mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 18:30:05 +07:00
6e0b3f8d64
drivers/gpu/drm/i915/intel_ringbuffer.c:435:1-4: WARNING: end returns can be simpified Simplify a trivial if-return sequence. Possibly combine with a preceding function call. Generated by: scripts/coccinelle/misc/simple_return.cocci CC: Paulo Zanoni <paulo.r.zanoni@intel.com> Signed-off-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2903 lines
78 KiB
C
2903 lines
78 KiB
C
/*
|
|
* Copyright © 2008-2010 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
* Zou Nan hai <nanhai.zou@intel.com>
|
|
* Xiang Hai hao<haihao.xiang@intel.com>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drmP.h>
|
|
#include "i915_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_trace.h"
|
|
#include "intel_drv.h"
|
|
|
|
bool
|
|
intel_ring_initialized(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
if (!dev)
|
|
return false;
|
|
|
|
if (i915.enable_execlists) {
|
|
struct intel_context *dctx = ring->default_context;
|
|
struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
|
|
|
|
return ringbuf->obj;
|
|
} else
|
|
return ring->buffer && ring->buffer->obj;
|
|
}
|
|
|
|
int __intel_ring_space(int head, int tail, int size)
|
|
{
|
|
int space = head - tail;
|
|
if (space <= 0)
|
|
space += size;
|
|
return space - I915_RING_FREE_SPACE;
|
|
}
|
|
|
|
void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
|
|
{
|
|
if (ringbuf->last_retired_head != -1) {
|
|
ringbuf->head = ringbuf->last_retired_head;
|
|
ringbuf->last_retired_head = -1;
|
|
}
|
|
|
|
ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
|
|
ringbuf->tail, ringbuf->size);
|
|
}
|
|
|
|
int intel_ring_space(struct intel_ringbuffer *ringbuf)
|
|
{
|
|
intel_ring_update_space(ringbuf);
|
|
return ringbuf->space;
|
|
}
|
|
|
|
bool intel_ring_stopped(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
|
|
}
|
|
|
|
void __intel_ring_advance(struct intel_engine_cs *ring)
|
|
{
|
|
struct intel_ringbuffer *ringbuf = ring->buffer;
|
|
ringbuf->tail &= ringbuf->size - 1;
|
|
if (intel_ring_stopped(ring))
|
|
return;
|
|
ring->write_tail(ring, ringbuf->tail);
|
|
}
|
|
|
|
static int
|
|
gen2_render_ring_flush(struct intel_engine_cs *ring,
|
|
u32 invalidate_domains,
|
|
u32 flush_domains)
|
|
{
|
|
u32 cmd;
|
|
int ret;
|
|
|
|
cmd = MI_FLUSH;
|
|
if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
|
|
cmd |= MI_NO_WRITE_FLUSH;
|
|
|
|
if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
|
|
cmd |= MI_READ_FLUSH;
|
|
|
|
ret = intel_ring_begin(ring, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, cmd);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen4_render_ring_flush(struct intel_engine_cs *ring,
|
|
u32 invalidate_domains,
|
|
u32 flush_domains)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
u32 cmd;
|
|
int ret;
|
|
|
|
/*
|
|
* read/write caches:
|
|
*
|
|
* I915_GEM_DOMAIN_RENDER is always invalidated, but is
|
|
* only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
|
|
* also flushed at 2d versus 3d pipeline switches.
|
|
*
|
|
* read-only caches:
|
|
*
|
|
* I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
|
|
* MI_READ_FLUSH is set, and is always flushed on 965.
|
|
*
|
|
* I915_GEM_DOMAIN_COMMAND may not exist?
|
|
*
|
|
* I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
|
|
* invalidated when MI_EXE_FLUSH is set.
|
|
*
|
|
* I915_GEM_DOMAIN_VERTEX, which exists on 965, is
|
|
* invalidated with every MI_FLUSH.
|
|
*
|
|
* TLBs:
|
|
*
|
|
* On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
|
|
* and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
|
|
* I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
|
|
* are flushed at any MI_FLUSH.
|
|
*/
|
|
|
|
cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
|
|
if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
|
|
cmd &= ~MI_NO_WRITE_FLUSH;
|
|
if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
|
|
cmd |= MI_EXE_FLUSH;
|
|
|
|
if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
|
|
(IS_G4X(dev) || IS_GEN5(dev)))
|
|
cmd |= MI_INVALIDATE_ISP;
|
|
|
|
ret = intel_ring_begin(ring, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, cmd);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* Emits a PIPE_CONTROL with a non-zero post-sync operation, for
|
|
* implementing two workarounds on gen6. From section 1.4.7.1
|
|
* "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
|
|
*
|
|
* [DevSNB-C+{W/A}] Before any depth stall flush (including those
|
|
* produced by non-pipelined state commands), software needs to first
|
|
* send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
|
|
* 0.
|
|
*
|
|
* [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
|
|
* =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
|
|
*
|
|
* And the workaround for these two requires this workaround first:
|
|
*
|
|
* [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
|
|
* BEFORE the pipe-control with a post-sync op and no write-cache
|
|
* flushes.
|
|
*
|
|
* And this last workaround is tricky because of the requirements on
|
|
* that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
|
|
* volume 2 part 1:
|
|
*
|
|
* "1 of the following must also be set:
|
|
* - Render Target Cache Flush Enable ([12] of DW1)
|
|
* - Depth Cache Flush Enable ([0] of DW1)
|
|
* - Stall at Pixel Scoreboard ([1] of DW1)
|
|
* - Depth Stall ([13] of DW1)
|
|
* - Post-Sync Operation ([13] of DW1)
|
|
* - Notify Enable ([8] of DW1)"
|
|
*
|
|
* The cache flushes require the workaround flush that triggered this
|
|
* one, so we can't use it. Depth stall would trigger the same.
|
|
* Post-sync nonzero is what triggered this second workaround, so we
|
|
* can't use that one either. Notify enable is IRQs, which aren't
|
|
* really our business. That leaves only stall at scoreboard.
|
|
*/
|
|
static int
|
|
intel_emit_post_sync_nonzero_flush(struct intel_engine_cs *ring)
|
|
{
|
|
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
|
|
int ret;
|
|
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
|
|
intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_STALL_AT_SCOREBOARD);
|
|
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
|
|
intel_ring_emit(ring, 0); /* low dword */
|
|
intel_ring_emit(ring, 0); /* high dword */
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
|
|
intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
|
|
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen6_render_ring_flush(struct intel_engine_cs *ring,
|
|
u32 invalidate_domains, u32 flush_domains)
|
|
{
|
|
u32 flags = 0;
|
|
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
|
|
int ret;
|
|
|
|
/* Force SNB workarounds for PIPE_CONTROL flushes */
|
|
ret = intel_emit_post_sync_nonzero_flush(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Just flush everything. Experiments have shown that reducing the
|
|
* number of bits based on the write domains has little performance
|
|
* impact.
|
|
*/
|
|
if (flush_domains) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
/*
|
|
* Ensure that any following seqno writes only happen
|
|
* when the render cache is indeed flushed.
|
|
*/
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
}
|
|
if (invalidate_domains) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
/*
|
|
* TLB invalidate requires a post-sync write.
|
|
*/
|
|
flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
|
|
}
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
|
|
intel_ring_emit(ring, flags);
|
|
intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen7_render_ring_cs_stall_wa(struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
|
|
intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_STALL_AT_SCOREBOARD);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen7_render_ring_flush(struct intel_engine_cs *ring,
|
|
u32 invalidate_domains, u32 flush_domains)
|
|
{
|
|
u32 flags = 0;
|
|
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
|
|
int ret;
|
|
|
|
/*
|
|
* Ensure that any following seqno writes only happen when the render
|
|
* cache is indeed flushed.
|
|
*
|
|
* Workaround: 4th PIPE_CONTROL command (except the ones with only
|
|
* read-cache invalidate bits set) must have the CS_STALL bit set. We
|
|
* don't try to be clever and just set it unconditionally.
|
|
*/
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
/* Just flush everything. Experiments have shown that reducing the
|
|
* number of bits based on the write domains has little performance
|
|
* impact.
|
|
*/
|
|
if (flush_domains) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
}
|
|
if (invalidate_domains) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
|
|
/*
|
|
* TLB invalidate requires a post-sync write.
|
|
*/
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
|
|
flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
|
|
|
|
/* Workaround: we must issue a pipe_control with CS-stall bit
|
|
* set before a pipe_control command that has the state cache
|
|
* invalidate bit set. */
|
|
gen7_render_ring_cs_stall_wa(ring);
|
|
}
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
|
|
intel_ring_emit(ring, flags);
|
|
intel_ring_emit(ring, scratch_addr);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen8_emit_pipe_control(struct intel_engine_cs *ring,
|
|
u32 flags, u32 scratch_addr)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
|
|
intel_ring_emit(ring, flags);
|
|
intel_ring_emit(ring, scratch_addr);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen8_render_ring_flush(struct intel_engine_cs *ring,
|
|
u32 invalidate_domains, u32 flush_domains)
|
|
{
|
|
u32 flags = 0;
|
|
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
|
|
int ret;
|
|
|
|
flags |= PIPE_CONTROL_CS_STALL;
|
|
|
|
if (flush_domains) {
|
|
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
|
|
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
|
|
}
|
|
if (invalidate_domains) {
|
|
flags |= PIPE_CONTROL_TLB_INVALIDATE;
|
|
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
|
|
flags |= PIPE_CONTROL_QW_WRITE;
|
|
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
|
|
|
|
/* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
|
|
ret = gen8_emit_pipe_control(ring,
|
|
PIPE_CONTROL_CS_STALL |
|
|
PIPE_CONTROL_STALL_AT_SCOREBOARD,
|
|
0);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return gen8_emit_pipe_control(ring, flags, scratch_addr);
|
|
}
|
|
|
|
static void ring_write_tail(struct intel_engine_cs *ring,
|
|
u32 value)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
I915_WRITE_TAIL(ring, value);
|
|
}
|
|
|
|
u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
u64 acthd;
|
|
|
|
if (INTEL_INFO(ring->dev)->gen >= 8)
|
|
acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
|
|
RING_ACTHD_UDW(ring->mmio_base));
|
|
else if (INTEL_INFO(ring->dev)->gen >= 4)
|
|
acthd = I915_READ(RING_ACTHD(ring->mmio_base));
|
|
else
|
|
acthd = I915_READ(ACTHD);
|
|
|
|
return acthd;
|
|
}
|
|
|
|
static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
u32 addr;
|
|
|
|
addr = dev_priv->status_page_dmah->busaddr;
|
|
if (INTEL_INFO(ring->dev)->gen >= 4)
|
|
addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
|
|
I915_WRITE(HWS_PGA, addr);
|
|
}
|
|
|
|
static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
u32 mmio = 0;
|
|
|
|
/* The ring status page addresses are no longer next to the rest of
|
|
* the ring registers as of gen7.
