linux_dsm_epyc7002/drivers/net/ethernet/cavium/thunder/nicvf_main.c
Joe Perches bf24e136a3 cavium: thunder: Remove duplicate "netdev->name" logging output
Using netdev_<level>(netdev, "%s: ...", netdev->name) duplicates the
name in the output.  Remove those uses.

Miscellanea:

o Use the netif_<level> convenience macros at the same time

Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2017-06-29 12:25:33 -04:00

1978 lines
50 KiB
C

/*
* Copyright (C) 2015 Cavium, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License
* as published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/if_vlan.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/log2.h>
#include <linux/prefetch.h>
#include <linux/irq.h>
#include <linux/iommu.h>
#include <linux/bpf.h>
#include <linux/bpf_trace.h>
#include <linux/filter.h>
#include "nic_reg.h"
#include "nic.h"
#include "nicvf_queues.h"
#include "thunder_bgx.h"
#define DRV_NAME "thunder-nicvf"
#define DRV_VERSION "1.0"
/* Supported devices */
static const struct pci_device_id nicvf_id_table[] = {
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
PCI_DEVICE_ID_THUNDER_NIC_VF,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_88XX_NIC_VF) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
PCI_DEVICE_ID_THUNDER_PASS1_NIC_VF,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_88XX_PASS1_NIC_VF) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
PCI_DEVICE_ID_THUNDER_NIC_VF,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_81XX_NIC_VF) },
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM,
PCI_DEVICE_ID_THUNDER_NIC_VF,
PCI_VENDOR_ID_CAVIUM,
PCI_SUBSYS_DEVID_83XX_NIC_VF) },
{ 0, } /* end of table */
};
MODULE_AUTHOR("Sunil Goutham");
MODULE_DESCRIPTION("Cavium Thunder NIC Virtual Function Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, nicvf_id_table);
static int debug = 0x00;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Debug message level bitmap");
static int cpi_alg = CPI_ALG_NONE;
module_param(cpi_alg, int, S_IRUGO);
MODULE_PARM_DESC(cpi_alg,
"PFC algorithm (0=none, 1=VLAN, 2=VLAN16, 3=IP Diffserv)");
static inline u8 nicvf_netdev_qidx(struct nicvf *nic, u8 qidx)
{
if (nic->sqs_mode)
return qidx + ((nic->sqs_id + 1) * MAX_CMP_QUEUES_PER_QS);
else
return qidx;
}
/* The Cavium ThunderX network controller can *only* be found in SoCs
* containing the ThunderX ARM64 CPU implementation. All accesses to the device
* registers on this platform are implicitly strongly ordered with respect
* to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use
* with no memory barriers in this driver. The readq()/writeq() functions add
* explicit ordering operation which in this case are redundant, and only
* add overhead.
*/
/* Register read/write APIs */
void nicvf_reg_write(struct nicvf *nic, u64 offset, u64 val)
{
writeq_relaxed(val, nic->reg_base + offset);
}
u64 nicvf_reg_read(struct nicvf *nic, u64 offset)
{
return readq_relaxed(nic->reg_base + offset);
}
void nicvf_queue_reg_write(struct nicvf *nic, u64 offset,
u64 qidx, u64 val)
{
void __iomem *addr = nic->reg_base + offset;
writeq_relaxed(val, addr + (qidx << NIC_Q_NUM_SHIFT));
}
u64 nicvf_queue_reg_read(struct nicvf *nic, u64 offset, u64 qidx)
{
void __iomem *addr = nic->reg_base + offset;
return readq_relaxed(addr + (qidx << NIC_Q_NUM_SHIFT));
}
/* VF -> PF mailbox communication */
static void nicvf_write_to_mbx(struct nicvf *nic, union nic_mbx *mbx)
{
u64 *msg = (u64 *)mbx;
nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 0, msg[0]);
nicvf_reg_write(nic, NIC_VF_PF_MAILBOX_0_1 + 8, msg[1]);
}
int nicvf_send_msg_to_pf(struct nicvf *nic, union nic_mbx *mbx)
{
int timeout = NIC_MBOX_MSG_TIMEOUT;
int sleep = 10;
nic->pf_acked = false;
nic->pf_nacked = false;
nicvf_write_to_mbx(nic, mbx);
/* Wait for previous message to be acked, timeout 2sec */
while (!nic->pf_acked) {
if (nic->pf_nacked) {
netdev_err(nic->netdev,
"PF NACK to mbox msg 0x%02x from VF%d\n",
(mbx->msg.msg & 0xFF), nic->vf_id);
return -EINVAL;
}
msleep(sleep);
if (nic->pf_acked)
break;
timeout -= sleep;
if (!timeout) {
netdev_err(nic->netdev,
"PF didn't ACK to mbox msg 0x%02x from VF%d\n",
(mbx->msg.msg & 0xFF), nic->vf_id);
return -EBUSY;
}
}
return 0;
}
/* Checks if VF is able to comminicate with PF
* and also gets the VNIC number this VF is associated to.
*/
static int nicvf_check_pf_ready(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.msg.msg = NIC_MBOX_MSG_READY;
if (nicvf_send_msg_to_pf(nic, &mbx)) {
netdev_err(nic->netdev,
"PF didn't respond to READY msg\n");
return 0;
}
return 1;
}
static void nicvf_read_bgx_stats(struct nicvf *nic, struct bgx_stats_msg *bgx)
{
if (bgx->rx)
nic->bgx_stats.rx_stats[bgx->idx] = bgx->stats;
else
nic->bgx_stats.tx_stats[bgx->idx] = bgx->stats;
}
static void nicvf_handle_mbx_intr(struct nicvf *nic)
{
union nic_mbx mbx = {};
u64 *mbx_data;
u64 mbx_addr;
int i;
mbx_addr = NIC_VF_PF_MAILBOX_0_1;
mbx_data = (u64 *)&mbx;
for (i = 0; i < NIC_PF_VF_MAILBOX_SIZE; i++) {
*mbx_data = nicvf_reg_read(nic, mbx_addr);
mbx_data++;
mbx_addr += sizeof(u64);
}
netdev_dbg(nic->netdev, "Mbox message: msg: 0x%x\n", mbx.msg.msg);
switch (mbx.msg.msg) {
case NIC_MBOX_MSG_READY:
nic->pf_acked = true;
nic->vf_id = mbx.nic_cfg.vf_id & 0x7F;
nic->tns_mode = mbx.nic_cfg.tns_mode & 0x7F;
nic->node = mbx.nic_cfg.node_id;
if (!nic->set_mac_pending)
ether_addr_copy(nic->netdev->dev_addr,
mbx.nic_cfg.mac_addr);
nic->sqs_mode = mbx.nic_cfg.sqs_mode;
nic->loopback_supported = mbx.nic_cfg.loopback_supported;
nic->link_up = false;
nic->duplex = 0;
nic->speed = 0;
break;
case NIC_MBOX_MSG_ACK:
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_NACK:
nic->pf_nacked = true;
break;
case NIC_MBOX_MSG_RSS_SIZE:
nic->rss_info.rss_size = mbx.rss_size.ind_tbl_size;
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_BGX_STATS:
nicvf_read_bgx_stats(nic, &mbx.bgx_stats);
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_BGX_LINK_CHANGE:
nic->pf_acked = true;
nic->link_up = mbx.link_status.link_up;
nic->duplex = mbx.link_status.duplex;
nic->speed = mbx.link_status.speed;
nic->mac_type = mbx.link_status.mac_type;
if (nic->link_up) {
netdev_info(nic->netdev, "Link is Up %d Mbps %s duplex\n",
nic->speed,
nic->duplex == DUPLEX_FULL ?
"Full" : "Half");
netif_carrier_on(nic->netdev);
netif_tx_start_all_queues(nic->netdev);
} else {
netdev_info(nic->netdev, "Link is Down\n");
netif_carrier_off(nic->netdev);
netif_tx_stop_all_queues(nic->netdev);
}
break;
case NIC_MBOX_MSG_ALLOC_SQS:
nic->sqs_count = mbx.sqs_alloc.qs_count;
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_SNICVF_PTR:
/* Primary VF: make note of secondary VF's pointer
* to be used while packet transmission.
