(dst_mm, dst_pmd);
|
|
src_ptl = pmd_lockptr(src_mm, src_pmd);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
ret = -EAGAIN;
|
|
pmd = *src_pmd;
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
if (unlikely(is_swap_pmd(pmd))) {
|
|
swp_entry_t entry = pmd_to_swp_entry(pmd);
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(pmd));
|
|
if (is_write_migration_entry(entry)) {
|
|
make_migration_entry_read(&entry);
|
|
pmd = swp_entry_to_pmd(entry);
|
|
if (pmd_swp_soft_dirty(*src_pmd))
|
|
pmd = pmd_swp_mksoft_dirty(pmd);
|
|
set_pmd_at(src_mm, addr, src_pmd, pmd);
|
|
}
|
|
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
mm_inc_nr_ptes(dst_mm);
|
|
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
|
|
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
#endif
|
|
|
|
if (unlikely(!pmd_trans_huge(pmd))) {
|
|
pte_free(dst_mm, pgtable);
|
|
goto out_unlock;
|
|
}
|
|
/*
|
|
* When page table lock is held, the huge zero pmd should not be
|
|
* under splitting since we don't split the page itself, only pmd to
|
|
* a page table.
|
|
*/
|
|
if (is_huge_zero_pmd(pmd)) {
|
|
struct page *zero_page;
|
|
/*
|
|
* get_huge_zero_page() will never allocate a new page here,
|
|
* since we already have a zero page to copy. It just takes a
|
|
* reference.
|
|
*/
|
|
zero_page = mm_get_huge_zero_page(dst_mm);
|
|
set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
|
|
zero_page);
|
|
ret = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
src_page = pmd_page(pmd);
|
|
VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
|
|
get_page(src_page);
|
|
page_dup_rmap(src_page, true);
|
|
add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
mm_inc_nr_ptes(dst_mm);
|
|
pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
|
|
|
|
pmdp_set_wrprotect(src_mm, addr, src_pmd);
|
|
pmd = pmd_mkold(pmd_wrprotect(pmd));
|
|
set_pmd_at(dst_mm, addr, dst_pmd, pmd);
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, int flags)
|
|
{
|
|
pud_t _pud;
|
|
|
|
_pud = pud_mkyoung(*pud);
|
|
if (flags & FOLL_WRITE)
|
|
_pud = pud_mkdirty(_pud);
|
|
if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
|
|
pud, _pud, flags & FOLL_WRITE))
|
|
update_mmu_cache_pud(vma, addr, pud);
|
|
}
|
|
|
|
struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
|
|
pud_t *pud, int flags, struct dev_pagemap **pgmap)
|
|
{
|
|
unsigned long pfn = pud_pfn(*pud);
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
|
|
assert_spin_locked(pud_lockptr(mm, pud));
|
|
|
|
if (flags & FOLL_WRITE && !pud_write(*pud))
|
|
return NULL;
|
|
|
|
if (pud_present(*pud) && pud_devmap(*pud))
|
|
/* pass */;
|
|
else
|
|
return NULL;
|
|
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pud(vma, addr, pud, flags);
|
|
|
|
/*
|
|
* device mapped pages can only be returned if the
|
|
* caller will manage the page reference count.
|
|
*/
|
|
if (!(flags & FOLL_GET))
|
|
return ERR_PTR(-EEXIST);
|
|
|
|
pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
|
|
*pgmap = get_dev_pagemap(pfn, *pgmap);
|
|
if (!*pgmap)
|
|
return ERR_PTR(-EFAULT);
|
|
page = pfn_to_page(pfn);
|
|
get_page(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
|
|
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *dst_ptl, *src_ptl;
|
|
pud_t pud;
|
|
int ret;
|
|
|
|
dst_ptl = pud_lock(dst_mm, dst_pud);
|
|
src_ptl = pud_lockptr(src_mm, src_pud);
|
|
spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
|
|
|
|
ret = -EAGAIN;
|
|
pud = *src_pud;
|
|
if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* When page table lock is held, the huge zero pud should not be
|
|
* under splitting since we don't split the page itself, only pud to
|
|
* a page table.
|
|
*/
|
|
if (is_huge_zero_pud(pud)) {
|
|
/* No huge zero pud yet */
|
|
}
|
|
|
|
pudp_set_wrprotect(src_mm, addr, src_pud);
|
|
pud = pud_mkold(pud_wrprotect(pud));
|
|
set_pud_at(dst_mm, addr, dst_pud, pud);
|
|
|
|
ret = 0;
|
|
out_unlock:
|
|
spin_unlock(src_ptl);
|
|
spin_unlock(dst_ptl);
|
|
return ret;
|
|
}
|
|
|
|
void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
|
|
{
|
|
pud_t entry;
|
|
unsigned long haddr;
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
|
|
vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
|
|
if (unlikely(!pud_same(*vmf->pud, orig_pud)))
|
|
goto unlock;
|
|
|
|
entry = pud_mkyoung(orig_pud);
|
|
if (write)
|
|
entry = pud_mkdirty(entry);
|
|
haddr = vmf->address & HPAGE_PUD_MASK;
|
|
if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
|
|
update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
|
|
|
|
unlock:
|
|
spin_unlock(vmf->ptl);
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
|
|
{
|
|
pmd_t entry;
|
|
unsigned long haddr;
|
|
bool write = vmf->flags & FAULT_FLAG_WRITE;
|
|
|
|
vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
|
|
goto unlock;
|
|
|
|
entry = pmd_mkyoung(orig_pmd);
|
|
if (write)
|
|
entry = pmd_mkdirty(entry);
|
|
haddr = vmf->address & HPAGE_PMD_MASK;
|
|
if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
|
|
update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
|
|
|
|
unlock:
|
|
spin_unlock(vmf->ptl);
|
|
}
|
|
|
|
static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
|
|
pmd_t orig_pmd, struct page *page)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
struct mem_cgroup *memcg;
|
|
pgtable_t pgtable;
|
|
pmd_t _pmd;
|
|
int i;
|
|
vm_fault_t ret = 0;
|
|
struct page **pages;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
|
|
pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
|
|
GFP_KERNEL);
|
|
if (unlikely(!pages)) {
|
|
ret |= VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
|
|
vmf->address, page_to_nid(page));
|
|
if (unlikely(!pages[i] ||
|
|
mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
|
|
GFP_KERNEL, &memcg, false))) {
|
|
if (pages[i])
|
|
put_page(pages[i]);
|
|
while (--i >= 0) {
|
|
memcg = (void *)page_private(pages[i]);
|
|
set_page_private(pages[i], 0);
|
|
mem_cgroup_cancel_charge(pages[i], memcg,
|
|
false);
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
ret |= VM_FAULT_OOM;
|
|
goto out;
|
|
}
|
|
set_page_private(pages[i], (unsigned long)memcg);
|
|
}
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
copy_user_highpage(pages[i], page + i,
|
|
haddr + PAGE_SIZE * i, vma);
|
|
__SetPageUptodate(pages[i]);
|
|
cond_resched();
|
|
}
|
|
|
|
mmun_start = haddr;
|
|
mmun_end = haddr + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
|
|
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
|
|
goto out_free_pages;
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
|
|
/*
|
|
* Leave pmd empty until pte is filled note we must notify here as
|
|
* concurrent CPU thread might write to new page before the call to
|
|
* mmu_notifier_invalidate_range_end() happens which can lead to a
|
|
* device seeing memory write in different order than CPU.
|
|
*
|
|
* See Documentation/vm/mmu_notifier.rst
|
|
*/
|
|
pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
|
|
pmd_populate(vma->vm_mm, &_pmd, pgtable);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
|
pte_t entry;
|
|
entry = mk_pte(pages[i], vma->vm_page_prot);
|
|
entry = maybe_mkwrite(pte_mkdirty(entry), vma);
|
|
memcg = (void *)page_private(pages[i]);
|
|
set_page_private(pages[i], 0);
|
|
page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
|
|
mem_cgroup_commit_charge(pages[i], memcg, false, false);
|
|
lru_cache_add_active_or_unevictable(pages[i], vma);
|
|
vmf->pte = pte_offset_map(&_pmd, haddr);
|
|
VM_BUG_ON(!pte_none(*vmf->pte));
|
|
set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
|
|
pte_unmap(vmf->pte);
|
|
}
|
|
kfree(pages);
|
|
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
|
|
page_remove_rmap(page, true);
|
|
spin_unlock(vmf->ptl);
|
|
|
|
/*
|
|
* No need to double call mmu_notifier->invalidate_range() callback as
|
|
* the above pmdp_huge_clear_flush_notify() did already call it.