|
|
*/
|
|
if (IS_GEN7(dev)) {
|
|
switch (ring->id) {
|
|
case RCS:
|
|
mmio = RENDER_HWS_PGA_GEN7;
|
|
break;
|
|
case BCS:
|
|
mmio = BLT_HWS_PGA_GEN7;
|
|
break;
|
|
/*
|
|
* VCS2 actually doesn't exist on Gen7. Only shut up
|
|
* gcc switch check warning
|
|
*/
|
|
case VCS2:
|
|
case VCS:
|
|
mmio = BSD_HWS_PGA_GEN7;
|
|
break;
|
|
case VECS:
|
|
mmio = VEBOX_HWS_PGA_GEN7;
|
|
break;
|
|
}
|
|
} else if (IS_GEN6(ring->dev)) {
|
|
mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
|
|
} else {
|
|
/* XXX: gen8 returns to sanity */
|
|
mmio = RING_HWS_PGA(ring->mmio_base);
|
|
}
|
|
|
|
I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
|
|
POSTING_READ(mmio);
|
|
|
|
/*
|
|
* Flush the TLB for this page
|
|
*
|
|
* FIXME: These two bits have disappeared on gen8, so a question
|
|
* arises: do we still need this and if so how should we go about
|
|
* invalidating the TLB?
|
|
*/
|
|
if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
|
|
u32 reg = RING_INSTPM(ring->mmio_base);
|
|
|
|
/* ring should be idle before issuing a sync flush*/
|
|
WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
|
|
|
|
I915_WRITE(reg,
|
|
_MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
|
|
INSTPM_SYNC_FLUSH));
|
|
if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
|
|
1000))
|
|
DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
|
|
ring->name);
|
|
}
|
|
}
|
|
|
|
static bool stop_ring(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(ring->dev);
|
|
|
|
if (!IS_GEN2(ring->dev)) {
|
|
I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
|
|
if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
|
|
DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
|
|
/* Sometimes we observe that the idle flag is not
|
|
* set even though the ring is empty. So double
|
|
* check before giving up.
|
|
*/
|
|
if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
I915_WRITE_CTL(ring, 0);
|
|
I915_WRITE_HEAD(ring, 0);
|
|
ring->write_tail(ring, 0);
|
|
|
|
if (!IS_GEN2(ring->dev)) {
|
|
(void)I915_READ_CTL(ring);
|
|
I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
|
|
}
|
|
|
|
return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
|
|
}
|
|
|
|
static int init_ring_common(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ringbuffer *ringbuf = ring->buffer;
|
|
struct drm_i915_gem_object *obj = ringbuf->obj;
|
|
int ret = 0;
|
|
|
|
intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
|
|
|
|
if (!stop_ring(ring)) {
|
|
/* G45 ring initialization often fails to reset head to zero */
|
|
DRM_DEBUG_KMS("%s head not reset to zero "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
ring->name,
|
|
I915_READ_CTL(ring),
|
|
I915_READ_HEAD(ring),
|
|
I915_READ_TAIL(ring),
|
|
I915_READ_START(ring));
|
|
|
|
if (!stop_ring(ring)) {
|
|
DRM_ERROR("failed to set %s head to zero "
|
|
"ctl %08x head %08x tail %08x start %08x\n",
|
|
ring->name,
|
|
I915_READ_CTL(ring),
|
|
I915_READ_HEAD(ring),
|
|
I915_READ_TAIL(ring),
|
|
I915_READ_START(ring));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (I915_NEED_GFX_HWS(dev))
|
|
intel_ring_setup_status_page(ring);
|
|
else
|
|
ring_setup_phys_status_page(ring);
|
|
|
|
/* Enforce ordering by reading HEAD register back */
|
|
I915_READ_HEAD(ring);
|
|
|
|
/* Initialize the ring. This must happen _after_ we've cleared the ring
|
|
* registers with the above sequence (the readback of the HEAD registers
|
|
* also enforces ordering), otherwise the hw might lose the new ring
|
|
* register values. */
|
|
I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
|
|
|
|
/* WaClearRingBufHeadRegAtInit:ctg,elk */
|
|
if (I915_READ_HEAD(ring))
|
|
DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
|
|
ring->name, I915_READ_HEAD(ring));
|
|
I915_WRITE_HEAD(ring, 0);
|
|
(void)I915_READ_HEAD(ring);
|
|
|
|
I915_WRITE_CTL(ring,
|
|
((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
|
|
| RING_VALID);
|
|
|
|
/* If the head is still not zero, the ring is dead */
|
|
if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
|
|
I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
|
|
(I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
|
|
DRM_ERROR("%s initialization failed "
|
|
"ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
|
|
ring->name,
|
|
I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
|
|
I915_READ_HEAD(ring), I915_READ_TAIL(ring),
|
|
I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
ringbuf->last_retired_head = -1;
|
|
ringbuf->head = I915_READ_HEAD(ring);
|
|
ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
|
|
intel_ring_update_space(ringbuf);
|
|
|
|
memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
|
|
|
|
out:
|
|
intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void
|
|
intel_fini_pipe_control(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
|
|
if (ring->scratch.obj == NULL)
|
|
return;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5) {
|
|
kunmap(sg_page(ring->scratch.obj->pages->sgl));
|
|
i915_gem_object_ggtt_unpin(ring->scratch.obj);
|
|
}
|
|
|
|
drm_gem_object_unreference(&ring->scratch.obj->base);
|
|
ring->scratch.obj = NULL;
|
|
}
|
|
|
|
int
|
|
intel_init_pipe_control(struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
|
|
WARN_ON(ring->scratch.obj);
|
|
|
|
ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
|
|
if (ring->scratch.obj == NULL) {
|
|
DRM_ERROR("Failed to allocate seqno page\n");
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
|
|
if (ret)
|
|
goto err_unref;
|
|
|
|
ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
|
|
if (ret)
|
|
goto err_unref;
|
|
|
|
ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
|
|
ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
|
|
if (ring->scratch.cpu_page == NULL) {
|
|
ret = -ENOMEM;
|
|
goto err_unpin;
|
|
}
|
|
|
|
DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
|
|
ring->name, ring->scratch.gtt_offset);
|
|
return 0;
|
|
|
|
err_unpin:
|
|
i915_gem_object_ggtt_unpin(ring->scratch.obj);
|
|
err_unref:
|
|
drm_gem_object_unreference(&ring->scratch.obj->base);
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int intel_ring_workarounds_emit(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx)
|
|
{
|
|
int ret, i;
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct i915_workarounds *w = &dev_priv->workarounds;
|
|
|
|
if (WARN_ON_ONCE(w->count == 0))
|
|
return 0;
|
|
|
|
ring->gpu_caches_dirty = true;
|
|
ret = intel_ring_flush_all_caches(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = intel_ring_begin(ring, (w->count * 2 + 2));
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
|
|
for (i = 0; i < w->count; i++) {
|
|
intel_ring_emit(ring, w->reg[i].addr);
|
|
intel_ring_emit(ring, w->reg[i].value);
|
|
}
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
|
|
intel_ring_advance(ring);
|
|
|
|
ring->gpu_caches_dirty = true;
|
|
ret = intel_ring_flush_all_caches(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_rcs_ctx_init(struct intel_engine_cs *ring,
|
|
struct intel_context *ctx)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_workarounds_emit(ring, ctx);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
ret = i915_gem_render_state_init(ring);
|
|
if (ret)
|
|
DRM_ERROR("init render state: %d\n", ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int wa_add(struct drm_i915_private *dev_priv,
|
|
const u32 addr, const u32 mask, const u32 val)
|
|
{
|
|
const u32 idx = dev_priv->workarounds.count;
|
|
|
|
if (WARN_ON(idx >= I915_MAX_WA_REGS))
|
|
return -ENOSPC;
|
|
|
|
dev_priv->workarounds.reg[idx].addr = addr;
|
|
dev_priv->workarounds.reg[idx].value = val;
|
|
dev_priv->workarounds.reg[idx].mask = mask;
|
|
|
|
dev_priv->workarounds.count++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define WA_REG(addr, mask, val) { \
|
|
const int r = wa_add(dev_priv, (addr), (mask), (val)); \
|
|
if (r) \
|
|
return r; \
|
|
}
|
|
|
|
#define WA_SET_BIT_MASKED(addr, mask) \
|
|
WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
|
|
|
|
#define WA_CLR_BIT_MASKED(addr, mask) \
|
|
WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
|
|
|
|
#define WA_SET_FIELD_MASKED(addr, mask, value) \
|
|
WA_REG(addr, mask, _MASKED_FIELD(mask, value))
|
|
|
|
#define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
|
|
#define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
|
|
|
|
#define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
|
|
|
|
static int bdw_init_workarounds(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* WaDisablePartialInstShootdown:bdw */
|
|
/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
|
|
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
|
|
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
|
|
STALL_DOP_GATING_DISABLE);
|
|
|
|
/* WaDisableDopClockGating:bdw */
|
|
WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
|
|
DOP_CLOCK_GATING_DISABLE);
|
|
|
|
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
|
|
GEN8_SAMPLER_POWER_BYPASS_DIS);
|
|
|
|
/* Use Force Non-Coherent whenever executing a 3D context. This is a
|
|
* workaround for for a possible hang in the unlikely event a TLB
|
|
* invalidation occurs during a PSD flush.