*/
nic->snicvf[mbx.nicvf.sqs_id] =
(struct nicvf *)mbx.nicvf.nicvf;
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_PNICVF_PTR:
/* Secondary VF/Qset: make note of primary VF's pointer
* to be used while packet reception, to handover packet
* to primary VF's netdev.
*/
nic->pnicvf = (struct nicvf *)mbx.nicvf.nicvf;
nic->pf_acked = true;
break;
case NIC_MBOX_MSG_PFC:
nic->pfc.autoneg = mbx.pfc.autoneg;
nic->pfc.fc_rx = mbx.pfc.fc_rx;
nic->pfc.fc_tx = mbx.pfc.fc_tx;
nic->pf_acked = true;
break;
default:
netdev_err(nic->netdev,
"Invalid message from PF, msg 0x%x\n", mbx.msg.msg);
break;
}
nicvf_clear_intr(nic, NICVF_INTR_MBOX, 0);
}
static int nicvf_hw_set_mac_addr(struct nicvf *nic, struct net_device *netdev)
{
union nic_mbx mbx = {};
mbx.mac.msg = NIC_MBOX_MSG_SET_MAC;
mbx.mac.vf_id = nic->vf_id;
ether_addr_copy(mbx.mac.mac_addr, netdev->dev_addr);
return nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_config_cpi(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.cpi_cfg.msg = NIC_MBOX_MSG_CPI_CFG;
mbx.cpi_cfg.vf_id = nic->vf_id;
mbx.cpi_cfg.cpi_alg = nic->cpi_alg;
mbx.cpi_cfg.rq_cnt = nic->qs->rq_cnt;
nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_get_rss_size(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.rss_size.msg = NIC_MBOX_MSG_RSS_SIZE;
mbx.rss_size.vf_id = nic->vf_id;
nicvf_send_msg_to_pf(nic, &mbx);
}
void nicvf_config_rss(struct nicvf *nic)
{
union nic_mbx mbx = {};
struct nicvf_rss_info *rss = &nic->rss_info;
int ind_tbl_len = rss->rss_size;
int i, nextq = 0;
mbx.rss_cfg.vf_id = nic->vf_id;
mbx.rss_cfg.hash_bits = rss->hash_bits;
while (ind_tbl_len) {
mbx.rss_cfg.tbl_offset = nextq;
mbx.rss_cfg.tbl_len = min(ind_tbl_len,
RSS_IND_TBL_LEN_PER_MBX_MSG);
mbx.rss_cfg.msg = mbx.rss_cfg.tbl_offset ?
NIC_MBOX_MSG_RSS_CFG_CONT : NIC_MBOX_MSG_RSS_CFG;
for (i = 0; i < mbx.rss_cfg.tbl_len; i++)
mbx.rss_cfg.ind_tbl[i] = rss->ind_tbl[nextq++];
nicvf_send_msg_to_pf(nic, &mbx);
ind_tbl_len -= mbx.rss_cfg.tbl_len;
}
}
void nicvf_set_rss_key(struct nicvf *nic)
{
struct nicvf_rss_info *rss = &nic->rss_info;
u64 key_addr = NIC_VNIC_RSS_KEY_0_4;
int idx;
for (idx = 0; idx < RSS_HASH_KEY_SIZE; idx++) {
nicvf_reg_write(nic, key_addr, rss->key[idx]);
key_addr += sizeof(u64);
}
}
static int nicvf_rss_init(struct nicvf *nic)
{
struct nicvf_rss_info *rss = &nic->rss_info;
int idx;
nicvf_get_rss_size(nic);
if (cpi_alg != CPI_ALG_NONE) {
rss->enable = false;
rss->hash_bits = 0;
return 0;
}
rss->enable = true;
netdev_rss_key_fill(rss->key, RSS_HASH_KEY_SIZE * sizeof(u64));
nicvf_set_rss_key(nic);
rss->cfg = RSS_IP_HASH_ENA | RSS_TCP_HASH_ENA | RSS_UDP_HASH_ENA;
nicvf_reg_write(nic, NIC_VNIC_RSS_CFG, rss->cfg);
rss->hash_bits = ilog2(rounddown_pow_of_two(rss->rss_size));
for (idx = 0; idx < rss->rss_size; idx++)
rss->ind_tbl[idx] = ethtool_rxfh_indir_default(idx,
nic->rx_queues);
nicvf_config_rss(nic);
return 1;
}
/* Request PF to allocate additional Qsets */
static void nicvf_request_sqs(struct nicvf *nic)
{
union nic_mbx mbx = {};
int sqs;
int sqs_count = nic->sqs_count;
int rx_queues = 0, tx_queues = 0;
/* Only primary VF should request */
if (nic->sqs_mode || !nic->sqs_count)
return;
mbx.sqs_alloc.msg = NIC_MBOX_MSG_ALLOC_SQS;
mbx.sqs_alloc.vf_id = nic->vf_id;
mbx.sqs_alloc.qs_count = nic->sqs_count;
if (nicvf_send_msg_to_pf(nic, &mbx)) {
/* No response from PF */
nic->sqs_count = 0;
return;
}
/* Return if no Secondary Qsets available */
if (!nic->sqs_count)
return;
if (nic->rx_queues > MAX_RCV_QUEUES_PER_QS)
rx_queues = nic->rx_queues - MAX_RCV_QUEUES_PER_QS;
tx_queues = nic->tx_queues + nic->xdp_tx_queues;
if (tx_queues > MAX_SND_QUEUES_PER_QS)
tx_queues = tx_queues - MAX_SND_QUEUES_PER_QS;
/* Set no of Rx/Tx queues in each of the SQsets */
for (sqs = 0; sqs < nic->sqs_count; sqs++) {
mbx.nicvf.msg = NIC_MBOX_MSG_SNICVF_PTR;
mbx.nicvf.vf_id = nic->vf_id;
mbx.nicvf.sqs_id = sqs;
nicvf_send_msg_to_pf(nic, &mbx);
nic->snicvf[sqs]->sqs_id = sqs;
if (rx_queues > MAX_RCV_QUEUES_PER_QS) {
nic->snicvf[sqs]->qs->rq_cnt = MAX_RCV_QUEUES_PER_QS;
rx_queues -= MAX_RCV_QUEUES_PER_QS;
} else {
nic->snicvf[sqs]->qs->rq_cnt = rx_queues;
rx_queues = 0;
}
if (tx_queues > MAX_SND_QUEUES_PER_QS) {
nic->snicvf[sqs]->qs->sq_cnt = MAX_SND_QUEUES_PER_QS;
tx_queues -= MAX_SND_QUEUES_PER_QS;
} else {
nic->snicvf[sqs]->qs->sq_cnt = tx_queues;
tx_queues = 0;
}
nic->snicvf[sqs]->qs->cq_cnt =
max(nic->snicvf[sqs]->qs->rq_cnt, nic->snicvf[sqs]->qs->sq_cnt);
/* Initialize secondary Qset's queues and its interrupts */
nicvf_open(nic->snicvf[sqs]->netdev);
}
/* Update stack with actual Rx/Tx queue count allocated */
if (sqs_count != nic->sqs_count)
nicvf_set_real_num_queues(nic->netdev,
nic->tx_queues, nic->rx_queues);
}
/* Send this Qset's nicvf pointer to PF.