|
|
*/
|
|
mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
|
|
mmun_end);
|
|
|
|
ret |= VM_FAULT_WRITE;
|
|
put_page(page);
|
|
|
|
out:
|
|
return ret;
|
|
|
|
out_free_pages:
|
|
spin_unlock(vmf->ptl);
|
|
mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
memcg = (void *)page_private(pages[i]);
|
|
set_page_private(pages[i], 0);
|
|
mem_cgroup_cancel_charge(pages[i], memcg, false);
|
|
put_page(pages[i]);
|
|
}
|
|
kfree(pages);
|
|
goto out;
|
|
}
|
|
|
|
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct page *page = NULL, *new_page;
|
|
struct mem_cgroup *memcg;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
unsigned long mmun_start; /* For mmu_notifiers */
|
|
unsigned long mmun_end; /* For mmu_notifiers */
|
|
gfp_t huge_gfp; /* for allocation and charge */
|
|
vm_fault_t ret = 0;
|
|
|
|
vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
|
|
VM_BUG_ON_VMA(!vma->anon_vma, vma);
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
goto alloc;
|
|
spin_lock(vmf->ptl);
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
|
|
goto out_unlock;
|
|
|
|
page = pmd_page(orig_pmd);
|
|
VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
|
|
/*
|
|
* We can only reuse the page if nobody else maps the huge page or it's
|
|
* part.
|
|
*/
|
|
if (!trylock_page(page)) {
|
|
get_page(page);
|
|
spin_unlock(vmf->ptl);
|
|
lock_page(page);
|
|
spin_lock(vmf->ptl);
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto out_unlock;
|
|
}
|
|
put_page(page);
|
|
}
|
|
if (reuse_swap_page(page, NULL)) {
|
|
pmd_t entry;
|
|
entry = pmd_mkyoung(orig_pmd);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
ret |= VM_FAULT_WRITE;
|
|
unlock_page(page);
|
|
goto out_unlock;
|
|
}
|
|
unlock_page(page);
|
|
get_page(page);
|
|
spin_unlock(vmf->ptl);
|
|
alloc:
|
|
if (transparent_hugepage_enabled(vma) &&
|
|
!transparent_hugepage_debug_cow()) {
|
|
huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
|
|
new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
|
|
haddr, numa_node_id());
|
|
} else
|
|
new_page = NULL;
|
|
|
|
if (likely(new_page)) {
|
|
prep_transhuge_page(new_page);
|
|
} else {
|
|
if (!page) {
|
|
split_huge_pmd(vma, vmf->pmd, vmf->address);
|
|
ret |= VM_FAULT_FALLBACK;
|
|
} else {
|
|
ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
|
|
if (ret & VM_FAULT_OOM) {
|
|
split_huge_pmd(vma, vmf->pmd, vmf->address);
|
|
ret |= VM_FAULT_FALLBACK;
|
|
}
|
|
put_page(page);
|
|
}
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
goto out;
|
|
}
|
|
|
|
if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
|
|
huge_gfp, &memcg, true))) {
|
|
put_page(new_page);
|
|
split_huge_pmd(vma, vmf->pmd, vmf->address);
|
|
if (page)
|
|
put_page(page);
|
|
ret |= VM_FAULT_FALLBACK;
|
|
count_vm_event(THP_FAULT_FALLBACK);
|
|
goto out;
|
|
}
|
|
|
|
count_vm_event(THP_FAULT_ALLOC);
|
|
|
|
if (!page)
|
|
clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
|
|
else
|
|
copy_user_huge_page(new_page, page, vmf->address,
|
|
vma, HPAGE_PMD_NR);
|
|
__SetPageUptodate(new_page);
|
|
|
|
mmun_start = haddr;
|
|
mmun_end = haddr + HPAGE_PMD_SIZE;
|
|
mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
|
|
|
|
spin_lock(vmf->ptl);
|
|
if (page)
|
|
put_page(page);
|
|
if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
|
|
spin_unlock(vmf->ptl);
|
|
mem_cgroup_cancel_charge(new_page, memcg, true);
|
|
put_page(new_page);
|
|
goto out_mn;
|
|
} else {
|
|
pmd_t entry;
|
|
entry = mk_huge_pmd(new_page, vma->vm_page_prot);
|
|
entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
|
|
pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
|
|
page_add_new_anon_rmap(new_page, vma, haddr, true);
|
|
mem_cgroup_commit_charge(new_page, memcg, false, true);
|
|
lru_cache_add_active_or_unevictable(new_page, vma);
|
|
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
if (!page) {
|
|
add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
|
|
} else {
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
page_remove_rmap(page, true);
|
|
put_page(page);
|
|
}
|
|
ret |= VM_FAULT_WRITE;
|
|
}
|
|
spin_unlock(vmf->ptl);
|
|
out_mn:
|
|
/*
|
|
* No need to double call mmu_notifier->invalidate_range() callback as
|
|
* the above pmdp_huge_clear_flush_notify() did already call it.
|
|
*/
|
|
mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
|
|
mmun_end);
|
|
out:
|
|
return ret;
|
|
out_unlock:
|
|
spin_unlock(vmf->ptl);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* FOLL_FORCE can write to even unwritable pmd's, but only
|
|
* after we've gone through a COW cycle and they are dirty.
|
|
*/
|
|
static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
|
|
{
|
|
return pmd_write(pmd) ||
|
|
((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
|
|
}
|
|
|
|
struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
pmd_t *pmd,
|
|
unsigned int flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page = NULL;
|
|
|
|
assert_spin_locked(pmd_lockptr(mm, pmd));
|
|
|
|
if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
|
|
goto out;
|
|
|
|
/* Avoid dumping huge zero page */
|
|
if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
|
|
return ERR_PTR(-EFAULT);
|
|
|
|
/* Full NUMA hinting faults to serialise migration in fault paths */
|
|
if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
|
|
goto out;
|
|
|
|
page = pmd_page(*pmd);
|
|
VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
|
|
if (flags & FOLL_TOUCH)
|
|
touch_pmd(vma, addr, pmd, flags);
|
|
if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
|
|
/*
|
|
* We don't mlock() pte-mapped THPs. This way we can avoid
|
|
* leaking mlocked pages into non-VM_LOCKED VMAs.
|
|
*
|
|
* For anon THP:
|
|
*
|
|
* In most cases the pmd is the only mapping of the page as we
|
|
* break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
|
|
* writable private mappings in populate_vma_page_range().
|
|
*
|
|
* The only scenario when we have the page shared here is if we
|
|
* mlocking read-only mapping shared over fork(). We skip
|
|
* mlocking such pages.
|
|
*
|
|
* For file THP:
|
|
*
|
|
* We can expect PageDoubleMap() to be stable under page lock:
|
|
* for file pages we set it in page_add_file_rmap(), which
|
|
* requires page to be locked.
|
|
*/
|
|
|
|
if (PageAnon(page) && compound_mapcount(page) != 1)
|
|
goto skip_mlock;
|
|
if (PageDoubleMap(page) || !page->mapping)
|
|
goto skip_mlock;
|
|
if (!trylock_page(page))
|
|
goto skip_mlock;
|
|
lru_add_drain();
|
|
if (page->mapping && !PageDoubleMap(page))
|
|
mlock_vma_page(page);
|
|
unlock_page(page);
|
|
}
|
|
skip_mlock:
|
|
page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
|
|
VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
|
|
if (flags & FOLL_GET)
|
|
get_page(page);
|
|
|
|
out:
|
|
return page;
|
|
}
|
|
|
|
/* NUMA hinting page fault entry point for trans huge pmds */
|
|
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
|
|
{
|
|
struct vm_area_struct *vma = vmf->vma;
|
|
struct anon_vma *anon_vma = NULL;
|
|
struct page *page;
|
|
unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
|
|
int page_nid = -1, this_nid = numa_node_id();
|
|
int target_nid, last_cpupid = -1;
|
|
bool page_locked;
|
|
bool migrated = false;
|
|
bool was_writable;
|
|
int flags = 0;
|
|
|
|
vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
|
|
if (unlikely(!pmd_same(pmd, *vmf->pmd)))
|
|
goto out_unlock;
|
|
|
|
/*
|
|
* If there are potential migrations, wait for completion and retry
|
|
* without disrupting NUMA hinting information. Do not relock and
|
|
* check_same as the page may no longer be mapped.