|
|
*/
|
|
WA_SET_BIT_MASKED(HDC_CHICKEN0,
|
|
/* WaForceEnableNonCoherent:bdw */
|
|
HDC_FORCE_NON_COHERENT |
|
|
/* WaForceContextSaveRestoreNonCoherent:bdw */
|
|
HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
|
|
/* WaHdcDisableFetchWhenMasked:bdw */
|
|
HDC_DONOT_FETCH_MEM_WHEN_MASKED |
|
|
/* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
|
|
(IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
|
|
|
|
/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
|
|
* "The Hierarchical Z RAW Stall Optimization allows non-overlapping
|
|
* polygons in the same 8x4 pixel/sample area to be processed without
|
|
* stalling waiting for the earlier ones to write to Hierarchical Z
|
|
* buffer."
|
|
*
|
|
* This optimization is off by default for Broadwell; turn it on.
|
|
*/
|
|
WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
|
|
|
|
/* Wa4x4STCOptimizationDisable:bdw */
|
|
WA_SET_BIT_MASKED(CACHE_MODE_1,
|
|
GEN8_4x4_STC_OPTIMIZATION_DISABLE);
|
|
|
|
/*
|
|
* BSpec recommends 8x4 when MSAA is used,
|
|
* however in practice 16x4 seems fastest.
|
|
*
|
|
* Note that PS/WM thread counts depend on the WIZ hashing
|
|
* disable bit, which we don't touch here, but it's good
|
|
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
|
|
*/
|
|
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
|
|
GEN6_WIZ_HASHING_MASK,
|
|
GEN6_WIZ_HASHING_16x4);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int chv_init_workarounds(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* WaDisablePartialInstShootdown:chv */
|
|
/* WaDisableThreadStallDopClockGating:chv */
|
|
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
|
|
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
|
|
STALL_DOP_GATING_DISABLE);
|
|
|
|
/* Use Force Non-Coherent whenever executing a 3D context. This is a
|
|
* workaround for a possible hang in the unlikely event a TLB
|
|
* invalidation occurs during a PSD flush.
|
|
*/
|
|
/* WaForceEnableNonCoherent:chv */
|
|
/* WaHdcDisableFetchWhenMasked:chv */
|
|
WA_SET_BIT_MASKED(HDC_CHICKEN0,
|
|
HDC_FORCE_NON_COHERENT |
|
|
HDC_DONOT_FETCH_MEM_WHEN_MASKED);
|
|
|
|
/* According to the CACHE_MODE_0 default value documentation, some
|
|
* CHV platforms disable this optimization by default. Turn it on.
|
|
*/
|
|
WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
|
|
|
|
/* Wa4x4STCOptimizationDisable:chv */
|
|
WA_SET_BIT_MASKED(CACHE_MODE_1,
|
|
GEN8_4x4_STC_OPTIMIZATION_DISABLE);
|
|
|
|
/* Improve HiZ throughput on CHV. */
|
|
WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
|
|
|
|
/*
|
|
* BSpec recommends 8x4 when MSAA is used,
|
|
* however in practice 16x4 seems fastest.
|
|
*
|
|
* Note that PS/WM thread counts depend on the WIZ hashing
|
|
* disable bit, which we don't touch here, but it's good
|
|
* to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
|
|
*/
|
|
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
|
|
GEN6_WIZ_HASHING_MASK,
|
|
GEN6_WIZ_HASHING_16x4);
|
|
|
|
if (INTEL_REVID(dev) == SKL_REVID_C0 ||
|
|
INTEL_REVID(dev) == SKL_REVID_D0)
|
|
/* WaBarrierPerformanceFixDisable:skl */
|
|
WA_SET_BIT_MASKED(HDC_CHICKEN0,
|
|
HDC_FENCE_DEST_SLM_DISABLE |
|
|
HDC_BARRIER_PERFORMANCE_DISABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen9_init_workarounds(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
/* WaDisablePartialInstShootdown:skl */
|
|
WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
|
|
PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
|
|
|
|
/* Syncing dependencies between camera and graphics */
|
|
WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
|
|
GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
|
|
|
|
if (INTEL_REVID(dev) == SKL_REVID_A0 ||
|
|
INTEL_REVID(dev) == SKL_REVID_B0) {
|
|
/* WaDisableDgMirrorFixInHalfSliceChicken5:skl */
|
|
WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
|
|
GEN9_DG_MIRROR_FIX_ENABLE);
|
|
}
|
|
|
|
if (IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) {
|
|
/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl */
|
|
WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
|
|
GEN9_RHWO_OPTIMIZATION_DISABLE);
|
|
WA_SET_BIT_MASKED(GEN9_SLICE_COMMON_ECO_CHICKEN0,
|
|
DISABLE_PIXEL_MASK_CAMMING);
|
|
}
|
|
|
|
if (INTEL_REVID(dev) >= SKL_REVID_C0) {
|
|
/* WaEnableYV12BugFixInHalfSliceChicken7:skl */
|
|
WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
|
|
GEN9_ENABLE_YV12_BUGFIX);
|
|
}
|
|
|
|
if (INTEL_REVID(dev) <= SKL_REVID_D0) {
|
|
/*
|
|
*Use Force Non-Coherent whenever executing a 3D context. This
|
|
* is a workaround for a possible hang in the unlikely event
|
|
* a TLB invalidation occurs during a PSD flush.
|
|
*/
|
|
/* WaForceEnableNonCoherent:skl */
|
|
WA_SET_BIT_MASKED(HDC_CHICKEN0,
|
|
HDC_FORCE_NON_COHERENT);
|
|
}
|
|
|
|
/* Wa4x4STCOptimizationDisable:skl */
|
|
WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
|
|
|
|
/* WaDisablePartialResolveInVc:skl */
|
|
WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
|
|
|
|
/* WaCcsTlbPrefetchDisable:skl */
|
|
WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
|
|
GEN9_CCS_TLB_PREFETCH_ENABLE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
u8 vals[3] = { 0, 0, 0 };
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
u8 ss;
|
|
|
|
/*
|
|
* Only consider slices where one, and only one, subslice has 7
|
|
* EUs
|
|
*/
|
|
if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
|
|
continue;
|
|
|
|
/*
|
|
* subslice_7eu[i] != 0 (because of the check above) and
|
|
* ss_max == 4 (maximum number of subslices possible per slice)
|
|
*
|
|
* -> 0 <= ss <= 3;
|
|
*/
|
|
ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
|
|
vals[i] = 3 - ss;
|
|
}
|
|
|
|
if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
|
|
return 0;
|
|
|
|
/* Tune IZ hashing. See intel_device_info_runtime_init() */
|
|
WA_SET_FIELD_MASKED(GEN7_GT_MODE,
|
|
GEN9_IZ_HASHING_MASK(2) |
|
|
GEN9_IZ_HASHING_MASK(1) |
|
|
GEN9_IZ_HASHING_MASK(0),
|
|
GEN9_IZ_HASHING(2, vals[2]) |
|
|
GEN9_IZ_HASHING(1, vals[1]) |
|
|
GEN9_IZ_HASHING(0, vals[0]));
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int skl_init_workarounds(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
gen9_init_workarounds(ring);
|
|
|
|
/* WaDisablePowerCompilerClockGating:skl */
|
|
if (INTEL_REVID(dev) == SKL_REVID_B0)
|
|
WA_SET_BIT_MASKED(HIZ_CHICKEN,
|
|
BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
|
|
|
|
return skl_tune_iz_hashing(ring);
|
|
}
|
|
|
|
int init_workarounds_ring(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
WARN_ON(ring->id != RCS);
|
|
|
|
dev_priv->workarounds.count = 0;
|
|
|
|
if (IS_BROADWELL(dev))
|
|
return bdw_init_workarounds(ring);
|
|
|
|
if (IS_CHERRYVIEW(dev))
|
|
return chv_init_workarounds(ring);
|
|
|
|
if (IS_SKYLAKE(dev))
|
|
return skl_init_workarounds(ring);
|
|
else if (IS_GEN9(dev))
|
|
return gen9_init_workarounds(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_render_ring(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
int ret = init_ring_common(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
|
|
if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
|
|
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
|
|
|
|
/* We need to disable the AsyncFlip performance optimisations in order
|
|
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
|
|
* programmed to '1' on all products.
|
|
*
|
|
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
|
|
*/
|
|
if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 9)
|
|
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
|
|
|
|
/* Required for the hardware to program scanline values for waiting */
|
|
/* WaEnableFlushTlbInvalidationMode:snb */
|
|
if (INTEL_INFO(dev)->gen == 6)
|
|
I915_WRITE(GFX_MODE,
|
|
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
|
|
|
|
/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
|
|
if (IS_GEN7(dev))
|
|
I915_WRITE(GFX_MODE_GEN7,
|
|
_MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
|
|
_MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
|
|
|
|
if (IS_GEN6(dev)) {
|
|
/* From the Sandybridge PRM, volume 1 part 3, page 24:
|
|
* "If this bit is set, STCunit will have LRA as replacement
|
|
* policy. [...] This bit must be reset. LRA replacement
|
|
* policy is not supported."