* PF inturn sends primary VF's nicvf struct to secondary Qsets/VFs
* so that packets received by these Qsets can use primary VF's netdev
*/
static void nicvf_send_vf_struct(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.nicvf.msg = NIC_MBOX_MSG_NICVF_PTR;
mbx.nicvf.sqs_mode = nic->sqs_mode;
mbx.nicvf.nicvf = (u64)nic;
nicvf_send_msg_to_pf(nic, &mbx);
}
static void nicvf_get_primary_vf_struct(struct nicvf *nic)
{
union nic_mbx mbx = {};
mbx.nicvf.msg = NIC_MBOX_MSG_PNICVF_PTR;
nicvf_send_msg_to_pf(nic, &mbx);
}
int nicvf_set_real_num_queues(struct net_device *netdev,
int tx_queues, int rx_queues)
{
int err = 0;
err = netif_set_real_num_tx_queues(netdev, tx_queues);
if (err) {
netdev_err(netdev,
"Failed to set no of Tx queues: %d\n", tx_queues);
return err;
}
err = netif_set_real_num_rx_queues(netdev, rx_queues);
if (err)
netdev_err(netdev,
"Failed to set no of Rx queues: %d\n", rx_queues);
return err;
}
static int nicvf_init_resources(struct nicvf *nic)
{
int err;
/* Enable Qset */
nicvf_qset_config(nic, true);
/* Initialize queues and HW for data transfer */
err = nicvf_config_data_transfer(nic, true);
if (err) {
netdev_err(nic->netdev,
"Failed to alloc/config VF's QSet resources\n");
return err;
}
return 0;
}
static inline bool nicvf_xdp_rx(struct nicvf *nic, struct bpf_prog *prog,
struct cqe_rx_t *cqe_rx, struct snd_queue *sq,
struct sk_buff **skb)
{
struct xdp_buff xdp;
struct page *page;
u32 action;
u16 len, offset = 0;
u64 dma_addr, cpu_addr;
void *orig_data;
/* Retrieve packet buffer's DMA address and length */
len = *((u16 *)((void *)cqe_rx + (3 * sizeof(u64))));
dma_addr = *((u64 *)((void *)cqe_rx + (7 * sizeof(u64))));
cpu_addr = nicvf_iova_to_phys(nic, dma_addr);
if (!cpu_addr)
return false;
cpu_addr = (u64)phys_to_virt(cpu_addr);
page = virt_to_page((void *)cpu_addr);
xdp.data_hard_start = page_address(page);
xdp.data = (void *)cpu_addr;
xdp.data_end = xdp.data + len;
orig_data = xdp.data;
rcu_read_lock();
action = bpf_prog_run_xdp(prog, &xdp);
rcu_read_unlock();
/* Check if XDP program has changed headers */
if (orig_data != xdp.data) {
len = xdp.data_end - xdp.data;
offset = orig_data - xdp.data;
dma_addr -= offset;
}
switch (action) {
case XDP_PASS:
/* Check if it's a recycled page, if not
* unmap the DMA mapping.
*
* Recycled page holds an extra reference.
*/
if (page_ref_count(page) == 1) {
dma_addr &= PAGE_MASK;
dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
}
/* Build SKB and pass on packet to network stack */
*skb = build_skb(xdp.data,
RCV_FRAG_LEN - cqe_rx->align_pad + offset);
if (!*skb)
put_page(page);
else
skb_put(*skb, len);
return false;
case XDP_TX:
nicvf_xdp_sq_append_pkt(nic, sq, (u64)xdp.data, dma_addr, len);
return true;
default:
bpf_warn_invalid_xdp_action(action);
case XDP_ABORTED:
trace_xdp_exception(nic->netdev, prog, action);
case XDP_DROP:
/* Check if it's a recycled page, if not
* unmap the DMA mapping.
*
* Recycled page holds an extra reference.
*/
if (page_ref_count(page) == 1) {
dma_addr &= PAGE_MASK;
dma_unmap_page_attrs(&nic->pdev->dev, dma_addr,
RCV_FRAG_LEN + XDP_PACKET_HEADROOM,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
}
put_page(page);
return true;
}
return false;
}
static void nicvf_snd_pkt_handler(struct net_device *netdev,
struct cqe_send_t *cqe_tx,
int budget, int *subdesc_cnt,
unsigned int *tx_pkts, unsigned int *tx_bytes)
{
struct sk_buff *skb = NULL;
struct page *page;
struct nicvf *nic = netdev_priv(netdev);
struct snd_queue *sq;
struct sq_hdr_subdesc *hdr;
struct sq_hdr_subdesc *tso_sqe;
sq = &nic->qs->sq[cqe_tx->sq_idx];
hdr = (struct sq_hdr_subdesc *)GET_SQ_DESC(sq, cqe_tx->sqe_ptr);
if (hdr->subdesc_type != SQ_DESC_TYPE_HEADER)
return;
/* Check for errors */
if (cqe_tx->send_status)
nicvf_check_cqe_tx_errs(nic->pnicvf, cqe_tx);
/* Is this a XDP designated Tx queue */
if (sq->is_xdp) {
page = (struct page *)sq->xdp_page[cqe_tx->sqe_ptr];
/* Check if it's recycled page or else unmap DMA mapping */
if (page && (page_ref_count(page) == 1))
nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
hdr->subdesc_cnt);
/* Release page reference for recycling */
if (page)
put_page(page);
sq->xdp_page[cqe_tx->sqe_ptr] = (u64)NULL;
*subdesc_cnt += hdr->subdesc_cnt + 1;
return;
}
skb = (struct sk_buff *)sq->skbuff[cqe_tx->sqe_ptr];
if (skb) {
/* Check for dummy descriptor used for HW TSO offload on 88xx */
if (hdr->dont_send) {
/* Get actual TSO descriptors and free them */
tso_sqe =
(struct sq_hdr_subdesc *)GET_SQ_DESC(sq, hdr->rsvd2);
nicvf_unmap_sndq_buffers(nic, sq, hdr->rsvd2,
tso_sqe->subdesc_cnt);
*subdesc_cnt += tso_sqe->subdesc_cnt + 1;
} else {
nicvf_unmap_sndq_buffers(nic, sq, cqe_tx->sqe_ptr,
hdr->subdesc_cnt);
}
*subdesc_cnt += hdr->subdesc_cnt + 1;
prefetch(skb);
(*tx_pkts)++;
*tx_bytes += skb->len;
napi_consume_skb(skb, budget);
sq->skbuff[cqe_tx->sqe_ptr] = (u64)NULL;
} else {
/* In case of SW TSO on 88xx, only last segment will have
* a SKB attached, so just free SQEs here.