|
|
*/
|
|
if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
|
|
page = pmd_page(*vmf->pmd);
|
|
if (!get_page_unless_zero(page))
|
|
goto out_unlock;
|
|
spin_unlock(vmf->ptl);
|
|
wait_on_page_locked(page);
|
|
put_page(page);
|
|
goto out;
|
|
}
|
|
|
|
page = pmd_page(pmd);
|
|
BUG_ON(is_huge_zero_page(page));
|
|
page_nid = page_to_nid(page);
|
|
last_cpupid = page_cpupid_last(page);
|
|
count_vm_numa_event(NUMA_HINT_FAULTS);
|
|
if (page_nid == this_nid) {
|
|
count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
|
|
flags |= TNF_FAULT_LOCAL;
|
|
}
|
|
|
|
/* See similar comment in do_numa_page for explanation */
|
|
if (!pmd_savedwrite(pmd))
|
|
flags |= TNF_NO_GROUP;
|
|
|
|
/*
|
|
* Acquire the page lock to serialise THP migrations but avoid dropping
|
|
* page_table_lock if at all possible
|
|
*/
|
|
page_locked = trylock_page(page);
|
|
target_nid = mpol_misplaced(page, vma, haddr);
|
|
if (target_nid == -1) {
|
|
/* If the page was locked, there are no parallel migrations */
|
|
if (page_locked)
|
|
goto clear_pmdnuma;
|
|
}
|
|
|
|
/* Migration could have started since the pmd_trans_migrating check */
|
|
if (!page_locked) {
|
|
page_nid = -1;
|
|
if (!get_page_unless_zero(page))
|
|
goto out_unlock;
|
|
spin_unlock(vmf->ptl);
|
|
wait_on_page_locked(page);
|
|
put_page(page);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Page is misplaced. Page lock serialises migrations. Acquire anon_vma
|
|
* to serialises splits
|
|
*/
|
|
get_page(page);
|
|
spin_unlock(vmf->ptl);
|
|
anon_vma = page_lock_anon_vma_read(page);
|
|
|
|
/* Confirm the PMD did not change while page_table_lock was released */
|
|
spin_lock(vmf->ptl);
|
|
if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
|
|
unlock_page(page);
|
|
put_page(page);
|
|
page_nid = -1;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* Bail if we fail to protect against THP splits for any reason */
|
|
if (unlikely(!anon_vma)) {
|
|
put_page(page);
|
|
page_nid = -1;
|
|
goto clear_pmdnuma;
|
|
}
|
|
|
|
/*
|
|
* Since we took the NUMA fault, we must have observed the !accessible
|
|
* bit. Make sure all other CPUs agree with that, to avoid them
|
|
* modifying the page we're about to migrate.
|
|
*
|
|
* Must be done under PTL such that we'll observe the relevant
|
|
* inc_tlb_flush_pending().
|
|
*
|
|
* We are not sure a pending tlb flush here is for a huge page
|
|
* mapping or not. Hence use the tlb range variant
|
|
*/
|
|
if (mm_tlb_flush_pending(vma->vm_mm)) {
|
|
flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
|
|
/*
|
|
* change_huge_pmd() released the pmd lock before
|
|
* invalidating the secondary MMUs sharing the primary
|
|
* MMU pagetables (with ->invalidate_range()). The
|
|
* mmu_notifier_invalidate_range_end() (which
|
|
* internally calls ->invalidate_range()) in
|
|
* change_pmd_range() will run after us, so we can't
|
|
* rely on it here and we need an explicit invalidate.
|
|
*/
|
|
mmu_notifier_invalidate_range(vma->vm_mm, haddr,
|
|
haddr + HPAGE_PMD_SIZE);
|
|
}
|
|
|
|
/*
|
|
* Migrate the THP to the requested node, returns with page unlocked
|
|
* and access rights restored.
|
|
*/
|
|
spin_unlock(vmf->ptl);
|
|
|
|
migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
|
|
vmf->pmd, pmd, vmf->address, page, target_nid);
|
|
if (migrated) {
|
|
flags |= TNF_MIGRATED;
|
|
page_nid = target_nid;
|
|
} else
|
|
flags |= TNF_MIGRATE_FAIL;
|
|
|
|
goto out;
|
|
clear_pmdnuma:
|
|
BUG_ON(!PageLocked(page));
|
|
was_writable = pmd_savedwrite(pmd);
|
|
pmd = pmd_modify(pmd, vma->vm_page_prot);
|
|
pmd = pmd_mkyoung(pmd);
|
|
if (was_writable)
|
|
pmd = pmd_mkwrite(pmd);
|
|
set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
|
|
update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
|
|
unlock_page(page);
|
|
out_unlock:
|
|
spin_unlock(vmf->ptl);
|
|
|
|
out:
|
|
if (anon_vma)
|
|
page_unlock_anon_vma_read(anon_vma);
|
|
|
|
if (page_nid != -1)
|
|
task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
|
|
flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return true if we do MADV_FREE successfully on entire pmd page.
|
|
* Otherwise, return false.
|
|
*/
|
|
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr, unsigned long next)
|
|
{
|
|
spinlock_t *ptl;
|
|
pmd_t orig_pmd;
|
|
struct page *page;
|
|
struct mm_struct *mm = tlb->mm;
|
|
bool ret = false;
|
|
|
|
tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
|
|
|
|
ptl = pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
goto out_unlocked;
|
|
|
|
orig_pmd = *pmd;
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
goto out;
|
|
|
|
if (unlikely(!pmd_present(orig_pmd))) {
|
|
VM_BUG_ON(thp_migration_supported() &&
|
|
!is_pmd_migration_entry(orig_pmd));
|
|
goto out;
|
|
}
|
|
|
|
page = pmd_page(orig_pmd);
|
|
/*
|
|
* If other processes are mapping this page, we couldn't discard
|
|
* the page unless they all do MADV_FREE so let's skip the page.
|
|
*/
|
|
if (page_mapcount(page) != 1)
|
|
goto out;
|
|
|
|
if (!trylock_page(page))
|
|
goto out;
|
|
|
|
/*
|
|
* If user want to discard part-pages of THP, split it so MADV_FREE
|
|
* will deactivate only them.
|
|
*/
|
|
if (next - addr != HPAGE_PMD_SIZE) {
|
|
get_page(page);
|
|
spin_unlock(ptl);
|
|
split_huge_page(page);
|
|
unlock_page(page);
|
|
put_page(page);
|
|
goto out_unlocked;
|
|
}
|
|
|
|
if (PageDirty(page))
|
|
ClearPageDirty(page);
|
|
unlock_page(page);
|
|
|
|
if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
|
|
pmdp_invalidate(vma, addr, pmd);
|
|
orig_pmd = pmd_mkold(orig_pmd);
|
|
orig_pmd = pmd_mkclean(orig_pmd);
|
|
|
|
set_pmd_at(mm, addr, pmd, orig_pmd);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
}
|
|
|
|
mark_page_lazyfree(page);
|
|
ret = true;
|
|
out:
|
|
spin_unlock(ptl);
|
|
out_unlocked:
|
|
return ret;
|
|
}
|
|
|
|
static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
pgtable_t pgtable;
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pte_free(mm, pgtable);
|
|
mm_dec_nr_ptes(mm);
|
|
}
|
|
|
|
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pmd_t *pmd, unsigned long addr)
|
|
{
|
|
pmd_t orig_pmd;
|
|
spinlock_t *ptl;
|
|
|
|
tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
|
|
|
|
ptl = __pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
/*
|
|
* For architectures like ppc64 we look at deposited pgtable
|
|
* when calling pmdp_huge_get_and_clear. So do the
|
|
* pgtable_trans_huge_withdraw after finishing pmdp related
|
|
* operations.