|
|
*/
|
|
I915_WRITE(CACHE_MODE_0,
|
|
_MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
|
|
}
|
|
|
|
if (INTEL_INFO(dev)->gen >= 6)
|
|
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
|
|
|
|
if (HAS_L3_DPF(dev))
|
|
I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
|
|
|
|
return init_workarounds_ring(ring);
|
|
}
|
|
|
|
static void render_ring_cleanup(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
if (dev_priv->semaphore_obj) {
|
|
i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
|
|
drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
|
|
dev_priv->semaphore_obj = NULL;
|
|
}
|
|
|
|
intel_fini_pipe_control(ring);
|
|
}
|
|
|
|
static int gen8_rcs_signal(struct intel_engine_cs *signaller,
|
|
unsigned int num_dwords)
|
|
{
|
|
#define MBOX_UPDATE_DWORDS 8
|
|
struct drm_device *dev = signaller->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *waiter;
|
|
int i, ret, num_rings;
|
|
|
|
num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
|
|
num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
|
|
#undef MBOX_UPDATE_DWORDS
|
|
|
|
ret = intel_ring_begin(signaller, num_dwords);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_ring(waiter, dev_priv, i) {
|
|
u32 seqno;
|
|
u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
|
|
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
|
|
continue;
|
|
|
|
seqno = i915_gem_request_get_seqno(
|
|
signaller->outstanding_lazy_request);
|
|
intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
|
|
intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
|
|
PIPE_CONTROL_QW_WRITE |
|
|
PIPE_CONTROL_FLUSH_ENABLE);
|
|
intel_ring_emit(signaller, lower_32_bits(gtt_offset));
|
|
intel_ring_emit(signaller, upper_32_bits(gtt_offset));
|
|
intel_ring_emit(signaller, seqno);
|
|
intel_ring_emit(signaller, 0);
|
|
intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
|
|
MI_SEMAPHORE_TARGET(waiter->id));
|
|
intel_ring_emit(signaller, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen8_xcs_signal(struct intel_engine_cs *signaller,
|
|
unsigned int num_dwords)
|
|
{
|
|
#define MBOX_UPDATE_DWORDS 6
|
|
struct drm_device *dev = signaller->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *waiter;
|
|
int i, ret, num_rings;
|
|
|
|
num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
|
|
num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
|
|
#undef MBOX_UPDATE_DWORDS
|
|
|
|
ret = intel_ring_begin(signaller, num_dwords);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_ring(waiter, dev_priv, i) {
|
|
u32 seqno;
|
|
u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
|
|
if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
|
|
continue;
|
|
|
|
seqno = i915_gem_request_get_seqno(
|
|
signaller->outstanding_lazy_request);
|
|
intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
|
|
MI_FLUSH_DW_OP_STOREDW);
|
|
intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
|
|
MI_FLUSH_DW_USE_GTT);
|
|
intel_ring_emit(signaller, upper_32_bits(gtt_offset));
|
|
intel_ring_emit(signaller, seqno);
|
|
intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
|
|
MI_SEMAPHORE_TARGET(waiter->id));
|
|
intel_ring_emit(signaller, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen6_signal(struct intel_engine_cs *signaller,
|
|
unsigned int num_dwords)
|
|
{
|
|
struct drm_device *dev = signaller->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *useless;
|
|
int i, ret, num_rings;
|
|
|
|
#define MBOX_UPDATE_DWORDS 3
|
|
num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
|
|
num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
|
|
#undef MBOX_UPDATE_DWORDS
|
|
|
|
ret = intel_ring_begin(signaller, num_dwords);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_ring(useless, dev_priv, i) {
|
|
u32 mbox_reg = signaller->semaphore.mbox.signal[i];
|
|
if (mbox_reg != GEN6_NOSYNC) {
|
|
u32 seqno = i915_gem_request_get_seqno(
|
|
signaller->outstanding_lazy_request);
|
|
intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
|
|
intel_ring_emit(signaller, mbox_reg);
|
|
intel_ring_emit(signaller, seqno);
|
|
}
|
|
}
|
|
|
|
/* If num_dwords was rounded, make sure the tail pointer is correct */
|
|
if (num_rings % 2 == 0)
|
|
intel_ring_emit(signaller, MI_NOOP);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* gen6_add_request - Update the semaphore mailbox registers
|
|
*
|
|
* @ring - ring that is adding a request
|
|
* @seqno - return seqno stuck into the ring
|
|
*
|
|
* Update the mailbox registers in the *other* rings with the current seqno.
|
|
* This acts like a signal in the canonical semaphore.
|
|
*/
|
|
static int
|
|
gen6_add_request(struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
|
|
if (ring->semaphore.signal)
|
|
ret = ring->semaphore.signal(ring, 4);
|
|
else
|
|
ret = intel_ring_begin(ring, 4);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
|
|
intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
|
|
intel_ring_emit(ring,
|
|
i915_gem_request_get_seqno(ring->outstanding_lazy_request));
|
|
intel_ring_emit(ring, MI_USER_INTERRUPT);
|
|
__intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
|
|
u32 seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
return dev_priv->last_seqno < seqno;
|
|
}
|
|
|
|
/**
|
|
* intel_ring_sync - sync the waiter to the signaller on seqno
|
|
*
|
|
* @waiter - ring that is waiting
|
|
* @signaller - ring which has, or will signal
|
|
* @seqno - seqno which the waiter will block on
|
|
*/
|
|
|
|
static int
|
|
gen8_ring_sync(struct intel_engine_cs *waiter,
|
|
struct intel_engine_cs *signaller,
|
|
u32 seqno)
|
|
{
|
|
struct drm_i915_private *dev_priv = waiter->dev->dev_private;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(waiter, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
|
|
MI_SEMAPHORE_GLOBAL_GTT |
|
|
MI_SEMAPHORE_POLL |
|
|
MI_SEMAPHORE_SAD_GTE_SDD);
|
|
intel_ring_emit(waiter, seqno);
|
|
intel_ring_emit(waiter,
|
|
lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
|
|
intel_ring_emit(waiter,
|
|
upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
|
|
intel_ring_advance(waiter);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen6_ring_sync(struct intel_engine_cs *waiter,
|
|
struct intel_engine_cs *signaller,
|
|
u32 seqno)
|
|
{
|
|
u32 dw1 = MI_SEMAPHORE_MBOX |
|
|
MI_SEMAPHORE_COMPARE |
|
|
MI_SEMAPHORE_REGISTER;
|
|
u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
|
|
int ret;
|
|
|
|
/* Throughout all of the GEM code, seqno passed implies our current
|
|
* seqno is >= the last seqno executed. However for hardware the
|
|
* comparison is strictly greater than.
|
|
*/
|
|
seqno -= 1;
|
|
|
|
WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
|
|
|
|
ret = intel_ring_begin(waiter, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* If seqno wrap happened, omit the wait with no-ops */
|
|
if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
|
|
intel_ring_emit(waiter, dw1 | wait_mbox);
|
|
intel_ring_emit(waiter, seqno);
|
|
intel_ring_emit(waiter, 0);
|
|
intel_ring_emit(waiter, MI_NOOP);
|
|
} else {
|
|
intel_ring_emit(waiter, MI_NOOP);
|
|
intel_ring_emit(waiter, MI_NOOP);
|
|
intel_ring_emit(waiter, MI_NOOP);
|
|
intel_ring_emit(waiter, MI_NOOP);
|
|
}
|
|
intel_ring_advance(waiter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define PIPE_CONTROL_FLUSH(ring__, addr__) \
|
|
do { \
|
|
intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
|
|
PIPE_CONTROL_DEPTH_STALL); \
|
|
intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
|
|
intel_ring_emit(ring__, 0); \
|
|
intel_ring_emit(ring__, 0); \
|
|
} while (0)
|
|
|
|
static int
|
|
pc_render_add_request(struct intel_engine_cs *ring)
|
|
{
|
|
u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
|
|
int ret;
|
|
|
|
/* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
|
|
* incoherent with writes to memory, i.e. completely fubar,
|
|
* so we need to use PIPE_NOTIFY instead.
|
|
*
|
|
* However, we also need to workaround the qword write
|
|
* incoherence by flushing the 6 PIPE_NOTIFY buffers out to
|
|
* memory before requesting an interrupt.