*/
if (!nic->hw_tso)
*subdesc_cnt += hdr->subdesc_cnt + 1;
}
}
static inline void nicvf_set_rxhash(struct net_device *netdev,
struct cqe_rx_t *cqe_rx,
struct sk_buff *skb)
{
u8 hash_type;
u32 hash;
if (!(netdev->features & NETIF_F_RXHASH))
return;
switch (cqe_rx->rss_alg) {
case RSS_ALG_TCP_IP:
case RSS_ALG_UDP_IP:
hash_type = PKT_HASH_TYPE_L4;
hash = cqe_rx->rss_tag;
break;
case RSS_ALG_IP:
hash_type = PKT_HASH_TYPE_L3;
hash = cqe_rx->rss_tag;
break;
default:
hash_type = PKT_HASH_TYPE_NONE;
hash = 0;
}
skb_set_hash(skb, hash, hash_type);
}
static void nicvf_rcv_pkt_handler(struct net_device *netdev,
struct napi_struct *napi,
struct cqe_rx_t *cqe_rx, struct snd_queue *sq)
{
struct sk_buff *skb = NULL;
struct nicvf *nic = netdev_priv(netdev);
struct nicvf *snic = nic;
int err = 0;
int rq_idx;
rq_idx = nicvf_netdev_qidx(nic, cqe_rx->rq_idx);
if (nic->sqs_mode) {
/* Use primary VF's 'nicvf' struct */
nic = nic->pnicvf;
netdev = nic->netdev;
}
/* Check for errors */
if (cqe_rx->err_level || cqe_rx->err_opcode) {
err = nicvf_check_cqe_rx_errs(nic, cqe_rx);
if (err && !cqe_rx->rb_cnt)
return;
}
/* For XDP, ignore pkts spanning multiple pages */
if (nic->xdp_prog && (cqe_rx->rb_cnt == 1)) {
/* Packet consumed by XDP */
if (nicvf_xdp_rx(snic, nic->xdp_prog, cqe_rx, sq, &skb))
return;
} else {
skb = nicvf_get_rcv_skb(snic, cqe_rx,
nic->xdp_prog ? true : false);
}
if (!skb)
return;
if (netif_msg_pktdata(nic)) {
netdev_info(nic->netdev, "skb 0x%p, len=%d\n", skb, skb->len);
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 1,
skb->data, skb->len, true);
}
/* If error packet, drop it here */
if (err) {
dev_kfree_skb_any(skb);
return;
}
nicvf_set_rxhash(netdev, cqe_rx, skb);
skb_record_rx_queue(skb, rq_idx);
if (netdev->hw_features & NETIF_F_RXCSUM) {
/* HW by default verifies TCP/UDP/SCTP checksums */
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else {
skb_checksum_none_assert(skb);
}
skb->protocol = eth_type_trans(skb, netdev);
/* Check for stripped VLAN */
if (cqe_rx->vlan_found && cqe_rx->vlan_stripped)
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
ntohs((__force __be16)cqe_rx->vlan_tci));
if (napi && (netdev->features & NETIF_F_GRO))
napi_gro_receive(napi, skb);
else
netif_receive_skb(skb);
}
static int nicvf_cq_intr_handler(struct net_device *netdev, u8 cq_idx,
struct napi_struct *napi, int budget)
{
int processed_cqe, work_done = 0, tx_done = 0;
int cqe_count, cqe_head;
int subdesc_cnt = 0;
struct nicvf *nic = netdev_priv(netdev);
struct queue_set *qs = nic->qs;
struct cmp_queue *cq = &qs->cq[cq_idx];
struct cqe_rx_t *cq_desc;
struct netdev_queue *txq;
struct snd_queue *sq = &qs->sq[cq_idx];
unsigned int tx_pkts = 0, tx_bytes = 0, txq_idx;
spin_lock_bh(&cq->lock);
loop:
processed_cqe = 0;
/* Get no of valid CQ entries to process */
cqe_count = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS, cq_idx);
cqe_count &= CQ_CQE_COUNT;
if (!cqe_count)
goto done;
/* Get head of the valid CQ entries */
cqe_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD, cq_idx) >> 9;
cqe_head &= 0xFFFF;
while (processed_cqe < cqe_count) {
/* Get the CQ descriptor */
cq_desc = (struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head);
cqe_head++;
cqe_head &= (cq->dmem.q_len - 1);
/* Initiate prefetch for next descriptor */
prefetch((struct cqe_rx_t *)GET_CQ_DESC(cq, cqe_head));
if ((work_done >= budget) && napi &&
(cq_desc->cqe_type != CQE_TYPE_SEND)) {
break;
}
switch (cq_desc->cqe_type) {
case CQE_TYPE_RX:
nicvf_rcv_pkt_handler(netdev, napi, cq_desc, sq);
work_done++;
break;
case CQE_TYPE_SEND:
nicvf_snd_pkt_handler(netdev, (void *)cq_desc,
budget, &subdesc_cnt,
&tx_pkts, &tx_bytes);
tx_done++;
break;
case CQE_TYPE_INVALID:
case CQE_TYPE_RX_SPLIT:
case CQE_TYPE_RX_TCP:
case CQE_TYPE_SEND_PTP:
/* Ignore for now */
break;
}
processed_cqe++;
}
/* Ring doorbell to inform H/W to reuse processed CQEs */
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_DOOR,
cq_idx, processed_cqe);
if ((work_done < budget) && napi)
goto loop;
done:
/* Update SQ's descriptor free count */
if (subdesc_cnt)
nicvf_put_sq_desc(sq, subdesc_cnt);
txq_idx = nicvf_netdev_qidx(nic, cq_idx);
/* Handle XDP TX queues */
if (nic->pnicvf->xdp_prog) {
if (txq_idx < nic->pnicvf->xdp_tx_queues) {
nicvf_xdp_sq_doorbell(nic, sq, cq_idx);
goto out;
}
nic = nic->pnicvf;
txq_idx -= nic->pnicvf->xdp_tx_queues;
}
/* Wakeup TXQ if its stopped earlier due to SQ full */
if (tx_done ||
(atomic_read(&sq->free_cnt) >= MIN_SQ_DESC_PER_PKT_XMIT)) {
netdev = nic->pnicvf->netdev;
txq = netdev_get_tx_queue(netdev, txq_idx);
if (tx_pkts)
netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
/* To read updated queue and carrier status */
smp_mb();
if (netif_tx_queue_stopped(txq) && netif_carrier_ok(netdev)) {
netif_tx_wake_queue(txq);
nic = nic->pnicvf;
this_cpu_inc(nic->drv_stats->txq_wake);
netif_warn(nic, tx_err, netdev,
"Transmit queue wakeup SQ%d\n", txq_idx);
}
}
out:
spin_unlock_bh(&cq->lock);
return work_done;
}
static int nicvf_poll(struct napi_struct *napi, int budget)
{
u64 cq_head;
int work_done = 0;
struct net_device *netdev = napi->dev;
struct nicvf *nic = netdev_priv(netdev);
struct nicvf_cq_poll *cq;
cq = container_of(napi, struct nicvf_cq_poll, napi);
work_done = nicvf_cq_intr_handler(netdev, cq->cq_idx, napi, budget);
if (work_done < budget) {
/* Slow packet rate, exit polling */
napi_complete_done(napi, work_done);
/* Re-enable interrupts */
cq_head = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_HEAD,
cq->cq_idx);
nicvf_clear_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
nicvf_queue_reg_write(nic, NIC_QSET_CQ_0_7_HEAD,
cq->cq_idx, cq_head);
nicvf_enable_intr(nic, NICVF_INTR_CQ, cq->cq_idx);
}
return work_done;
}
/* Qset error interrupt handler
*
* As of now only CQ errors are handled
*/
static void nicvf_handle_qs_err(unsigned long data)
{
struct nicvf *nic = (struct nicvf *)data;
struct queue_set *qs = nic->qs;
int qidx;
u64 status;
netif_tx_disable(nic->netdev);
/* Check if it is CQ err */
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
status = nicvf_queue_reg_read(nic, NIC_QSET_CQ_0_7_STATUS,
qidx);
if (!(status & CQ_ERR_MASK))
continue;
/* Process already queued CQEs and reconfig CQ */
nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
nicvf_sq_disable(nic, qidx);
nicvf_cq_intr_handler(nic->netdev, qidx, NULL, 0);