|
|
*/
|
|
orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
|
|
tlb->fullmm);
|
|
tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
|
|
if (vma_is_dax(vma)) {
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
spin_unlock(ptl);
|
|
if (is_huge_zero_pmd(orig_pmd))
|
|
tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
|
|
} else if (is_huge_zero_pmd(orig_pmd)) {
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
spin_unlock(ptl);
|
|
tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
|
|
} else {
|
|
struct page *page = NULL;
|
|
int flush_needed = 1;
|
|
|
|
if (pmd_present(orig_pmd)) {
|
|
page = pmd_page(orig_pmd);
|
|
page_remove_rmap(page, true);
|
|
VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
} else if (thp_migration_supported()) {
|
|
swp_entry_t entry;
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
|
|
entry = pmd_to_swp_entry(orig_pmd);
|
|
page = pfn_to_page(swp_offset(entry));
|
|
flush_needed = 0;
|
|
} else
|
|
WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
|
|
|
|
if (PageAnon(page)) {
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
|
|
} else {
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(tlb->mm, pmd);
|
|
add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
|
|
}
|
|
|
|
spin_unlock(ptl);
|
|
if (flush_needed)
|
|
tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
#ifndef pmd_move_must_withdraw
|
|
static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
|
|
spinlock_t *old_pmd_ptl,
|
|
struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* With split pmd lock we also need to move preallocated
|
|
* PTE page table if new_pmd is on different PMD page table.
|
|
*
|
|
* We also don't deposit and withdraw tables for file pages.
|
|
*/
|
|
return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
|
|
}
|
|
#endif
|
|
|
|
static pmd_t move_soft_dirty_pmd(pmd_t pmd)
|
|
{
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
if (unlikely(is_pmd_migration_entry(pmd)))
|
|
pmd = pmd_swp_mksoft_dirty(pmd);
|
|
else if (pmd_present(pmd))
|
|
pmd = pmd_mksoft_dirty(pmd);
|
|
#endif
|
|
return pmd;
|
|
}
|
|
|
|
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
|
|
unsigned long new_addr, unsigned long old_end,
|
|
pmd_t *old_pmd, pmd_t *new_pmd)
|
|
{
|
|
spinlock_t *old_ptl, *new_ptl;
|
|
pmd_t pmd;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
bool force_flush = false;
|
|
|
|
if ((old_addr & ~HPAGE_PMD_MASK) ||
|
|
(new_addr & ~HPAGE_PMD_MASK) ||
|
|
old_end - old_addr < HPAGE_PMD_SIZE)
|
|
return false;
|
|
|
|
/*
|
|
* The destination pmd shouldn't be established, free_pgtables()
|
|
* should have release it.
|
|
*/
|
|
if (WARN_ON(!pmd_none(*new_pmd))) {
|
|
VM_BUG_ON(pmd_trans_huge(*new_pmd));
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We don't have to worry about the ordering of src and dst
|
|
* ptlocks because exclusive mmap_sem prevents deadlock.
|
|
*/
|
|
old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
|
|
if (old_ptl) {
|
|
new_ptl = pmd_lockptr(mm, new_pmd);
|
|
if (new_ptl != old_ptl)
|
|
spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
|
|
pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
|
|
if (pmd_present(pmd))
|
|
force_flush = true;
|
|
VM_BUG_ON(!pmd_none(*new_pmd));
|
|
|
|
if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
|
|
pgtable_t pgtable;
|
|
pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
|
|
pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
|
|
}
|
|
pmd = move_soft_dirty_pmd(pmd);
|
|
set_pmd_at(mm, new_addr, new_pmd, pmd);
|
|
if (force_flush)
|
|
flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
|
|
if (new_ptl != old_ptl)
|
|
spin_unlock(new_ptl);
|
|
spin_unlock(old_ptl);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Returns
|
|
* - 0 if PMD could not be locked
|
|
* - 1 if PMD was locked but protections unchange and TLB flush unnecessary
|
|
* - HPAGE_PMD_NR is protections changed and TLB flush necessary
|
|
*/
|
|
int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long addr, pgprot_t newprot, int prot_numa)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
spinlock_t *ptl;
|
|
pmd_t entry;
|
|
bool preserve_write;
|
|
int ret;
|
|
|
|
ptl = __pmd_trans_huge_lock(pmd, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
|
|
preserve_write = prot_numa && pmd_write(*pmd);
|
|
ret = 1;
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
if (is_swap_pmd(*pmd)) {
|
|
swp_entry_t entry = pmd_to_swp_entry(*pmd);
|
|
|
|
VM_BUG_ON(!is_pmd_migration_entry(*pmd));
|
|
if (is_write_migration_entry(entry)) {
|
|
pmd_t newpmd;
|
|
/*
|
|
* A protection check is difficult so
|
|
* just be safe and disable write
|
|
*/
|
|
make_migration_entry_read(&entry);
|
|
newpmd = swp_entry_to_pmd(entry);
|
|
if (pmd_swp_soft_dirty(*pmd))
|
|
newpmd = pmd_swp_mksoft_dirty(newpmd);
|
|
set_pmd_at(mm, addr, pmd, newpmd);
|
|
}
|
|
goto unlock;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Avoid trapping faults against the zero page. The read-only
|
|
* data is likely to be read-cached on the local CPU and
|
|
* local/remote hits to the zero page are not interesting.
|
|
*/
|
|
if (prot_numa && is_huge_zero_pmd(*pmd))
|
|
goto unlock;
|
|
|
|
if (prot_numa && pmd_protnone(*pmd))
|
|
goto unlock;
|
|
|
|
/*
|
|
* In case prot_numa, we are under down_read(mmap_sem). It's critical
|
|
* to not clear pmd intermittently to avoid race with MADV_DONTNEED
|
|
* which is also under down_read(mmap_sem):
|
|
*
|
|
* CPU0: CPU1:
|
|
* change_huge_pmd(prot_numa=1)
|
|
* pmdp_huge_get_and_clear_notify()
|
|
* madvise_dontneed()
|
|
* zap_pmd_range()
|
|
* pmd_trans_huge(*pmd) == 0 (without ptl)
|
|
* // skip the pmd
|
|
* set_pmd_at();
|
|
* // pmd is re-established
|
|
*
|
|
* The race makes MADV_DONTNEED miss the huge pmd and don't clear it
|
|
* which may break userspace.
|
|
*
|
|
* pmdp_invalidate() is required to make sure we don't miss
|
|
* dirty/young flags set by hardware.
|
|
*/
|
|
entry = pmdp_invalidate(vma, addr, pmd);
|
|
|
|
entry = pmd_modify(entry, newprot);
|
|
if (preserve_write)
|
|
entry = pmd_mk_savedwrite(entry);
|
|
ret = HPAGE_PMD_NR;
|
|
set_pmd_at(mm, addr, pmd, entry);
|
|
BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
|
|
unlock:
|
|
spin_unlock(ptl);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
|
|
*
|
|
* Note that if it returns page table lock pointer, this routine returns without
|
|
* unlocking page table lock. So callers must unlock it.
|
|
*/
|
|
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *ptl;
|
|
ptl = pmd_lock(vma->vm_mm, pmd);
|
|
if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
|
|
pmd_devmap(*pmd)))
|
|
return ptl;
|
|
spin_unlock(ptl);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Returns true if a given pud maps a thp, false otherwise.
|
|
*
|
|
* Note that if it returns true, this routine returns without unlocking page
|
|
* table lock. So callers must unlock it.
|
|
*/
|
|
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
|
|
{
|
|
spinlock_t *ptl;
|
|
|
|
ptl = pud_lock(vma->vm_mm, pud);
|
|
if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
|
|
return ptl;
|
|
spin_unlock(ptl);
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
|
|
pud_t *pud, unsigned long addr)
|
|
{
|
|
pud_t orig_pud;
|
|
spinlock_t *ptl;
|
|
|
|
ptl = __pud_trans_huge_lock(pud, vma);
|
|
if (!ptl)
|
|
return 0;
|
|
/*
|
|
* For architectures like ppc64 we look at deposited pgtable
|
|
* when calling pudp_huge_get_and_clear. So do the
|
|
* pgtable_trans_huge_withdraw after finishing pudp related
|
|
* operations.