|
|
*/
|
|
ret = intel_ring_begin(ring, 32);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
|
|
PIPE_CONTROL_WRITE_FLUSH |
|
|
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
|
|
intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
|
|
intel_ring_emit(ring,
|
|
i915_gem_request_get_seqno(ring->outstanding_lazy_request));
|
|
intel_ring_emit(ring, 0);
|
|
PIPE_CONTROL_FLUSH(ring, scratch_addr);
|
|
scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
|
|
PIPE_CONTROL_FLUSH(ring, scratch_addr);
|
|
scratch_addr += 2 * CACHELINE_BYTES;
|
|
PIPE_CONTROL_FLUSH(ring, scratch_addr);
|
|
scratch_addr += 2 * CACHELINE_BYTES;
|
|
PIPE_CONTROL_FLUSH(ring, scratch_addr);
|
|
scratch_addr += 2 * CACHELINE_BYTES;
|
|
PIPE_CONTROL_FLUSH(ring, scratch_addr);
|
|
scratch_addr += 2 * CACHELINE_BYTES;
|
|
PIPE_CONTROL_FLUSH(ring, scratch_addr);
|
|
|
|
intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
|
|
PIPE_CONTROL_WRITE_FLUSH |
|
|
PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
|
|
PIPE_CONTROL_NOTIFY);
|
|
intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
|
|
intel_ring_emit(ring,
|
|
i915_gem_request_get_seqno(ring->outstanding_lazy_request));
|
|
intel_ring_emit(ring, 0);
|
|
__intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
|
|
{
|
|
/* Workaround to force correct ordering between irq and seqno writes on
|
|
* ivb (and maybe also on snb) by reading from a CS register (like
|
|
* ACTHD) before reading the status page. */
|
|
if (!lazy_coherency) {
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
POSTING_READ(RING_ACTHD(ring->mmio_base));
|
|
}
|
|
|
|
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
|
|
}
|
|
|
|
static u32
|
|
ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
|
|
{
|
|
return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
|
|
}
|
|
|
|
static void
|
|
ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
|
|
{
|
|
intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
|
|
}
|
|
|
|
static u32
|
|
pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
|
|
{
|
|
return ring->scratch.cpu_page[0];
|
|
}
|
|
|
|
static void
|
|
pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
|
|
{
|
|
ring->scratch.cpu_page[0] = seqno;
|
|
}
|
|
|
|
static bool
|
|
gen5_ring_get_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
|
|
return false;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (ring->irq_refcount++ == 0)
|
|
gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gen5_ring_put_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (--ring->irq_refcount == 0)
|
|
gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
}
|
|
|
|
static bool
|
|
i9xx_ring_get_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
if (!intel_irqs_enabled(dev_priv))
|
|
return false;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (ring->irq_refcount++ == 0) {
|
|
dev_priv->irq_mask &= ~ring->irq_enable_mask;
|
|
I915_WRITE(IMR, dev_priv->irq_mask);
|
|
POSTING_READ(IMR);
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
i9xx_ring_put_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (--ring->irq_refcount == 0) {
|
|
dev_priv->irq_mask |= ring->irq_enable_mask;
|
|
I915_WRITE(IMR, dev_priv->irq_mask);
|
|
POSTING_READ(IMR);
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
}
|
|
|
|
static bool
|
|
i8xx_ring_get_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
if (!intel_irqs_enabled(dev_priv))
|
|
return false;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (ring->irq_refcount++ == 0) {
|
|
dev_priv->irq_mask &= ~ring->irq_enable_mask;
|
|
I915_WRITE16(IMR, dev_priv->irq_mask);
|
|
POSTING_READ16(IMR);
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
i8xx_ring_put_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (--ring->irq_refcount == 0) {
|
|
dev_priv->irq_mask |= ring->irq_enable_mask;
|
|
I915_WRITE16(IMR, dev_priv->irq_mask);
|
|
POSTING_READ16(IMR);
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
}
|
|
|
|
static int
|
|
bsd_ring_flush(struct intel_engine_cs *ring,
|
|
u32 invalidate_domains,
|
|
u32 flush_domains)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_FLUSH);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i9xx_add_request(struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
|
|
intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
|
|
intel_ring_emit(ring,
|
|
i915_gem_request_get_seqno(ring->outstanding_lazy_request));
|
|
intel_ring_emit(ring, MI_USER_INTERRUPT);
|
|
__intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
gen6_ring_get_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
|
|
return false;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (ring->irq_refcount++ == 0) {
|
|
if (HAS_L3_DPF(dev) && ring->id == RCS)
|
|
I915_WRITE_IMR(ring,
|
|
~(ring->irq_enable_mask |
|
|
GT_PARITY_ERROR(dev)));
|
|
else
|
|
I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
|
|
gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gen6_ring_put_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (--ring->irq_refcount == 0) {
|
|
if (HAS_L3_DPF(dev) && ring->id == RCS)
|
|
I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
|
|
else
|
|
I915_WRITE_IMR(ring, ~0);
|
|
gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
}
|
|
|
|
static bool
|
|
hsw_vebox_get_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
|
|
return false;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (ring->irq_refcount++ == 0) {
|
|
I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
|
|
gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
hsw_vebox_put_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (--ring->irq_refcount == 0) {
|
|
I915_WRITE_IMR(ring, ~0);
|
|
gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
}
|
|
|
|
static bool
|
|
gen8_ring_get_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
|
|
return false;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (ring->irq_refcount++ == 0) {
|
|
if (HAS_L3_DPF(dev) && ring->id == RCS) {
|
|
I915_WRITE_IMR(ring,
|
|
~(ring->irq_enable_mask |
|
|
GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
|
|
} else {
|
|
I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
|
|
}
|
|
POSTING_READ(RING_IMR(ring->mmio_base));
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gen8_ring_put_irq(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev_priv->irq_lock, flags);
|
|
if (--ring->irq_refcount == 0) {
|
|
if (HAS_L3_DPF(dev) && ring->id == RCS) {
|
|
I915_WRITE_IMR(ring,
|
|
~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
|
|
} else {
|
|
I915_WRITE_IMR(ring, ~0);
|
|
}
|
|
POSTING_READ(RING_IMR(ring->mmio_base));
|
|
}
|
|
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
|
|
}
|
|
|
|
static int
|
|
i965_dispatch_execbuffer(struct intel_engine_cs *ring,
|
|
u64 offset, u32 length,
|
|
unsigned dispatch_flags)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring,
|
|
MI_BATCH_BUFFER_START |
|
|
MI_BATCH_GTT |
|
|
(dispatch_flags & I915_DISPATCH_SECURE ?
|
|
0 : MI_BATCH_NON_SECURE_I965));
|
|
intel_ring_emit(ring, offset);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
|
|
#define I830_BATCH_LIMIT (256*1024)
|
|
#define I830_TLB_ENTRIES (2)
|
|
#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
|
|
static int
|
|
i830_dispatch_execbuffer(struct intel_engine_cs *ring,
|
|
u64 offset, u32 len,
|
|
unsigned dispatch_flags)
|
|
{
|
|
u32 cs_offset = ring->scratch.gtt_offset;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 6);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Evict the invalid PTE TLBs */
|
|
intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
|
|
intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
|
|
intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
|
|
intel_ring_emit(ring, cs_offset);
|
|
intel_ring_emit(ring, 0xdeadbeef);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
|
|
if (len > I830_BATCH_LIMIT)
|
|
return -ENOSPC;
|
|
|
|
ret = intel_ring_begin(ring, 6 + 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Blit the batch (which has now all relocs applied) to the
|
|
* stable batch scratch bo area (so that the CS never
|
|
* stumbles over its tlb invalidation bug) ...
|
|
*/
|
|
intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
|
|
intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
|
|
intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
|
|
intel_ring_emit(ring, cs_offset);
|
|
intel_ring_emit(ring, 4096);
|
|
intel_ring_emit(ring, offset);
|
|
|
|
intel_ring_emit(ring, MI_FLUSH);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
/* ... and execute it. */
|
|
offset = cs_offset;
|
|
}
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_BATCH_BUFFER);
|
|
intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
|
|
0 : MI_BATCH_NON_SECURE));
|
|
intel_ring_emit(ring, offset + len - 8);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_dispatch_execbuffer(struct intel_engine_cs *ring,
|
|
u64 offset, u32 len,
|
|
unsigned dispatch_flags)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
|
|
intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
|
|
0 : MI_BATCH_NON_SECURE));
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cleanup_status_page(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = ring->status_page.obj;
|
|
if (obj == NULL)
|
|
return;
|
|
|
|
kunmap(sg_page(obj->pages->sgl));
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
drm_gem_object_unreference(&obj->base);
|
|
ring->status_page.obj = NULL;
|
|
}
|
|
|
|
static int init_status_page(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
if ((obj = ring->status_page.obj) == NULL) {
|
|
unsigned flags;
|
|
int ret;
|
|
|
|
obj = i915_gem_alloc_object(ring->dev, 4096);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Failed to allocate status page\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
|
|
if (ret)
|
|
goto err_unref;
|
|
|
|
flags = 0;
|
|
if (!HAS_LLC(ring->dev))
|
|
/* On g33, we cannot place HWS above 256MiB, so
|
|
* restrict its pinning to the low mappable arena.
|
|
* Though this restriction is not documented for
|
|
* gen4, gen5, or byt, they also behave similarly
|
|
* and hang if the HWS is placed at the top of the
|
|
* GTT. To generalise, it appears that all !llc
|
|
* platforms have issues with us placing the HWS
|
|
* above the mappable region (even though we never
|
|
* actualy map it).