nicvf_cmp_queue_config(nic, qs, qidx, true);
nicvf_sq_free_used_descs(nic->netdev, &qs->sq[qidx], qidx);
nicvf_sq_enable(nic, &qs->sq[qidx], qidx);
nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
}
netif_tx_start_all_queues(nic->netdev);
/* Re-enable Qset error interrupt */
nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
}
static void nicvf_dump_intr_status(struct nicvf *nic)
{
netif_info(nic, intr, nic->netdev, "interrupt status 0x%llx\n",
nicvf_reg_read(nic, NIC_VF_INT));
}
static irqreturn_t nicvf_misc_intr_handler(int irq, void *nicvf_irq)
{
struct nicvf *nic = (struct nicvf *)nicvf_irq;
u64 intr;
nicvf_dump_intr_status(nic);
intr = nicvf_reg_read(nic, NIC_VF_INT);
/* Check for spurious interrupt */
if (!(intr & NICVF_INTR_MBOX_MASK))
return IRQ_HANDLED;
nicvf_handle_mbx_intr(nic);
return IRQ_HANDLED;
}
static irqreturn_t nicvf_intr_handler(int irq, void *cq_irq)
{
struct nicvf_cq_poll *cq_poll = (struct nicvf_cq_poll *)cq_irq;
struct nicvf *nic = cq_poll->nicvf;
int qidx = cq_poll->cq_idx;
nicvf_dump_intr_status(nic);
/* Disable interrupts */
nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
/* Schedule NAPI */
napi_schedule_irqoff(&cq_poll->napi);
/* Clear interrupt */
nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
return IRQ_HANDLED;
}
static irqreturn_t nicvf_rbdr_intr_handler(int irq, void *nicvf_irq)
{
struct nicvf *nic = (struct nicvf *)nicvf_irq;
u8 qidx;
nicvf_dump_intr_status(nic);
/* Disable RBDR interrupt and schedule softirq */
for (qidx = 0; qidx < nic->qs->rbdr_cnt; qidx++) {
if (!nicvf_is_intr_enabled(nic, NICVF_INTR_RBDR, qidx))
continue;
nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
tasklet_hi_schedule(&nic->rbdr_task);
/* Clear interrupt */
nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
}
return IRQ_HANDLED;
}
static irqreturn_t nicvf_qs_err_intr_handler(int irq, void *nicvf_irq)
{
struct nicvf *nic = (struct nicvf *)nicvf_irq;
nicvf_dump_intr_status(nic);
/* Disable Qset err interrupt and schedule softirq */
nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
tasklet_hi_schedule(&nic->qs_err_task);
nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
return IRQ_HANDLED;
}
static void nicvf_set_irq_affinity(struct nicvf *nic)
{
int vec, cpu;
for (vec = 0; vec < nic->num_vec; vec++) {
if (!nic->irq_allocated[vec])
continue;
if (!zalloc_cpumask_var(&nic->affinity_mask[vec], GFP_KERNEL))
return;
/* CQ interrupts */
if (vec < NICVF_INTR_ID_SQ)
/* Leave CPU0 for RBDR and other interrupts */
cpu = nicvf_netdev_qidx(nic, vec) + 1;
else
cpu = 0;
cpumask_set_cpu(cpumask_local_spread(cpu, nic->node),
nic->affinity_mask[vec]);
irq_set_affinity_hint(pci_irq_vector(nic->pdev, vec),
nic->affinity_mask[vec]);
}
}
static int nicvf_register_interrupts(struct nicvf *nic)
{
int irq, ret = 0;
for_each_cq_irq(irq)
sprintf(nic->irq_name[irq], "%s-rxtx-%d",
nic->pnicvf->netdev->name,
nicvf_netdev_qidx(nic, irq));
for_each_sq_irq(irq)
sprintf(nic->irq_name[irq], "%s-sq-%d",
nic->pnicvf->netdev->name,
nicvf_netdev_qidx(nic, irq - NICVF_INTR_ID_SQ));
for_each_rbdr_irq(irq)
sprintf(nic->irq_name[irq], "%s-rbdr-%d",
nic->pnicvf->netdev->name,
nic->sqs_mode ? (nic->sqs_id + 1) : 0);
/* Register CQ interrupts */
for (irq = 0; irq < nic->qs->cq_cnt; irq++) {
ret = request_irq(pci_irq_vector(nic->pdev, irq),
nicvf_intr_handler,
0, nic->irq_name[irq], nic->napi[irq]);
if (ret)
goto err;
nic->irq_allocated[irq] = true;
}
/* Register RBDR interrupt */
for (irq = NICVF_INTR_ID_RBDR;
irq < (NICVF_INTR_ID_RBDR + nic->qs->rbdr_cnt); irq++) {
ret = request_irq(pci_irq_vector(nic->pdev, irq),
nicvf_rbdr_intr_handler,
0, nic->irq_name[irq], nic);
if (ret)
goto err;
nic->irq_allocated[irq] = true;
}
/* Register QS error interrupt */
sprintf(nic->irq_name[NICVF_INTR_ID_QS_ERR], "%s-qset-err-%d",
nic->pnicvf->netdev->name,
nic->sqs_mode ? (nic->sqs_id + 1) : 0);
irq = NICVF_INTR_ID_QS_ERR;
ret = request_irq(pci_irq_vector(nic->pdev, irq),
nicvf_qs_err_intr_handler,
0, nic->irq_name[irq], nic);
if (ret)
goto err;
nic->irq_allocated[irq] = true;
/* Set IRQ affinities */
nicvf_set_irq_affinity(nic);
err:
if (ret)
netdev_err(nic->netdev, "request_irq failed, vector %d\n", irq);
return ret;
}
static void nicvf_unregister_interrupts(struct nicvf *nic)
{
struct pci_dev *pdev = nic->pdev;
int irq;
/* Free registered interrupts */
for (irq = 0; irq < nic->num_vec; irq++) {
if (!nic->irq_allocated[irq])
continue;
irq_set_affinity_hint(pci_irq_vector(pdev, irq), NULL);
free_cpumask_var(nic->affinity_mask[irq]);
if (irq < NICVF_INTR_ID_SQ)
free_irq(pci_irq_vector(pdev, irq), nic->napi[irq]);
else
free_irq(pci_irq_vector(pdev, irq), nic);
nic->irq_allocated[irq] = false;
}
/* Disable MSI-X */
pci_free_irq_vectors(pdev);
nic->num_vec = 0;
}
/* Initialize MSIX vectors and register MISC interrupt.
* Send READY message to PF to check if its alive
*/
static int nicvf_register_misc_interrupt(struct nicvf *nic)
{
int ret = 0;
int irq = NICVF_INTR_ID_MISC;
/* Return if mailbox interrupt is already registered */
if (nic->pdev->msix_enabled)
return 0;
/* Enable MSI-X */
nic->num_vec = pci_msix_vec_count(nic->pdev);
ret = pci_alloc_irq_vectors(nic->pdev, nic->num_vec, nic->num_vec,
PCI_IRQ_MSIX);
if (ret < 0) {
netdev_err(nic->netdev,
"Req for #%d msix vectors failed\n", nic->num_vec);
return 1;
}
sprintf(nic->irq_name[irq], "%s Mbox", "NICVF");
/* Register Misc interrupt */
ret = request_irq(pci_irq_vector(nic->pdev, irq),
nicvf_misc_intr_handler, 0, nic->irq_name[irq], nic);
if (ret)
return ret;
nic->irq_allocated[irq] = true;
/* Enable mailbox interrupt */
nicvf_enable_intr(nic, NICVF_INTR_MBOX, 0);
/* Check if VF is able to communicate with PF */
if (!nicvf_check_pf_ready(nic)) {
nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
nicvf_unregister_interrupts(nic);
return 1;
}
return 0;
}
static netdev_tx_t nicvf_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct nicvf *nic = netdev_priv(netdev);
int qid = skb_get_queue_mapping(skb);
struct netdev_queue *txq = netdev_get_tx_queue(netdev, qid);
struct nicvf *snic;
struct snd_queue *sq;
int tmp;
/* Check for minimum packet length */
if (skb->len <= ETH_HLEN) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/* In XDP case, initial HW tx queues are used for XDP,
* but stack's queue mapping starts at '0', so skip the
* Tx queues attached to Rx queues for XDP.