|
|
*/
|
|
orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
|
|
tlb->fullmm);
|
|
tlb_remove_pud_tlb_entry(tlb, pud, addr);
|
|
if (vma_is_dax(vma)) {
|
|
spin_unlock(ptl);
|
|
/* No zero page support yet */
|
|
} else {
|
|
/* No support for anonymous PUD pages yet */
|
|
BUG();
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long haddr)
|
|
{
|
|
VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
|
|
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
|
|
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
|
|
VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
|
|
|
|
count_vm_event(THP_SPLIT_PUD);
|
|
|
|
pudp_huge_clear_flush_notify(vma, haddr, pud);
|
|
}
|
|
|
|
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long haddr = address & HPAGE_PUD_MASK;
|
|
|
|
mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
|
|
ptl = pud_lock(mm, pud);
|
|
if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
|
|
goto out;
|
|
__split_huge_pud_locked(vma, pud, haddr);
|
|
|
|
out:
|
|
spin_unlock(ptl);
|
|
/*
|
|
* No need to double call mmu_notifier->invalidate_range() callback as
|
|
* the above pudp_huge_clear_flush_notify() did already call it.
|
|
*/
|
|
mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
|
|
HPAGE_PUD_SIZE);
|
|
}
|
|
#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
|
|
|
|
static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
|
|
unsigned long haddr, pmd_t *pmd)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgtable_t pgtable;
|
|
pmd_t _pmd;
|
|
int i;
|
|
|
|
/*
|
|
* Leave pmd empty until pte is filled note that it is fine to delay
|
|
* notification until mmu_notifier_invalidate_range_end() as we are
|
|
* replacing a zero pmd write protected page with a zero pte write
|
|
* protected page.
|
|
*
|
|
* See Documentation/vm/mmu_notifier.rst
|
|
*/
|
|
pmdp_huge_clear_flush(vma, haddr, pmd);
|
|
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
|
|
pte_t *pte, entry;
|
|
entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
|
|
entry = pte_mkspecial(entry);
|
|
pte = pte_offset_map(&_pmd, haddr);
|
|
VM_BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, haddr, pte, entry);
|
|
pte_unmap(pte);
|
|
}
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
}
|
|
|
|
static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long haddr, bool freeze)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct page *page;
|
|
pgtable_t pgtable;
|
|
pmd_t old_pmd, _pmd;
|
|
bool young, write, soft_dirty, pmd_migration = false;
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
|
|
VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
|
|
VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
|
|
VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
|
|
&& !pmd_devmap(*pmd));
|
|
|
|
count_vm_event(THP_SPLIT_PMD);
|
|
|
|
if (!vma_is_anonymous(vma)) {
|
|
_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
|
|
/*
|
|
* We are going to unmap this huge page. So
|
|
* just go ahead and zap it
|
|
*/
|
|
if (arch_needs_pgtable_deposit())
|
|
zap_deposited_table(mm, pmd);
|
|
if (vma_is_dax(vma))
|
|
return;
|
|
page = pmd_page(_pmd);
|
|
if (!PageDirty(page) && pmd_dirty(_pmd))
|
|
set_page_dirty(page);
|
|
if (!PageReferenced(page) && pmd_young(_pmd))
|
|
SetPageReferenced(page);
|
|
page_remove_rmap(page, true);
|
|
put_page(page);
|
|
add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
|
|
return;
|
|
} else if (is_huge_zero_pmd(*pmd)) {
|
|
/*
|
|
* FIXME: Do we want to invalidate secondary mmu by calling
|
|
* mmu_notifier_invalidate_range() see comments below inside
|
|
* __split_huge_pmd() ?
|
|
*
|
|
* We are going from a zero huge page write protected to zero
|
|
* small page also write protected so it does not seems useful
|
|
* to invalidate secondary mmu at this time.
|
|
*/
|
|
return __split_huge_zero_page_pmd(vma, haddr, pmd);
|
|
}
|
|
|
|
/*
|
|
* Up to this point the pmd is present and huge and userland has the
|
|
* whole access to the hugepage during the split (which happens in
|
|
* place). If we overwrite the pmd with the not-huge version pointing
|
|
* to the pte here (which of course we could if all CPUs were bug
|
|
* free), userland could trigger a small page size TLB miss on the
|
|
* small sized TLB while the hugepage TLB entry is still established in
|
|
* the huge TLB. Some CPU doesn't like that.
|
|
* See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
|
|
* 383 on page 93. Intel should be safe but is also warns that it's
|
|
* only safe if the permission and cache attributes of the two entries
|
|
* loaded in the two TLB is identical (which should be the case here).
|
|
* But it is generally safer to never allow small and huge TLB entries
|
|
* for the same virtual address to be loaded simultaneously. So instead
|
|
* of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
|
|
* current pmd notpresent (atomically because here the pmd_trans_huge
|
|
* must remain set at all times on the pmd until the split is complete
|
|
* for this pmd), then we flush the SMP TLB and finally we write the
|
|
* non-huge version of the pmd entry with pmd_populate.
|
|
*/
|
|
old_pmd = pmdp_invalidate(vma, haddr, pmd);
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
pmd_migration = is_pmd_migration_entry(old_pmd);
|
|
if (pmd_migration) {
|
|
swp_entry_t entry;
|
|
|
|
entry = pmd_to_swp_entry(old_pmd);
|
|
page = pfn_to_page(swp_offset(entry));
|
|
} else
|
|
#endif
|
|
page = pmd_page(old_pmd);
|
|
VM_BUG_ON_PAGE(!page_count(page), page);
|
|
page_ref_add(page, HPAGE_PMD_NR - 1);
|
|
if (pmd_dirty(old_pmd))
|
|
SetPageDirty(page);
|
|
write = pmd_write(old_pmd);
|
|
young = pmd_young(old_pmd);
|
|
soft_dirty = pmd_soft_dirty(old_pmd);
|
|
|
|
/*
|
|
* Withdraw the table only after we mark the pmd entry invalid.
|
|
* This's critical for some architectures (Power).
|
|
*/
|
|
pgtable = pgtable_trans_huge_withdraw(mm, pmd);
|
|
pmd_populate(mm, &_pmd, pgtable);
|
|
|
|
for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
|
|
pte_t entry, *pte;
|
|
/*
|
|
* Note that NUMA hinting access restrictions are not
|
|
* transferred to avoid any possibility of altering
|
|
* permissions across VMAs.
|
|
*/
|
|
if (freeze || pmd_migration) {
|
|
swp_entry_t swp_entry;
|
|
swp_entry = make_migration_entry(page + i, write);
|
|
entry = swp_entry_to_pte(swp_entry);
|
|
if (soft_dirty)
|
|
entry = pte_swp_mksoft_dirty(entry);
|
|
} else {
|
|
entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
|
|
entry = maybe_mkwrite(entry, vma);
|
|
if (!write)
|
|
entry = pte_wrprotect(entry);
|
|
if (!young)
|
|
entry = pte_mkold(entry);
|
|
if (soft_dirty)
|
|
entry = pte_mksoft_dirty(entry);
|
|
}
|
|
pte = pte_offset_map(&_pmd, addr);
|
|
BUG_ON(!pte_none(*pte));
|
|
set_pte_at(mm, addr, pte, entry);
|
|
atomic_inc(&page[i]._mapcount);
|
|
pte_unmap(pte);
|
|
}
|
|
|
|
/*
|
|
* Set PG_double_map before dropping compound_mapcount to avoid
|
|
* false-negative page_mapped().
|
|
*/
|
|
if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
atomic_inc(&page[i]._mapcount);
|
|
}
|
|
|
|
if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
|
|
/* Last compound_mapcount is gone. */
|
|
__dec_node_page_state(page, NR_ANON_THPS);
|
|
if (TestClearPageDoubleMap(page)) {
|
|
/* No need in mapcount reference anymore */
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
atomic_dec(&page[i]._mapcount);
|
|
}
|
|
}
|
|
|
|
smp_wmb(); /* make pte visible before pmd */
|
|
pmd_populate(mm, pmd, pgtable);
|
|
|
|
if (freeze) {
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
page_remove_rmap(page + i, false);
|
|
put_page(page + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
|
|
unsigned long address, bool freeze, struct page *page)
|
|
{
|
|
spinlock_t *ptl;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long haddr = address & HPAGE_PMD_MASK;
|
|
|
|
mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
|
|
ptl = pmd_lock(mm, pmd);
|
|
|
|
/*
|
|
* If caller asks to setup a migration entries, we need a page to check
|
|
* pmd against. Otherwise we can end up replacing wrong page.