|
|
*/
|
|
flags |= PIN_MAPPABLE;
|
|
ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
|
|
if (ret) {
|
|
err_unref:
|
|
drm_gem_object_unreference(&obj->base);
|
|
return ret;
|
|
}
|
|
|
|
ring->status_page.obj = obj;
|
|
}
|
|
|
|
ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
|
|
ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
|
|
memset(ring->status_page.page_addr, 0, PAGE_SIZE);
|
|
|
|
DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
|
|
ring->name, ring->status_page.gfx_addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_phys_status_page(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
|
|
if (!dev_priv->status_page_dmah) {
|
|
dev_priv->status_page_dmah =
|
|
drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
|
|
if (!dev_priv->status_page_dmah)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
|
|
memset(ring->status_page.page_addr, 0, PAGE_SIZE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
|
|
{
|
|
iounmap(ringbuf->virtual_start);
|
|
ringbuf->virtual_start = NULL;
|
|
i915_gem_object_ggtt_unpin(ringbuf->obj);
|
|
}
|
|
|
|
int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
|
|
struct intel_ringbuffer *ringbuf)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_i915_gem_object *obj = ringbuf->obj;
|
|
int ret;
|
|
|
|
ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (ret) {
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
return ret;
|
|
}
|
|
|
|
ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
|
|
i915_gem_obj_ggtt_offset(obj), ringbuf->size);
|
|
if (ringbuf->virtual_start == NULL) {
|
|
i915_gem_object_ggtt_unpin(obj);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
|
|
{
|
|
drm_gem_object_unreference(&ringbuf->obj->base);
|
|
ringbuf->obj = NULL;
|
|
}
|
|
|
|
int intel_alloc_ringbuffer_obj(struct drm_device *dev,
|
|
struct intel_ringbuffer *ringbuf)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = NULL;
|
|
if (!HAS_LLC(dev))
|
|
obj = i915_gem_object_create_stolen(dev, ringbuf->size);
|
|
if (obj == NULL)
|
|
obj = i915_gem_alloc_object(dev, ringbuf->size);
|
|
if (obj == NULL)
|
|
return -ENOMEM;
|
|
|
|
/* mark ring buffers as read-only from GPU side by default */
|
|
obj->gt_ro = 1;
|
|
|
|
ringbuf->obj = obj;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_init_ring_buffer(struct drm_device *dev,
|
|
struct intel_engine_cs *ring)
|
|
{
|
|
struct intel_ringbuffer *ringbuf;
|
|
int ret;
|
|
|
|
WARN_ON(ring->buffer);
|
|
|
|
ringbuf = kzalloc(sizeof(*ringbuf), GFP_KERNEL);
|
|
if (!ringbuf)
|
|
return -ENOMEM;
|
|
ring->buffer = ringbuf;
|
|
|
|
ring->dev = dev;
|
|
INIT_LIST_HEAD(&ring->active_list);
|
|
INIT_LIST_HEAD(&ring->request_list);
|
|
INIT_LIST_HEAD(&ring->execlist_queue);
|
|
ringbuf->size = 32 * PAGE_SIZE;
|
|
ringbuf->ring = ring;
|
|
memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
|
|
|
|
init_waitqueue_head(&ring->irq_queue);
|
|
|
|
if (I915_NEED_GFX_HWS(dev)) {
|
|
ret = init_status_page(ring);
|
|
if (ret)
|
|
goto error;
|
|
} else {
|
|
BUG_ON(ring->id != RCS);
|
|
ret = init_phys_status_page(ring);
|
|
if (ret)
|
|
goto error;
|
|
}
|
|
|
|
WARN_ON(ringbuf->obj);
|
|
|
|
ret = intel_alloc_ringbuffer_obj(dev, ringbuf);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
|
|
ring->name, ret);
|
|
goto error;
|
|
}
|
|
|
|
ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
|
|
if (ret) {
|
|
DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
|
|
ring->name, ret);
|
|
intel_destroy_ringbuffer_obj(ringbuf);
|
|
goto error;
|
|
}
|
|
|
|
/* Workaround an erratum on the i830 which causes a hang if
|
|
* the TAIL pointer points to within the last 2 cachelines
|
|
* of the buffer.
|
|
*/
|
|
ringbuf->effective_size = ringbuf->size;
|
|
if (IS_I830(dev) || IS_845G(dev))
|
|
ringbuf->effective_size -= 2 * CACHELINE_BYTES;
|
|
|
|
ret = i915_cmd_parser_init_ring(ring);
|
|
if (ret)
|
|
goto error;
|
|
|
|
return 0;
|
|
|
|
error:
|
|
kfree(ringbuf);
|
|
ring->buffer = NULL;
|
|
return ret;
|
|
}
|
|
|
|
void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_private *dev_priv;
|
|
struct intel_ringbuffer *ringbuf;
|
|
|
|
if (!intel_ring_initialized(ring))
|
|
return;
|
|
|
|
dev_priv = to_i915(ring->dev);
|
|
ringbuf = ring->buffer;
|
|
|
|
intel_stop_ring_buffer(ring);
|
|
WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
|
|
|
|
intel_unpin_ringbuffer_obj(ringbuf);
|
|
intel_destroy_ringbuffer_obj(ringbuf);
|
|
i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
|
|
|
|
if (ring->cleanup)
|
|
ring->cleanup(ring);
|
|
|
|
cleanup_status_page(ring);
|
|
|
|
i915_cmd_parser_fini_ring(ring);
|
|
|
|
kfree(ringbuf);
|
|
ring->buffer = NULL;
|
|
}
|
|
|
|
static int intel_ring_wait_request(struct intel_engine_cs *ring, int n)
|
|
{
|
|
struct intel_ringbuffer *ringbuf = ring->buffer;
|
|
struct drm_i915_gem_request *request;
|
|
int ret;
|
|
|
|
if (intel_ring_space(ringbuf) >= n)
|
|
return 0;
|
|
|
|
list_for_each_entry(request, &ring->request_list, list) {
|
|
if (__intel_ring_space(request->postfix, ringbuf->tail,
|
|
ringbuf->size) >= n) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (&request->list == &ring->request_list)
|
|
return -ENOSPC;
|
|
|
|
ret = i915_wait_request(request);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_gem_retire_requests_ring(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_ringbuffer *ringbuf = ring->buffer;
|
|
unsigned long end;
|
|
int ret;
|
|
|
|
ret = intel_ring_wait_request(ring, n);
|
|
if (ret != -ENOSPC)
|
|
return ret;
|
|
|
|
/* force the tail write in case we have been skipping them */
|
|
__intel_ring_advance(ring);
|
|
|
|
/* With GEM the hangcheck timer should kick us out of the loop,
|
|
* leaving it early runs the risk of corrupting GEM state (due
|
|
* to running on almost untested codepaths). But on resume
|
|
* timers don't work yet, so prevent a complete hang in that
|
|
* case by choosing an insanely large timeout. */
|
|
end = jiffies + 60 * HZ;
|
|
|
|
ret = 0;
|
|
trace_i915_ring_wait_begin(ring);
|
|
do {
|
|
if (intel_ring_space(ringbuf) >= n)
|
|
break;
|
|
ringbuf->head = I915_READ_HEAD(ring);
|
|
if (intel_ring_space(ringbuf) >= n)
|
|
break;
|
|
|
|
msleep(1);
|
|
|
|
if (dev_priv->mm.interruptible && signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
|
|
dev_priv->mm.interruptible);
|
|
if (ret)
|
|
break;
|
|
|
|
if (time_after(jiffies, end)) {
|
|
ret = -EBUSY;
|
|
break;
|
|
}
|
|
} while (1);
|
|
trace_i915_ring_wait_end(ring);
|
|
return ret;
|
|
}
|
|
|
|
static int intel_wrap_ring_buffer(struct intel_engine_cs *ring)
|
|
{
|
|
uint32_t __iomem *virt;
|
|
struct intel_ringbuffer *ringbuf = ring->buffer;
|
|
int rem = ringbuf->size - ringbuf->tail;
|
|
|
|
if (ringbuf->space < rem) {
|
|
int ret = ring_wait_for_space(ring, rem);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
virt = ringbuf->virtual_start + ringbuf->tail;
|
|
rem /= 4;
|
|
while (rem--)
|
|
iowrite32(MI_NOOP, virt++);
|
|
|
|
ringbuf->tail = 0;
|
|
intel_ring_update_space(ringbuf);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_ring_idle(struct intel_engine_cs *ring)
|
|
{
|
|
struct drm_i915_gem_request *req;
|
|
int ret;
|
|
|
|
/* We need to add any requests required to flush the objects and ring */
|
|
if (ring->outstanding_lazy_request) {
|
|
ret = i915_add_request(ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Wait upon the last request to be completed */
|
|
if (list_empty(&ring->request_list))
|
|
return 0;
|
|
|
|
req = list_entry(ring->request_list.prev,
|
|
struct drm_i915_gem_request,
|
|
list);
|
|
|
|
return i915_wait_request(req);
|
|
}
|
|
|
|
static int
|
|
intel_ring_alloc_request(struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
struct drm_i915_gem_request *request;
|
|
struct drm_i915_private *dev_private = ring->dev->dev_private;
|
|
|
|
if (ring->outstanding_lazy_request)
|
|
return 0;
|
|
|
|
request = kzalloc(sizeof(*request), GFP_KERNEL);
|
|
if (request == NULL)
|
|
return -ENOMEM;
|
|
|
|
kref_init(&request->ref);
|
|
request->ring = ring;
|
|
request->ringbuf = ring->buffer;
|
|
request->uniq = dev_private->request_uniq++;
|
|
|
|
ret = i915_gem_get_seqno(ring->dev, &request->seqno);
|
|
if (ret) {
|
|
kfree(request);
|
|
return ret;
|
|
}
|
|
|
|
ring->outstanding_lazy_request = request;
|
|
return 0;
|
|
}
|
|
|
|
static int __intel_ring_prepare(struct intel_engine_cs *ring,
|
|
int bytes)
|
|
{
|
|
struct intel_ringbuffer *ringbuf = ring->buffer;
|
|
int ret;
|
|
|
|
if (unlikely(ringbuf->tail + bytes > ringbuf->effective_size)) {
|
|
ret = intel_wrap_ring_buffer(ring);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
if (unlikely(ringbuf->space < bytes)) {
|
|
ret = ring_wait_for_space(ring, bytes);
|
|
if (unlikely(ret))
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_ring_begin(struct intel_engine_cs *ring,
|
|
int num_dwords)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
int ret;
|
|
|
|
ret = i915_gem_check_wedge(&dev_priv->gpu_error,
|
|
dev_priv->mm.interruptible);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Preallocate the olr before touching the ring */
|
|
ret = intel_ring_alloc_request(ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ring->buffer->space -= num_dwords * sizeof(uint32_t);
|
|
return 0;
|
|
}
|
|
|
|
/* Align the ring tail to a cacheline boundary */
|
|
int intel_ring_cacheline_align(struct intel_engine_cs *ring)
|
|
{
|
|
int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
|
|
int ret;
|
|
|
|
if (num_dwords == 0)
|
|
return 0;
|
|
|
|
num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
|
|
ret = intel_ring_begin(ring, num_dwords);
|
|
if (ret)
|
|
return ret;
|
|
|
|
while (num_dwords--)
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
|
|
BUG_ON(ring->outstanding_lazy_request);
|
|
|
|
if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
|
|
I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
|
|
I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
|
|
if (HAS_VEBOX(dev))
|
|
I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
|
|
}
|
|
|
|
ring->set_seqno(ring, seqno);
|
|
ring->hangcheck.seqno = seqno;
|
|
}
|
|
|
|
static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
|
|
u32 value)
|
|
{
|
|
struct drm_i915_private *dev_priv = ring->dev->dev_private;
|
|
|
|
/* Every tail move must follow the sequence below */
|
|
|
|
/* Disable notification that the ring is IDLE. The GT
|
|
* will then assume that it is busy and bring it out of rc6.