*/
if (nic->xdp_prog)
qid += nic->xdp_tx_queues;
snic = nic;
/* Get secondary Qset's SQ structure */
if (qid >= MAX_SND_QUEUES_PER_QS) {
tmp = qid / MAX_SND_QUEUES_PER_QS;
snic = (struct nicvf *)nic->snicvf[tmp - 1];
if (!snic) {
netdev_warn(nic->netdev,
"Secondary Qset#%d's ptr not initialized\n",
tmp - 1);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
qid = qid % MAX_SND_QUEUES_PER_QS;
}
sq = &snic->qs->sq[qid];
if (!netif_tx_queue_stopped(txq) &&
!nicvf_sq_append_skb(snic, sq, skb, qid)) {
netif_tx_stop_queue(txq);
/* Barrier, so that stop_queue visible to other cpus */
smp_mb();
/* Check again, incase another cpu freed descriptors */
if (atomic_read(&sq->free_cnt) > MIN_SQ_DESC_PER_PKT_XMIT) {
netif_tx_wake_queue(txq);
} else {
this_cpu_inc(nic->drv_stats->txq_stop);
netif_warn(nic, tx_err, netdev,
"Transmit ring full, stopping SQ%d\n", qid);
}
return NETDEV_TX_BUSY;
}
return NETDEV_TX_OK;
}
static inline void nicvf_free_cq_poll(struct nicvf *nic)
{
struct nicvf_cq_poll *cq_poll;
int qidx;
for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
cq_poll = nic->napi[qidx];
if (!cq_poll)
continue;
nic->napi[qidx] = NULL;
kfree(cq_poll);
}
}
int nicvf_stop(struct net_device *netdev)
{
int irq, qidx;
struct nicvf *nic = netdev_priv(netdev);
struct queue_set *qs = nic->qs;
struct nicvf_cq_poll *cq_poll = NULL;
union nic_mbx mbx = {};
mbx.msg.msg = NIC_MBOX_MSG_SHUTDOWN;
nicvf_send_msg_to_pf(nic, &mbx);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(nic->netdev);
nic->link_up = false;
/* Teardown secondary qsets first */
if (!nic->sqs_mode) {
for (qidx = 0; qidx < nic->sqs_count; qidx++) {
if (!nic->snicvf[qidx])
continue;
nicvf_stop(nic->snicvf[qidx]->netdev);
nic->snicvf[qidx] = NULL;
}
}
/* Disable RBDR & QS error interrupts */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++) {
nicvf_disable_intr(nic, NICVF_INTR_RBDR, qidx);
nicvf_clear_intr(nic, NICVF_INTR_RBDR, qidx);
}
nicvf_disable_intr(nic, NICVF_INTR_QS_ERR, 0);
nicvf_clear_intr(nic, NICVF_INTR_QS_ERR, 0);
/* Wait for pending IRQ handlers to finish */
for (irq = 0; irq < nic->num_vec; irq++)
synchronize_irq(pci_irq_vector(nic->pdev, irq));
tasklet_kill(&nic->rbdr_task);
tasklet_kill(&nic->qs_err_task);
if (nic->rb_work_scheduled)
cancel_delayed_work_sync(&nic->rbdr_work);
for (qidx = 0; qidx < nic->qs->cq_cnt; qidx++) {
cq_poll = nic->napi[qidx];
if (!cq_poll)
continue;
napi_synchronize(&cq_poll->napi);
/* CQ intr is enabled while napi_complete,
* so disable it now
*/
nicvf_disable_intr(nic, NICVF_INTR_CQ, qidx);
nicvf_clear_intr(nic, NICVF_INTR_CQ, qidx);
napi_disable(&cq_poll->napi);
netif_napi_del(&cq_poll->napi);
}
netif_tx_disable(netdev);
for (qidx = 0; qidx < netdev->num_tx_queues; qidx++)
netdev_tx_reset_queue(netdev_get_tx_queue(netdev, qidx));
/* Free resources */
nicvf_config_data_transfer(nic, false);
/* Disable HW Qset */
nicvf_qset_config(nic, false);
/* disable mailbox interrupt */
nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
nicvf_unregister_interrupts(nic);
nicvf_free_cq_poll(nic);
/* Clear multiqset info */
nic->pnicvf = nic;
return 0;
}
static int nicvf_update_hw_max_frs(struct nicvf *nic, int mtu)
{
union nic_mbx mbx = {};
mbx.frs.msg = NIC_MBOX_MSG_SET_MAX_FRS;
mbx.frs.max_frs = mtu;
mbx.frs.vf_id = nic->vf_id;
return nicvf_send_msg_to_pf(nic, &mbx);
}
int nicvf_open(struct net_device *netdev)
{
int cpu, err, qidx;
struct nicvf *nic = netdev_priv(netdev);
struct queue_set *qs = nic->qs;
struct nicvf_cq_poll *cq_poll = NULL;
union nic_mbx mbx = {};
netif_carrier_off(netdev);
err = nicvf_register_misc_interrupt(nic);
if (err)
return err;
/* Register NAPI handler for processing CQEs */
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
cq_poll = kzalloc(sizeof(*cq_poll), GFP_KERNEL);
if (!cq_poll) {
err = -ENOMEM;
goto napi_del;
}
cq_poll->cq_idx = qidx;
cq_poll->nicvf = nic;
netif_napi_add(netdev, &cq_poll->napi, nicvf_poll,
NAPI_POLL_WEIGHT);
napi_enable(&cq_poll->napi);
nic->napi[qidx] = cq_poll;
}
/* Check if we got MAC address from PF or else generate a radom MAC */
if (!nic->sqs_mode && is_zero_ether_addr(netdev->dev_addr)) {
eth_hw_addr_random(netdev);
nicvf_hw_set_mac_addr(nic, netdev);
}
if (nic->set_mac_pending) {
nic->set_mac_pending = false;
nicvf_hw_set_mac_addr(nic, netdev);
}
/* Init tasklet for handling Qset err interrupt */
tasklet_init(&nic->qs_err_task, nicvf_handle_qs_err,
(unsigned long)nic);
/* Init RBDR tasklet which will refill RBDR */
tasklet_init(&nic->rbdr_task, nicvf_rbdr_task,
(unsigned long)nic);
INIT_DELAYED_WORK(&nic->rbdr_work, nicvf_rbdr_work);
/* Configure CPI alorithm */
nic->cpi_alg = cpi_alg;
if (!nic->sqs_mode)
nicvf_config_cpi(nic);
nicvf_request_sqs(nic);
if (nic->sqs_mode)
nicvf_get_primary_vf_struct(nic);
/* Configure receive side scaling and MTU */
if (!nic->sqs_mode) {
nicvf_rss_init(nic);
err = nicvf_update_hw_max_frs(nic, netdev->mtu);
if (err)
goto cleanup;
/* Clear percpu stats */
for_each_possible_cpu(cpu)
memset(per_cpu_ptr(nic->drv_stats, cpu), 0,
sizeof(struct nicvf_drv_stats));
}
err = nicvf_register_interrupts(nic);
if (err)
goto cleanup;
/* Initialize the queues */
err = nicvf_init_resources(nic);
if (err)
goto cleanup;
/* Make sure queue initialization is written */
wmb();
nicvf_reg_write(nic, NIC_VF_INT, -1);
/* Enable Qset err interrupt */
nicvf_enable_intr(nic, NICVF_INTR_QS_ERR, 0);
/* Enable completion queue interrupt */
for (qidx = 0; qidx < qs->cq_cnt; qidx++)
nicvf_enable_intr(nic, NICVF_INTR_CQ, qidx);
/* Enable RBDR threshold interrupt */
for (qidx = 0; qidx < qs->rbdr_cnt; qidx++)
nicvf_enable_intr(nic, NICVF_INTR_RBDR, qidx);
/* Send VF config done msg to PF */
mbx.msg.msg = NIC_MBOX_MSG_CFG_DONE;
nicvf_write_to_mbx(nic, &mbx);
return 0;
cleanup:
nicvf_disable_intr(nic, NICVF_INTR_MBOX, 0);
nicvf_unregister_interrupts(nic);
tasklet_kill(&nic->qs_err_task);
tasklet_kill(&nic->rbdr_task);
napi_del:
for (qidx = 0; qidx < qs->cq_cnt; qidx++) {
cq_poll = nic->napi[qidx];
if (!cq_poll)
continue;
napi_disable(&cq_poll->napi);
netif_napi_del(&cq_poll->napi);
}
nicvf_free_cq_poll(nic);
return err;
}
static int nicvf_change_mtu(struct net_device *netdev, int new_mtu)
{
struct nicvf *nic = netdev_priv(netdev);
int orig_mtu = netdev->mtu;
netdev->mtu = new_mtu;
if (!netif_running(netdev))
return 0;
if (nicvf_update_hw_max_frs(nic, new_mtu)) {
netdev->mtu = orig_mtu;
return -EINVAL;