|
|
*/
|
|
VM_BUG_ON(freeze && !page);
|
|
if (page && page != pmd_page(*pmd))
|
|
goto out;
|
|
|
|
if (pmd_trans_huge(*pmd)) {
|
|
page = pmd_page(*pmd);
|
|
if (PageMlocked(page))
|
|
clear_page_mlock(page);
|
|
} else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
|
|
goto out;
|
|
__split_huge_pmd_locked(vma, pmd, haddr, freeze);
|
|
out:
|
|
spin_unlock(ptl);
|
|
/*
|
|
* No need to double call mmu_notifier->invalidate_range() callback.
|
|
* They are 3 cases to consider inside __split_huge_pmd_locked():
|
|
* 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
|
|
* 2) __split_huge_zero_page_pmd() read only zero page and any write
|
|
* fault will trigger a flush_notify before pointing to a new page
|
|
* (it is fine if the secondary mmu keeps pointing to the old zero
|
|
* page in the meantime)
|
|
* 3) Split a huge pmd into pte pointing to the same page. No need
|
|
* to invalidate secondary tlb entry they are all still valid.
|
|
* any further changes to individual pte will notify. So no need
|
|
* to call mmu_notifier->invalidate_range()
|
|
*/
|
|
mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
|
|
HPAGE_PMD_SIZE);
|
|
}
|
|
|
|
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
|
|
bool freeze, struct page *page)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = pgd_offset(vma->vm_mm, address);
|
|
if (!pgd_present(*pgd))
|
|
return;
|
|
|
|
p4d = p4d_offset(pgd, address);
|
|
if (!p4d_present(*p4d))
|
|
return;
|
|
|
|
pud = pud_offset(p4d, address);
|
|
if (!pud_present(*pud))
|
|
return;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
|
|
__split_huge_pmd(vma, pmd, address, freeze, page);
|
|
}
|
|
|
|
void vma_adjust_trans_huge(struct vm_area_struct *vma,
|
|
unsigned long start,
|
|
unsigned long end,
|
|
long adjust_next)
|
|
{
|
|
/*
|
|
* If the new start address isn't hpage aligned and it could
|
|
* previously contain an hugepage: check if we need to split
|
|
* an huge pmd.
|
|
*/
|
|
if (start & ~HPAGE_PMD_MASK &&
|
|
(start & HPAGE_PMD_MASK) >= vma->vm_start &&
|
|
(start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
|
|
split_huge_pmd_address(vma, start, false, NULL);
|
|
|
|
/*
|
|
* If the new end address isn't hpage aligned and it could
|
|
* previously contain an hugepage: check if we need to split
|
|
* an huge pmd.
|
|
*/
|
|
if (end & ~HPAGE_PMD_MASK &&
|
|
(end & HPAGE_PMD_MASK) >= vma->vm_start &&
|
|
(end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
|
|
split_huge_pmd_address(vma, end, false, NULL);
|
|
|
|
/*
|
|
* If we're also updating the vma->vm_next->vm_start, if the new
|
|
* vm_next->vm_start isn't page aligned and it could previously
|
|
* contain an hugepage: check if we need to split an huge pmd.
|
|
*/
|
|
if (adjust_next > 0) {
|
|
struct vm_area_struct *next = vma->vm_next;
|
|
unsigned long nstart = next->vm_start;
|
|
nstart += adjust_next << PAGE_SHIFT;
|
|
if (nstart & ~HPAGE_PMD_MASK &&
|
|
(nstart & HPAGE_PMD_MASK) >= next->vm_start &&
|
|
(nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
|
|
split_huge_pmd_address(next, nstart, false, NULL);
|
|
}
|
|
}
|
|
|
|
static void freeze_page(struct page *page)
|
|
{
|
|
enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
|
|
TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
|
|
bool unmap_success;
|
|
|
|
VM_BUG_ON_PAGE(!PageHead(page), page);
|
|
|
|
if (PageAnon(page))
|
|
ttu_flags |= TTU_SPLIT_FREEZE;
|
|
|
|
unmap_success = try_to_unmap(page, ttu_flags);
|
|
VM_BUG_ON_PAGE(!unmap_success, page);
|
|
}
|
|
|
|
static void unfreeze_page(struct page *page)
|
|
{
|
|
int i;
|
|
if (PageTransHuge(page)) {
|
|
remove_migration_ptes(page, page, true);
|
|
} else {
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
remove_migration_ptes(page + i, page + i, true);
|
|
}
|
|
}
|
|
|
|
static void __split_huge_page_tail(struct page *head, int tail,
|
|
struct lruvec *lruvec, struct list_head *list)
|
|
{
|
|
struct page *page_tail = head + tail;
|
|
|
|
VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
|
|
|
|
/*
|
|
* Clone page flags before unfreezing refcount.
|
|
*
|
|
* After successful get_page_unless_zero() might follow flags change,
|
|
* for exmaple lock_page() which set PG_waiters.
|
|
*/
|
|
page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
|
|
page_tail->flags |= (head->flags &
|
|
((1L << PG_referenced) |
|
|
(1L << PG_swapbacked) |
|
|
(1L << PG_swapcache) |
|
|
(1L << PG_mlocked) |
|
|
(1L << PG_uptodate) |
|
|
(1L << PG_active) |
|
|
(1L << PG_workingset) |
|
|
(1L << PG_locked) |
|
|
(1L << PG_unevictable) |
|
|
(1L << PG_dirty)));
|
|
|
|
/* Page flags must be visible before we make the page non-compound. */
|
|
smp_wmb();
|
|
|
|
/*
|
|
* Clear PageTail before unfreezing page refcount.
|
|
*
|
|
* After successful get_page_unless_zero() might follow put_page()
|
|
* which needs correct compound_head().
|
|
*/
|
|
clear_compound_head(page_tail);
|
|
|
|
/* Finally unfreeze refcount. Additional reference from page cache. */
|
|
page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
|
|
PageSwapCache(head)));
|
|
|
|
if (page_is_young(head))
|
|
set_page_young(page_tail);
|
|
if (page_is_idle(head))
|
|
set_page_idle(page_tail);
|
|
|
|
/* ->mapping in first tail page is compound_mapcount */
|
|
VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
|
|
page_tail);
|
|
page_tail->mapping = head->mapping;
|
|
|
|
page_tail->index = head->index + tail;
|
|
page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
|
|
|
|
/*
|
|
* always add to the tail because some iterators expect new
|
|
* pages to show after the currently processed elements - e.g.
|
|
* migrate_pages
|
|
*/
|
|
lru_add_page_tail(head, page_tail, lruvec, list);
|
|
}
|
|
|
|
static void __split_huge_page(struct page *page, struct list_head *list,
|
|
unsigned long flags)
|
|
{
|
|
struct page *head = compound_head(page);
|
|
struct zone *zone = page_zone(head);
|
|
struct lruvec *lruvec;
|
|
pgoff_t end = -1;
|
|
int i;
|
|
|
|
lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
|
|
|
|
/* complete memcg works before add pages to LRU */
|
|
mem_cgroup_split_huge_fixup(head);
|
|
|
|
if (!PageAnon(page))
|
|
end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
|
|
|
|
for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
|
|
__split_huge_page_tail(head, i, lruvec, list);
|
|
/* Some pages can be beyond i_size: drop them from page cache */
|
|
if (head[i].index >= end) {
|
|
ClearPageDirty(head + i);
|
|
__delete_from_page_cache(head + i, NULL);
|
|
if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
|
|
shmem_uncharge(head->mapping->host, 1);
|
|
put_page(head + i);
|
|
}
|
|
}
|
|
|
|
ClearPageCompound(head);
|
|
/* See comment in __split_huge_page_tail() */
|
|
if (PageAnon(head)) {
|
|
/* Additional pin to swap cache */
|
|
if (PageSwapCache(head))
|
|
page_ref_add(head, 2);
|
|
else
|
|
page_ref_inc(head);
|
|
} else {
|
|
/* Additional pin to page cache */
|
|
page_ref_add(head, 2);
|
|
xa_unlock(&head->mapping->i_pages);
|
|
}
|
|
|
|
spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
|
|
|
|
unfreeze_page(head);
|
|
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
struct page *subpage = head + i;
|
|
if (subpage == page)
|
|
continue;
|
|
unlock_page(subpage);
|
|
|
|
/*
|
|
* Subpages may be freed if there wasn't any mapping
|
|
* like if add_to_swap() is running on a lru page that
|
|
* had its mapping zapped. And freeing these pages
|
|
* requires taking the lru_lock so we do the put_page
|
|
* of the tail pages after the split is complete.