|
|
*/
|
|
I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
|
|
_MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
|
|
|
|
/* Clear the context id. Here be magic! */
|
|
I915_WRITE64(GEN6_BSD_RNCID, 0x0);
|
|
|
|
/* Wait for the ring not to be idle, i.e. for it to wake up. */
|
|
if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
|
|
GEN6_BSD_SLEEP_INDICATOR) == 0,
|
|
50))
|
|
DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
|
|
|
|
/* Now that the ring is fully powered up, update the tail */
|
|
I915_WRITE_TAIL(ring, value);
|
|
POSTING_READ(RING_TAIL(ring->mmio_base));
|
|
|
|
/* Let the ring send IDLE messages to the GT again,
|
|
* and so let it sleep to conserve power when idle.
|
|
*/
|
|
I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
|
|
_MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
|
|
}
|
|
|
|
static int gen6_bsd_ring_flush(struct intel_engine_cs *ring,
|
|
u32 invalidate, u32 flush)
|
|
{
|
|
uint32_t cmd;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cmd = MI_FLUSH_DW;
|
|
if (INTEL_INFO(ring->dev)->gen >= 8)
|
|
cmd += 1;
|
|
|
|
/* We always require a command barrier so that subsequent
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
* wrt the contents of the write cache being flushed to memory
|
|
* (and thus being coherent from the CPU).
|
|
*/
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
/*
|
|
* Bspec vol 1c.5 - video engine command streamer:
|
|
* "If ENABLED, all TLBs will be invalidated once the flush
|
|
* operation is complete. This bit is only valid when the
|
|
* Post-Sync Operation field is a value of 1h or 3h."
|
|
*/
|
|
if (invalidate & I915_GEM_GPU_DOMAINS)
|
|
cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
|
|
|
|
intel_ring_emit(ring, cmd);
|
|
intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
|
|
if (INTEL_INFO(ring->dev)->gen >= 8) {
|
|
intel_ring_emit(ring, 0); /* upper addr */
|
|
intel_ring_emit(ring, 0); /* value */
|
|
} else {
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
}
|
|
intel_ring_advance(ring);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen8_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
|
|
u64 offset, u32 len,
|
|
unsigned dispatch_flags)
|
|
{
|
|
bool ppgtt = USES_PPGTT(ring->dev) &&
|
|
!(dispatch_flags & I915_DISPATCH_SECURE);
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* FIXME(BDW): Address space and security selectors. */
|
|
intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8));
|
|
intel_ring_emit(ring, lower_32_bits(offset));
|
|
intel_ring_emit(ring, upper_32_bits(offset));
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
hsw_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
|
|
u64 offset, u32 len,
|
|
unsigned dispatch_flags)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring,
|
|
MI_BATCH_BUFFER_START |
|
|
(dispatch_flags & I915_DISPATCH_SECURE ?
|
|
0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW));
|
|
/* bit0-7 is the length on GEN6+ */
|
|
intel_ring_emit(ring, offset);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gen6_ring_dispatch_execbuffer(struct intel_engine_cs *ring,
|
|
u64 offset, u32 len,
|
|
unsigned dispatch_flags)
|
|
{
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_ring_emit(ring,
|
|
MI_BATCH_BUFFER_START |
|
|
(dispatch_flags & I915_DISPATCH_SECURE ?
|
|
0 : MI_BATCH_NON_SECURE_I965));
|
|
/* bit0-7 is the length on GEN6+ */
|
|
intel_ring_emit(ring, offset);
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Blitter support (SandyBridge+) */
|
|
|
|
static int gen6_ring_flush(struct intel_engine_cs *ring,
|
|
u32 invalidate, u32 flush)
|
|
{
|
|
struct drm_device *dev = ring->dev;
|
|
uint32_t cmd;
|
|
int ret;
|
|
|
|
ret = intel_ring_begin(ring, 4);
|
|
if (ret)
|
|
return ret;
|
|
|
|
cmd = MI_FLUSH_DW;
|
|
if (INTEL_INFO(dev)->gen >= 8)
|
|
cmd += 1;
|
|
|
|
/* We always require a command barrier so that subsequent
|
|
* commands, such as breadcrumb interrupts, are strictly ordered
|
|
* wrt the contents of the write cache being flushed to memory
|
|
* (and thus being coherent from the CPU).
|
|
*/
|
|
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
|
|
|
|
/*
|
|
* Bspec vol 1c.3 - blitter engine command streamer:
|
|
* "If ENABLED, all TLBs will be invalidated once the flush
|
|
* operation is complete. This bit is only valid when the
|
|
* Post-Sync Operation field is a value of 1h or 3h."
|
|
*/
|
|
if (invalidate & I915_GEM_DOMAIN_RENDER)
|
|
cmd |= MI_INVALIDATE_TLB;
|
|
intel_ring_emit(ring, cmd);
|
|
intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
|
|
if (INTEL_INFO(dev)->gen >= 8) {
|
|
intel_ring_emit(ring, 0); /* upper addr */
|
|
intel_ring_emit(ring, 0); /* value */
|
|
} else {
|
|
intel_ring_emit(ring, 0);
|
|
intel_ring_emit(ring, MI_NOOP);
|
|
}
|
|
intel_ring_advance(ring);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_init_render_ring_buffer(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[RCS];
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
ring->name = "render ring";
|
|
ring->id = RCS;
|
|
ring->mmio_base = RENDER_RING_BASE;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 8) {
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
obj = i915_gem_alloc_object(dev, 4096);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
|
|
i915.semaphores = 0;
|
|
} else {
|
|
i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
|
|
ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(&obj->base);
|
|
DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
|
|
i915.semaphores = 0;
|
|
} else
|
|
dev_priv->semaphore_obj = obj;
|
|
}
|
|
}
|
|
|
|
ring->init_context = intel_rcs_ctx_init;
|
|
ring->add_request = gen6_add_request;
|
|
ring->flush = gen8_render_ring_flush;
|
|
ring->irq_get = gen8_ring_get_irq;
|
|
ring->irq_put = gen8_ring_put_irq;
|
|
ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
|
|
ring->get_seqno = gen6_ring_get_seqno;
|
|
ring->set_seqno = ring_set_seqno;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
WARN_ON(!dev_priv->semaphore_obj);
|
|
ring->semaphore.sync_to = gen8_ring_sync;
|
|
ring->semaphore.signal = gen8_rcs_signal;
|
|
GEN8_RING_SEMAPHORE_INIT;
|
|
}
|
|
} else if (INTEL_INFO(dev)->gen >= 6) {
|
|
ring->add_request = gen6_add_request;
|
|
ring->flush = gen7_render_ring_flush;
|
|
if (INTEL_INFO(dev)->gen == 6)
|
|
ring->flush = gen6_render_ring_flush;
|
|
ring->irq_get = gen6_ring_get_irq;
|
|
ring->irq_put = gen6_ring_put_irq;
|
|
ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
|
|
ring->get_seqno = gen6_ring_get_seqno;
|
|
ring->set_seqno = ring_set_seqno;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
ring->semaphore.sync_to = gen6_ring_sync;
|
|
ring->semaphore.signal = gen6_signal;
|
|
/*
|
|
* The current semaphore is only applied on pre-gen8
|
|
* platform. And there is no VCS2 ring on the pre-gen8
|
|
* platform. So the semaphore between RCS and VCS2 is
|
|
* initialized as INVALID. Gen8 will initialize the
|
|
* sema between VCS2 and RCS later.