}
return 0;
}
static int nicvf_set_mac_address(struct net_device *netdev, void *p)
{
struct sockaddr *addr = p;
struct nicvf *nic = netdev_priv(netdev);
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
if (nic->pdev->msix_enabled) {
if (nicvf_hw_set_mac_addr(nic, netdev))
return -EBUSY;
} else {
nic->set_mac_pending = true;
}
return 0;
}
void nicvf_update_lmac_stats(struct nicvf *nic)
{
int stat = 0;
union nic_mbx mbx = {};
if (!netif_running(nic->netdev))
return;
mbx.bgx_stats.msg = NIC_MBOX_MSG_BGX_STATS;
mbx.bgx_stats.vf_id = nic->vf_id;
/* Rx stats */
mbx.bgx_stats.rx = 1;
while (stat < BGX_RX_STATS_COUNT) {
mbx.bgx_stats.idx = stat;
if (nicvf_send_msg_to_pf(nic, &mbx))
return;
stat++;
}
stat = 0;
/* Tx stats */
mbx.bgx_stats.rx = 0;
while (stat < BGX_TX_STATS_COUNT) {
mbx.bgx_stats.idx = stat;
if (nicvf_send_msg_to_pf(nic, &mbx))
return;
stat++;
}
}
void nicvf_update_stats(struct nicvf *nic)
{
int qidx, cpu;
u64 tmp_stats = 0;
struct nicvf_hw_stats *stats = &nic->hw_stats;
struct nicvf_drv_stats *drv_stats;
struct queue_set *qs = nic->qs;
#define GET_RX_STATS(reg) \
nicvf_reg_read(nic, NIC_VNIC_RX_STAT_0_13 | (reg << 3))
#define GET_TX_STATS(reg) \
nicvf_reg_read(nic, NIC_VNIC_TX_STAT_0_4 | (reg << 3))
stats->rx_bytes = GET_RX_STATS(RX_OCTS);
stats->rx_ucast_frames = GET_RX_STATS(RX_UCAST);
stats->rx_bcast_frames = GET_RX_STATS(RX_BCAST);
stats->rx_mcast_frames = GET_RX_STATS(RX_MCAST);
stats->rx_fcs_errors = GET_RX_STATS(RX_FCS);
stats->rx_l2_errors = GET_RX_STATS(RX_L2ERR);
stats->rx_drop_red = GET_RX_STATS(RX_RED);
stats->rx_drop_red_bytes = GET_RX_STATS(RX_RED_OCTS);
stats->rx_drop_overrun = GET_RX_STATS(RX_ORUN);
stats->rx_drop_overrun_bytes = GET_RX_STATS(RX_ORUN_OCTS);
stats->rx_drop_bcast = GET_RX_STATS(RX_DRP_BCAST);
stats->rx_drop_mcast = GET_RX_STATS(RX_DRP_MCAST);
stats->rx_drop_l3_bcast = GET_RX_STATS(RX_DRP_L3BCAST);
stats->rx_drop_l3_mcast = GET_RX_STATS(RX_DRP_L3MCAST);
stats->tx_bytes = GET_TX_STATS(TX_OCTS);
stats->tx_ucast_frames = GET_TX_STATS(TX_UCAST);
stats->tx_bcast_frames = GET_TX_STATS(TX_BCAST);
stats->tx_mcast_frames = GET_TX_STATS(TX_MCAST);
stats->tx_drops = GET_TX_STATS(TX_DROP);
/* On T88 pass 2.0, the dummy SQE added for TSO notification
* via CQE has 'dont_send' set. Hence HW drops the pkt pointed
* pointed by dummy SQE and results in tx_drops counter being
* incremented. Subtracting it from tx_tso counter will give
* exact tx_drops counter.
*/
if (nic->t88 && nic->hw_tso) {
for_each_possible_cpu(cpu) {
drv_stats = per_cpu_ptr(nic->drv_stats, cpu);
tmp_stats += drv_stats->tx_tso;
}
stats->tx_drops = tmp_stats - stats->tx_drops;
}
stats->tx_frames = stats->tx_ucast_frames +
stats->tx_bcast_frames +
stats->tx_mcast_frames;
stats->rx_frames = stats->rx_ucast_frames +
stats->rx_bcast_frames +
stats->rx_mcast_frames;
stats->rx_drops = stats->rx_drop_red +
stats->rx_drop_overrun;
/* Update RQ and SQ stats */
for (qidx = 0; qidx < qs->rq_cnt; qidx++)
nicvf_update_rq_stats(nic, qidx);
for (qidx = 0; qidx < qs->sq_cnt; qidx++)
nicvf_update_sq_stats(nic, qidx);
}
static void nicvf_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct nicvf *nic = netdev_priv(netdev);
struct nicvf_hw_stats *hw_stats = &nic->hw_stats;
nicvf_update_stats(nic);
stats->rx_bytes = hw_stats->rx_bytes;
stats->rx_packets = hw_stats->rx_frames;
stats->rx_dropped = hw_stats->rx_drops;
stats->multicast = hw_stats->rx_mcast_frames;
stats->tx_bytes = hw_stats->tx_bytes;
stats->tx_packets = hw_stats->tx_frames;
stats->tx_dropped = hw_stats->tx_drops;
}
static void nicvf_tx_timeout(struct net_device *dev)
{
struct nicvf *nic = netdev_priv(dev);
netif_warn(nic, tx_err, dev, "Transmit timed out, resetting\n");
this_cpu_inc(nic->drv_stats->tx_timeout);
schedule_work(&nic->reset_task);
}
static void nicvf_reset_task(struct work_struct *work)
{
struct nicvf *nic;
nic = container_of(work, struct nicvf, reset_task);
if (!netif_running(nic->netdev))
return;
nicvf_stop(nic->netdev);
nicvf_open(nic->netdev);
netif_trans_update(nic->netdev);
}
static int nicvf_config_loopback(struct nicvf *nic,
netdev_features_t features)
{
union nic_mbx mbx = {};
mbx.lbk.msg = NIC_MBOX_MSG_LOOPBACK;
mbx.lbk.vf_id = nic->vf_id;
mbx.lbk.enable = (features & NETIF_F_LOOPBACK) != 0;
return nicvf_send_msg_to_pf(nic, &mbx);
}
static netdev_features_t nicvf_fix_features(struct net_device *netdev,
netdev_features_t features)
{
struct nicvf *nic = netdev_priv(netdev);
if ((features & NETIF_F_LOOPBACK) &&
netif_running(netdev) && !nic->loopback_supported)
features &= ~NETIF_F_LOOPBACK;
return features;
}
static int nicvf_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct nicvf *nic = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
nicvf_config_vlan_stripping(nic, features);
if ((changed & NETIF_F_LOOPBACK) && netif_running(netdev))
return nicvf_config_loopback(nic, features);
return 0;
}
static void nicvf_set_xdp_queues(struct nicvf *nic, bool bpf_attached)
{
u8 cq_count, txq_count;
/* Set XDP Tx queue count same as Rx queue count */
if (!bpf_attached)
nic->xdp_tx_queues = 0;
else
nic->xdp_tx_queues = nic->rx_queues;
/* If queue count > MAX_CMP_QUEUES_PER_QS, then additional qsets
* needs to be allocated, check how many.
*/
txq_count = nic->xdp_tx_queues + nic->tx_queues;
cq_count = max(nic->rx_queues, txq_count);
if (cq_count > MAX_CMP_QUEUES_PER_QS) {
nic->sqs_count = roundup(cq_count, MAX_CMP_QUEUES_PER_QS);
nic->sqs_count = (nic->sqs_count / MAX_CMP_QUEUES_PER_QS) - 1;
} else {
nic->sqs_count = 0;
}
/* Set primary Qset's resources */
nic->qs->rq_cnt = min_t(u8, nic->rx_queues, MAX_RCV_QUEUES_PER_QS);
nic->qs->sq_cnt = min_t(u8, txq_count, MAX_SND_QUEUES_PER_QS);
nic->qs->cq_cnt = max_t(u8, nic->qs->rq_cnt, nic->qs->sq_cnt);
/* Update stack */
nicvf_set_real_num_queues(nic->netdev, nic->tx_queues, nic->rx_queues);
}
static int nicvf_xdp_setup(struct nicvf *nic, struct bpf_prog *prog)
{
struct net_device *dev = nic->netdev;
bool if_up = netif_running(nic->netdev);
struct bpf_prog *old_prog;
bool bpf_attached = false;
/* For now just support only the usual MTU sized frames */
if (prog && (dev->mtu > 1500)) {
netdev_warn(dev, "Jumbo frames not yet supported with XDP, current MTU %d.\n",
dev->mtu);
return -EOPNOTSUPP;
}
/* ALL SQs attached to CQs i.e same as RQs, are treated as
* XDP Tx queues and more Tx queues are allocated for
* network stack to send pkts out.