|
|
*/
|
|
put_page(subpage);
|
|
}
|
|
}
|
|
|
|
int total_mapcount(struct page *page)
|
|
{
|
|
int i, compound, ret;
|
|
|
|
VM_BUG_ON_PAGE(PageTail(page), page);
|
|
|
|
if (likely(!PageCompound(page)))
|
|
return atomic_read(&page->_mapcount) + 1;
|
|
|
|
compound = compound_mapcount(page);
|
|
if (PageHuge(page))
|
|
return compound;
|
|
ret = compound;
|
|
for (i = 0; i < HPAGE_PMD_NR; i++)
|
|
ret += atomic_read(&page[i]._mapcount) + 1;
|
|
/* File pages has compound_mapcount included in _mapcount */
|
|
if (!PageAnon(page))
|
|
return ret - compound * HPAGE_PMD_NR;
|
|
if (PageDoubleMap(page))
|
|
ret -= HPAGE_PMD_NR;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This calculates accurately how many mappings a transparent hugepage
|
|
* has (unlike page_mapcount() which isn't fully accurate). This full
|
|
* accuracy is primarily needed to know if copy-on-write faults can
|
|
* reuse the page and change the mapping to read-write instead of
|
|
* copying them. At the same time this returns the total_mapcount too.
|
|
*
|
|
* The function returns the highest mapcount any one of the subpages
|
|
* has. If the return value is one, even if different processes are
|
|
* mapping different subpages of the transparent hugepage, they can
|
|
* all reuse it, because each process is reusing a different subpage.
|
|
*
|
|
* The total_mapcount is instead counting all virtual mappings of the
|
|
* subpages. If the total_mapcount is equal to "one", it tells the
|
|
* caller all mappings belong to the same "mm" and in turn the
|
|
* anon_vma of the transparent hugepage can become the vma->anon_vma
|
|
* local one as no other process may be mapping any of the subpages.
|
|
*
|
|
* It would be more accurate to replace page_mapcount() with
|
|
* page_trans_huge_mapcount(), however we only use
|
|
* page_trans_huge_mapcount() in the copy-on-write faults where we
|
|
* need full accuracy to avoid breaking page pinning, because
|
|
* page_trans_huge_mapcount() is slower than page_mapcount().
|
|
*/
|
|
int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
|
|
{
|
|
int i, ret, _total_mapcount, mapcount;
|
|
|
|
/* hugetlbfs shouldn't call it */
|
|
VM_BUG_ON_PAGE(PageHuge(page), page);
|
|
|
|
if (likely(!PageTransCompound(page))) {
|
|
mapcount = atomic_read(&page->_mapcount) + 1;
|
|
if (total_mapcount)
|
|
*total_mapcount = mapcount;
|
|
return mapcount;
|
|
}
|
|
|
|
page = compound_head(page);
|
|
|
|
_total_mapcount = ret = 0;
|
|
for (i = 0; i < HPAGE_PMD_NR; i++) {
|
|
mapcount = atomic_read(&page[i]._mapcount) + 1;
|
|
ret = max(ret, mapcount);
|
|
_total_mapcount += mapcount;
|
|
}
|
|
if (PageDoubleMap(page)) {
|
|
ret -= 1;
|
|
_total_mapcount -= HPAGE_PMD_NR;
|
|
}
|
|
mapcount = compound_mapcount(page);
|
|
ret += mapcount;
|
|
_total_mapcount += mapcount;
|
|
if (total_mapcount)
|
|
*total_mapcount = _total_mapcount;
|
|
return ret;
|
|
}
|
|
|
|
/* Racy check whether the huge page can be split */
|
|
bool can_split_huge_page(struct page *page, int *pextra_pins)
|
|
{
|
|
int extra_pins;
|
|
|
|
/* Additional pins from page cache */
|
|
if (PageAnon(page))
|
|
extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
|
|
else
|
|
extra_pins = HPAGE_PMD_NR;
|
|
if (pextra_pins)
|
|
*pextra_pins = extra_pins;
|
|
return total_mapcount(page) == page_count(page) - extra_pins - 1;
|
|
}
|
|
|
|
/*
|
|
* This function splits huge page into normal pages. @page can point to any
|
|
* subpage of huge page to split. Split doesn't change the position of @page.
|
|
*
|
|
* Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
|
|
* The huge page must be locked.
|
|
*
|
|
* If @list is null, tail pages will be added to LRU list, otherwise, to @list.
|
|
*
|
|
* Both head page and tail pages will inherit mapping, flags, and so on from
|
|
* the hugepage.
|
|
*
|
|
* GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
|
|
* they are not mapped.
|
|
*
|
|
* Returns 0 if the hugepage is split successfully.
|
|
* Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
|
|
* us.
|
|
*/
|
|
int split_huge_page_to_list(struct page *page, struct list_head *list)
|
|
{
|
|
struct page *head = compound_head(page);
|
|
struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
|
|
struct anon_vma *anon_vma = NULL;
|
|
struct address_space *mapping = NULL;
|
|
int count, mapcount, extra_pins, ret;
|
|
bool mlocked;
|
|
unsigned long flags;
|
|
|
|
VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
|
|
VM_BUG_ON_PAGE(!PageLocked(page), page);
|
|
VM_BUG_ON_PAGE(!PageCompound(page), page);
|
|
|
|
if (PageWriteback(page))
|
|
return -EBUSY;
|
|
|
|
if (PageAnon(head)) {
|
|
/*
|
|
* The caller does not necessarily hold an mmap_sem that would
|
|
* prevent the anon_vma disappearing so we first we take a
|
|
* reference to it and then lock the anon_vma for write. This
|
|
* is similar to page_lock_anon_vma_read except the write lock
|
|
* is taken to serialise against parallel split or collapse
|
|
* operations.
|
|
*/
|
|
anon_vma = page_get_anon_vma(head);
|
|
if (!anon_vma) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
mapping = NULL;
|
|
anon_vma_lock_write(anon_vma);
|
|
} else {
|
|
mapping = head->mapping;
|
|
|
|
/* Truncated ? */
|
|
if (!mapping) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
anon_vma = NULL;
|
|
i_mmap_lock_read(mapping);
|
|
}
|
|
|
|
/*
|
|
* Racy check if we can split the page, before freeze_page() will
|
|
* split PMDs
|
|
*/
|
|
if (!can_split_huge_page(head, &extra_pins)) {
|
|
ret = -EBUSY;
|
|
goto out_unlock;
|
|
}
|
|
|
|
mlocked = PageMlocked(page);
|
|
freeze_page(head);
|
|
VM_BUG_ON_PAGE(compound_mapcount(head), head);
|
|
|
|
/* Make sure the page is not on per-CPU pagevec as it takes pin */
|
|
if (mlocked)
|
|
lru_add_drain();
|
|
|
|
/* prevent PageLRU to go away from under us, and freeze lru stats */
|
|
spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
|
|
|
|
if (mapping) {
|
|
XA_STATE(xas, &mapping->i_pages, page_index(head));
|
|
|
|
/*
|
|
* Check if the head page is present in page cache.
|
|
* We assume all tail are present too, if head is there.