|
|
*/
|
|
ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
|
|
ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
|
|
ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
|
|
ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
|
|
ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
|
|
ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
|
|
ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
|
|
ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
|
|
ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
|
|
ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
|
|
}
|
|
} else if (IS_GEN5(dev)) {
|
|
ring->add_request = pc_render_add_request;
|
|
ring->flush = gen4_render_ring_flush;
|
|
ring->get_seqno = pc_render_get_seqno;
|
|
ring->set_seqno = pc_render_set_seqno;
|
|
ring->irq_get = gen5_ring_get_irq;
|
|
ring->irq_put = gen5_ring_put_irq;
|
|
ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
|
|
GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
|
|
} else {
|
|
ring->add_request = i9xx_add_request;
|
|
if (INTEL_INFO(dev)->gen < 4)
|
|
ring->flush = gen2_render_ring_flush;
|
|
else
|
|
ring->flush = gen4_render_ring_flush;
|
|
ring->get_seqno = ring_get_seqno;
|
|
ring->set_seqno = ring_set_seqno;
|
|
if (IS_GEN2(dev)) {
|
|
ring->irq_get = i8xx_ring_get_irq;
|
|
ring->irq_put = i8xx_ring_put_irq;
|
|
} else {
|
|
ring->irq_get = i9xx_ring_get_irq;
|
|
ring->irq_put = i9xx_ring_put_irq;
|
|
}
|
|
ring->irq_enable_mask = I915_USER_INTERRUPT;
|
|
}
|
|
ring->write_tail = ring_write_tail;
|
|
|
|
if (IS_HASWELL(dev))
|
|
ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
|
|
else if (IS_GEN8(dev))
|
|
ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
|
|
else if (INTEL_INFO(dev)->gen >= 6)
|
|
ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
|
|
else if (INTEL_INFO(dev)->gen >= 4)
|
|
ring->dispatch_execbuffer = i965_dispatch_execbuffer;
|
|
else if (IS_I830(dev) || IS_845G(dev))
|
|
ring->dispatch_execbuffer = i830_dispatch_execbuffer;
|
|
else
|
|
ring->dispatch_execbuffer = i915_dispatch_execbuffer;
|
|
ring->init_hw = init_render_ring;
|
|
ring->cleanup = render_ring_cleanup;
|
|
|
|
/* Workaround batchbuffer to combat CS tlb bug. */
|
|
if (HAS_BROKEN_CS_TLB(dev)) {
|
|
obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
|
|
if (obj == NULL) {
|
|
DRM_ERROR("Failed to allocate batch bo\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
|
|
if (ret != 0) {
|
|
drm_gem_object_unreference(&obj->base);
|
|
DRM_ERROR("Failed to ping batch bo\n");
|
|
return ret;
|
|
}
|
|
|
|
ring->scratch.obj = obj;
|
|
ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
|
|
}
|
|
|
|
ret = intel_init_ring_buffer(dev, ring);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 5) {
|
|
ret = intel_init_pipe_control(ring);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_init_bsd_ring_buffer(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VCS];
|
|
|
|
ring->name = "bsd ring";
|
|
ring->id = VCS;
|
|
|
|
ring->write_tail = ring_write_tail;
|
|
if (INTEL_INFO(dev)->gen >= 6) {
|
|
ring->mmio_base = GEN6_BSD_RING_BASE;
|
|
/* gen6 bsd needs a special wa for tail updates */
|
|
if (IS_GEN6(dev))
|
|
ring->write_tail = gen6_bsd_ring_write_tail;
|
|
ring->flush = gen6_bsd_ring_flush;
|
|
ring->add_request = gen6_add_request;
|
|
ring->get_seqno = gen6_ring_get_seqno;
|
|
ring->set_seqno = ring_set_seqno;
|
|
if (INTEL_INFO(dev)->gen >= 8) {
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
|
|
ring->irq_get = gen8_ring_get_irq;
|
|
ring->irq_put = gen8_ring_put_irq;
|
|
ring->dispatch_execbuffer =
|
|
gen8_ring_dispatch_execbuffer;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
ring->semaphore.sync_to = gen8_ring_sync;
|
|
ring->semaphore.signal = gen8_xcs_signal;
|
|
GEN8_RING_SEMAPHORE_INIT;
|
|
}
|
|
} else {
|
|
ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
|
|
ring->irq_get = gen6_ring_get_irq;
|
|
ring->irq_put = gen6_ring_put_irq;
|
|
ring->dispatch_execbuffer =
|
|
gen6_ring_dispatch_execbuffer;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
ring->semaphore.sync_to = gen6_ring_sync;
|
|
ring->semaphore.signal = gen6_signal;
|
|
ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
|
|
ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
|
|
ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
|
|
ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
|
|
ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
|
|
ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
|
|
ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
|
|
ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
|
|
ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
|
|
ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
|
|
}
|
|
}
|
|
} else {
|
|
ring->mmio_base = BSD_RING_BASE;
|
|
ring->flush = bsd_ring_flush;
|
|
ring->add_request = i9xx_add_request;
|
|
ring->get_seqno = ring_get_seqno;
|
|
ring->set_seqno = ring_set_seqno;
|
|
if (IS_GEN5(dev)) {
|
|
ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
|
|
ring->irq_get = gen5_ring_get_irq;
|
|
ring->irq_put = gen5_ring_put_irq;
|
|
} else {
|
|
ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
|
|
ring->irq_get = i9xx_ring_get_irq;
|
|
ring->irq_put = i9xx_ring_put_irq;
|
|
}
|
|
ring->dispatch_execbuffer = i965_dispatch_execbuffer;
|
|
}
|
|
ring->init_hw = init_ring_common;
|
|
|
|
return intel_init_ring_buffer(dev, ring);
|
|
}
|
|
|
|
/**
|
|
* Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
|
|
*/
|
|
int intel_init_bsd2_ring_buffer(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
|
|
|
|
ring->name = "bsd2 ring";
|
|
ring->id = VCS2;
|
|
|
|
ring->write_tail = ring_write_tail;
|
|
ring->mmio_base = GEN8_BSD2_RING_BASE;
|
|
ring->flush = gen6_bsd_ring_flush;
|
|
ring->add_request = gen6_add_request;
|
|
ring->get_seqno = gen6_ring_get_seqno;
|
|
ring->set_seqno = ring_set_seqno;
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
|
|
ring->irq_get = gen8_ring_get_irq;
|
|
ring->irq_put = gen8_ring_put_irq;
|
|
ring->dispatch_execbuffer =
|
|
gen8_ring_dispatch_execbuffer;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
ring->semaphore.sync_to = gen8_ring_sync;
|
|
ring->semaphore.signal = gen8_xcs_signal;
|
|
GEN8_RING_SEMAPHORE_INIT;
|
|
}
|
|
ring->init_hw = init_ring_common;
|
|
|
|
return intel_init_ring_buffer(dev, ring);
|
|
}
|
|
|
|
int intel_init_blt_ring_buffer(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[BCS];
|
|
|
|
ring->name = "blitter ring";
|
|
ring->id = BCS;
|
|
|
|
ring->mmio_base = BLT_RING_BASE;
|
|
ring->write_tail = ring_write_tail;
|
|
ring->flush = gen6_ring_flush;
|
|
ring->add_request = gen6_add_request;
|
|
ring->get_seqno = gen6_ring_get_seqno;
|
|
ring->set_seqno = ring_set_seqno;
|
|
if (INTEL_INFO(dev)->gen >= 8) {
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
|
|
ring->irq_get = gen8_ring_get_irq;
|
|
ring->irq_put = gen8_ring_put_irq;
|
|
ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
ring->semaphore.sync_to = gen8_ring_sync;
|
|
ring->semaphore.signal = gen8_xcs_signal;
|
|
GEN8_RING_SEMAPHORE_INIT;
|
|
}
|
|
} else {
|
|
ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
|
|
ring->irq_get = gen6_ring_get_irq;
|
|
ring->irq_put = gen6_ring_put_irq;
|
|
ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
ring->semaphore.signal = gen6_signal;
|
|
ring->semaphore.sync_to = gen6_ring_sync;
|
|
/*
|
|
* The current semaphore is only applied on pre-gen8
|
|
* platform. And there is no VCS2 ring on the pre-gen8
|
|
* platform. So the semaphore between BCS and VCS2 is
|
|
* initialized as INVALID. Gen8 will initialize the
|
|
* sema between BCS and VCS2 later.
|
|
*/
|
|
ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
|
|
ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
|
|
ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
|
|
ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
|
|
ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
|
|
ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
|
|
ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
|
|
ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
|
|
ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
|
|
ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
|
|
}
|
|
}
|
|
ring->init_hw = init_ring_common;
|
|
|
|
return intel_init_ring_buffer(dev, ring);
|
|
}
|
|
|
|
int intel_init_vebox_ring_buffer(struct drm_device *dev)
|
|
{
|
|
struct drm_i915_private *dev_priv = dev->dev_private;
|
|
struct intel_engine_cs *ring = &dev_priv->ring[VECS];
|
|
|
|
ring->name = "video enhancement ring";
|
|
ring->id = VECS;
|
|
|
|
ring->mmio_base = VEBOX_RING_BASE;
|
|
ring->write_tail = ring_write_tail;
|
|
ring->flush = gen6_ring_flush;
|
|
ring->add_request = gen6_add_request;
|
|
ring->get_seqno = gen6_ring_get_seqno;
|
|
ring->set_seqno = ring_set_seqno;
|
|
|
|
if (INTEL_INFO(dev)->gen >= 8) {
|
|
ring->irq_enable_mask =
|
|
GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
|
|
ring->irq_get = gen8_ring_get_irq;
|
|
ring->irq_put = gen8_ring_put_irq;
|
|
ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
ring->semaphore.sync_to = gen8_ring_sync;
|
|
ring->semaphore.signal = gen8_xcs_signal;
|
|
GEN8_RING_SEMAPHORE_INIT;
|
|
}
|
|
} else {
|
|
ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
|
|
ring->irq_get = hsw_vebox_get_irq;
|
|
ring->irq_put = hsw_vebox_put_irq;
|
|
ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
|
|
if (i915_semaphore_is_enabled(dev)) {
|
|
ring->semaphore.sync_to = gen6_ring_sync;
|
|
ring->semaphore.signal = gen6_signal;
|
|
ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
|
|
ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
|
|
ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
|
|
ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
|
|
ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
|
|
ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
|
|
ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
|
|
ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
|
|
ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
|
|
ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
|
|
}
|
|
}
|
|
ring->init_hw = init_ring_common;
|
|
|
|
return intel_init_ring_buffer(dev, ring);
|
|
}
|
|
|
|
int
|
|
intel_ring_flush_all_caches(struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
|
|
if (!ring->gpu_caches_dirty)
|
|
return 0;
|
|
|
|
ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trace_i915_gem_ring_flush(ring, 0, I915_GEM_GPU_DOMAINS);
|
|
|
|
ring->gpu_caches_dirty = false;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
intel_ring_invalidate_all_caches(struct intel_engine_cs *ring)
|
|
{
|
|
uint32_t flush_domains;
|
|
int ret;
|
|
|
|
flush_domains = 0;
|
|
if (ring->gpu_caches_dirty)
|
|
flush_domains = I915_GEM_GPU_DOMAINS;
|
|
|
|
ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trace_i915_gem_ring_flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
|
|
|
|
ring->gpu_caches_dirty = false;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
intel_stop_ring_buffer(struct intel_engine_cs *ring)
|
|
{
|
|
int ret;
|
|
|
|
if (!intel_ring_initialized(ring))
|
|
return;
|
|
|
|
ret = intel_ring_idle(ring);
|
|
if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
|
|
DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
|
|
ring->name, ret);
|
|
|
|
stop_ring(ring);
|
|
}
|