*
* No of Tx queues are either same as Rx queues or whatever
* is left in max no of queues possible.
*/
if ((nic->rx_queues + nic->tx_queues) > nic->max_queues) {
netdev_warn(dev,
"Failed to attach BPF prog, RXQs + TXQs > Max %d\n",
nic->max_queues);
return -ENOMEM;
}
if (if_up)
nicvf_stop(nic->netdev);
old_prog = xchg(&nic->xdp_prog, prog);
/* Detach old prog, if any */
if (old_prog)
bpf_prog_put(old_prog);
if (nic->xdp_prog) {
/* Attach BPF program */
nic->xdp_prog = bpf_prog_add(nic->xdp_prog, nic->rx_queues - 1);
if (!IS_ERR(nic->xdp_prog))
bpf_attached = true;
}
/* Calculate Tx queues needed for XDP and network stack */
nicvf_set_xdp_queues(nic, bpf_attached);
if (if_up) {
/* Reinitialize interface, clean slate */
nicvf_open(nic->netdev);
netif_trans_update(nic->netdev);
}
return 0;
}
static int nicvf_xdp(struct net_device *netdev, struct netdev_xdp *xdp)
{
struct nicvf *nic = netdev_priv(netdev);
/* To avoid checks while retrieving buffer address from CQE_RX,
* do not support XDP for T88 pass1.x silicons which are anyway
* not in use widely.
*/
if (pass1_silicon(nic->pdev))
return -EOPNOTSUPP;
switch (xdp->command) {
case XDP_SETUP_PROG:
return nicvf_xdp_setup(nic, xdp->prog);
case XDP_QUERY_PROG:
xdp->prog_attached = !!nic->xdp_prog;
xdp->prog_id = nic->xdp_prog ? nic->xdp_prog->aux->id : 0;
return 0;
default:
return -EINVAL;
}
}
static const struct net_device_ops nicvf_netdev_ops = {
.ndo_open = nicvf_open,
.ndo_stop = nicvf_stop,
.ndo_start_xmit = nicvf_xmit,
.ndo_change_mtu = nicvf_change_mtu,
.ndo_set_mac_address = nicvf_set_mac_address,
.ndo_get_stats64 = nicvf_get_stats64,
.ndo_tx_timeout = nicvf_tx_timeout,
.ndo_fix_features = nicvf_fix_features,
.ndo_set_features = nicvf_set_features,
.ndo_xdp = nicvf_xdp,
};
static int nicvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct device *dev = &pdev->dev;
struct net_device *netdev;
struct nicvf *nic;
int err, qcount;
u16 sdevid;
err = pci_enable_device(pdev);
if (err) {
dev_err(dev, "Failed to enable PCI device\n");
return err;
}
err = pci_request_regions(pdev, DRV_NAME);
if (err) {
dev_err(dev, "PCI request regions failed 0x%x\n", err);
goto err_disable_device;
}
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "Unable to get usable DMA configuration\n");
goto err_release_regions;
}
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48));
if (err) {
dev_err(dev, "unable to get 48-bit DMA for consistent allocations\n");
goto err_release_regions;
}
qcount = netif_get_num_default_rss_queues();
/* Restrict multiqset support only for host bound VFs */
if (pdev->is_virtfn) {
/* Set max number of queues per VF */
qcount = min_t(int, num_online_cpus(),
(MAX_SQS_PER_VF + 1) * MAX_CMP_QUEUES_PER_QS);
}
netdev = alloc_etherdev_mqs(sizeof(struct nicvf), qcount, qcount);
if (!netdev) {
err = -ENOMEM;
goto err_release_regions;
}
pci_set_drvdata(pdev, netdev);
SET_NETDEV_DEV(netdev, &pdev->dev);
nic = netdev_priv(netdev);
nic->netdev = netdev;
nic->pdev = pdev;
nic->pnicvf = nic;
nic->max_queues = qcount;
/* MAP VF's configuration registers */
nic->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0);
if (!nic->reg_base) {
dev_err(dev, "Cannot map config register space, aborting\n");
err = -ENOMEM;
goto err_free_netdev;
}
nic->drv_stats = netdev_alloc_pcpu_stats(struct nicvf_drv_stats);
if (!nic->drv_stats) {
err = -ENOMEM;
goto err_free_netdev;
}
err = nicvf_set_qset_resources(nic);
if (err)
goto err_free_netdev;
/* Check if PF is alive and get MAC address for this VF */
err = nicvf_register_misc_interrupt(nic);
if (err)
goto err_free_netdev;
nicvf_send_vf_struct(nic);
if (!pass1_silicon(nic->pdev))
nic->hw_tso = true;
/* Get iommu domain for iova to physical addr conversion */
nic->iommu_domain = iommu_get_domain_for_dev(dev);
pci_read_config_word(nic->pdev, PCI_SUBSYSTEM_ID, &sdevid);
if (sdevid == 0xA134)
nic->t88 = true;
/* Check if this VF is in QS only mode */
if (nic->sqs_mode)
return 0;
err = nicvf_set_real_num_queues(netdev, nic->tx_queues, nic->rx_queues);
if (err)
goto err_unregister_interrupts;
netdev->hw_features = (NETIF_F_RXCSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_GRO | NETIF_F_TSO6 |
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_HW_VLAN_CTAG_RX);
netdev->hw_features |= NETIF_F_RXHASH;
netdev->features |= netdev->hw_features;
netdev->hw_features |= NETIF_F_LOOPBACK;
netdev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_TSO6;
netdev->netdev_ops = &nicvf_netdev_ops;
netdev->watchdog_timeo = NICVF_TX_TIMEOUT;
/* MTU range: 64 - 9200 */
netdev->min_mtu = NIC_HW_MIN_FRS;
netdev->max_mtu = NIC_HW_MAX_FRS;
INIT_WORK(&nic->reset_task, nicvf_reset_task);
err = register_netdev(netdev);
if (err) {
dev_err(dev, "Failed to register netdevice\n");
goto err_unregister_interrupts;
}
nic->msg_enable = debug;
nicvf_set_ethtool_ops(netdev);
return 0;
err_unregister_interrupts:
nicvf_unregister_interrupts(nic);
err_free_netdev:
pci_set_drvdata(pdev, NULL);
if (nic->drv_stats)
free_percpu(nic->drv_stats);
free_netdev(netdev);
err_release_regions:
pci_release_regions(pdev);
err_disable_device:
pci_disable_device(pdev);
return err;
}
static void nicvf_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct nicvf *nic;
struct net_device *pnetdev;
if (!netdev)
return;
nic = netdev_priv(netdev);
pnetdev = nic->pnicvf->netdev;
/* Check if this Qset is assigned to different VF.
* If yes, clean primary and all secondary Qsets.
*/
if (pnetdev && (pnetdev->reg_state == NETREG_REGISTERED))
unregister_netdev(pnetdev);
nicvf_unregister_interrupts(nic);
pci_set_drvdata(pdev, NULL);
if (nic->drv_stats)
free_percpu(nic->drv_stats);
free_netdev(netdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static void nicvf_shutdown(struct pci_dev *pdev)
{
nicvf_remove(pdev);
}
static struct pci_driver nicvf_driver = {
.name = DRV_NAME,
.id_table = nicvf_id_table,
.probe = nicvf_probe,
.remove = nicvf_remove,
.shutdown = nicvf_shutdown,
};
static int __init nicvf_init_module(void)
{
pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION);
return pci_register_driver(&nicvf_driver);
}
static void __exit nicvf_cleanup_module(void)
{
pci_unregister_driver(&nicvf_driver);
}
module_init(nicvf_init_module);
module_exit(nicvf_cleanup_module);