|
|
*/
|
|
xa_lock(&mapping->i_pages);
|
|
if (xas_load(&xas) != head)
|
|
goto fail;
|
|
}
|
|
|
|
/* Prevent deferred_split_scan() touching ->_refcount */
|
|
spin_lock(&pgdata->split_queue_lock);
|
|
count = page_count(head);
|
|
mapcount = total_mapcount(head);
|
|
if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
|
|
if (!list_empty(page_deferred_list(head))) {
|
|
pgdata->split_queue_len--;
|
|
list_del(page_deferred_list(head));
|
|
}
|
|
if (mapping)
|
|
__dec_node_page_state(page, NR_SHMEM_THPS);
|
|
spin_unlock(&pgdata->split_queue_lock);
|
|
__split_huge_page(page, list, flags);
|
|
if (PageSwapCache(head)) {
|
|
swp_entry_t entry = { .val = page_private(head) };
|
|
|
|
ret = split_swap_cluster(entry);
|
|
} else
|
|
ret = 0;
|
|
} else {
|
|
if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
|
|
pr_alert("total_mapcount: %u, page_count(): %u\n",
|
|
mapcount, count);
|
|
if (PageTail(page))
|
|
dump_page(head, NULL);
|
|
dump_page(page, "total_mapcount(head) > 0");
|
|
BUG();
|
|
}
|
|
spin_unlock(&pgdata->split_queue_lock);
|
|
fail: if (mapping)
|
|
xa_unlock(&mapping->i_pages);
|
|
spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
|
|
unfreeze_page(head);
|
|
ret = -EBUSY;
|
|
}
|
|
|
|
out_unlock:
|
|
if (anon_vma) {
|
|
anon_vma_unlock_write(anon_vma);
|
|
put_anon_vma(anon_vma);
|
|
}
|
|
if (mapping)
|
|
i_mmap_unlock_read(mapping);
|
|
out:
|
|
count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
|
|
return ret;
|
|
}
|
|
|
|
void free_transhuge_page(struct page *page)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
if (!list_empty(page_deferred_list(page))) {
|
|
pgdata->split_queue_len--;
|
|
list_del(page_deferred_list(page));
|
|
}
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
free_compound_page(page);
|
|
}
|
|
|
|
void deferred_split_huge_page(struct page *page)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
|
|
unsigned long flags;
|
|
|
|
VM_BUG_ON_PAGE(!PageTransHuge(page), page);
|
|
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
if (list_empty(page_deferred_list(page))) {
|
|
count_vm_event(THP_DEFERRED_SPLIT_PAGE);
|
|
list_add_tail(page_deferred_list(page), &pgdata->split_queue);
|
|
pgdata->split_queue_len++;
|
|
}
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
}
|
|
|
|
static unsigned long deferred_split_count(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(sc->nid);
|
|
return READ_ONCE(pgdata->split_queue_len);
|
|
}
|
|
|
|
static unsigned long deferred_split_scan(struct shrinker *shrink,
|
|
struct shrink_control *sc)
|
|
{
|
|
struct pglist_data *pgdata = NODE_DATA(sc->nid);
|
|
unsigned long flags;
|
|
LIST_HEAD(list), *pos, *next;
|
|
struct page *page;
|
|
int split = 0;
|
|
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
/* Take pin on all head pages to avoid freeing them under us */
|
|
list_for_each_safe(pos, next, &pgdata->split_queue) {
|
|
page = list_entry((void *)pos, struct page, mapping);
|
|
page = compound_head(page);
|
|
if (get_page_unless_zero(page)) {
|
|
list_move(page_deferred_list(page), &list);
|
|
} else {
|
|
/* We lost race with put_compound_page() */
|
|
list_del_init(page_deferred_list(page));
|
|
pgdata->split_queue_len--;
|
|
}
|
|
if (!--sc->nr_to_scan)
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
|
|
list_for_each_safe(pos, next, &list) {
|
|
page = list_entry((void *)pos, struct page, mapping);
|
|
if (!trylock_page(page))
|
|
goto next;
|
|
/* split_huge_page() removes page from list on success */
|
|
if (!split_huge_page(page))
|
|
split++;
|
|
unlock_page(page);
|
|
next:
|
|
put_page(page);
|
|
}
|
|
|
|
spin_lock_irqsave(&pgdata->split_queue_lock, flags);
|
|
list_splice_tail(&list, &pgdata->split_queue);
|
|
spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
|
|
|
|
/*
|
|
* Stop shrinker if we didn't split any page, but the queue is empty.
|
|
* This can happen if pages were freed under us.
|
|
*/
|
|
if (!split && list_empty(&pgdata->split_queue))
|
|
return SHRINK_STOP;
|
|
return split;
|
|
}
|
|
|
|
static struct shrinker deferred_split_shrinker = {
|
|
.count_objects = deferred_split_count,
|
|
.scan_objects = deferred_split_scan,
|
|
.seeks = DEFAULT_SEEKS,
|
|
.flags = SHRINKER_NUMA_AWARE,
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
static int split_huge_pages_set(void *data, u64 val)
|
|
{
|
|
struct zone *zone;
|
|
struct page *page;
|
|
unsigned long pfn, max_zone_pfn;
|
|
unsigned long total = 0, split = 0;
|
|
|
|
if (val != 1)
|
|
return -EINVAL;
|
|
|
|
for_each_populated_zone(zone) {
|
|
max_zone_pfn = zone_end_pfn(zone);
|
|
for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
|
|
if (!pfn_valid(pfn))
|
|
continue;
|
|
|
|
page = pfn_to_page(pfn);
|
|
if (!get_page_unless_zero(page))
|
|
continue;
|
|
|
|
if (zone != page_zone(page))
|
|
goto next;
|
|
|
|
if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
|
|
goto next;
|
|
|
|
total++;
|
|
lock_page(page);
|
|
if (!split_huge_page(page))
|
|
split++;
|
|
unlock_page(page);
|
|
next:
|
|
put_page(page);
|
|
}
|
|
}
|
|
|
|
pr_info("%lu of %lu THP split\n", split, total);
|
|
|
|
return 0;
|
|
}
|
|
DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
|
|
"%llu\n");
|
|
|
|
static int __init split_huge_pages_debugfs(void)
|
|
{
|
|
void *ret;
|
|
|
|
ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
|
|
&split_huge_pages_fops);
|
|
if (!ret)
|
|
pr_warn("Failed to create split_huge_pages in debugfs");
|
|
return 0;
|
|
}
|
|
late_initcall(split_huge_pages_debugfs);
|
|
#endif
|
|
|
|
#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
|
|
void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
|
|
struct page *page)
|
|
{
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long address = pvmw->address;
|
|
pmd_t pmdval;
|
|
swp_entry_t entry;
|
|
pmd_t pmdswp;
|
|
|
|
if (!(pvmw->pmd && !pvmw->pte))
|
|
return;
|
|
|
|
flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
|
|
pmdval = *pvmw->pmd;
|
|
pmdp_invalidate(vma, address, pvmw->pmd);
|
|
if (pmd_dirty(pmdval))
|
|
set_page_dirty(page);
|
|
entry = make_migration_entry(page, pmd_write(pmdval));
|
|
pmdswp = swp_entry_to_pmd(entry);
|
|
if (pmd_soft_dirty(pmdval))
|
|
pmdswp = pmd_swp_mksoft_dirty(pmdswp);
|
|
set_pmd_at(mm, address, pvmw->pmd, pmdswp);
|
|
page_remove_rmap(page, true);
|
|
put_page(page);
|
|
}
|
|
|
|
void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
|
|
{
|
|
struct vm_area_struct *vma = pvmw->vma;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long address = pvmw->address;
|
|
unsigned long mmun_start = address & HPAGE_PMD_MASK;
|
|
pmd_t pmde;
|
|
swp_entry_t entry;
|
|
|
|
if (!(pvmw->pmd && !pvmw->pte))
|
|
return;
|
|
|
|
entry = pmd_to_swp_entry(*pvmw->pmd);
|
|
get_page(new);
|
|
pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
|
|
if (pmd_swp_soft_dirty(*pvmw->pmd))
|
|
pmde = pmd_mksoft_dirty(pmde);
|
|
if (is_write_migration_entry(entry))
|
|
pmde = maybe_pmd_mkwrite(pmde, vma);
|
|
|
|
flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
|
|
if (PageAnon(new))
|
|
page_add_anon_rmap(new, vma, mmun_start, true);
|
|
else
|
|
page_add_file_rmap(new, true);
|
|
set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
|
|
if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
|
|
mlock_vma_page(new);
|
|
update_mmu_cache_pmd(vma, address, pvmw->pmd);
|
|
}
|
|
#endif
|