linux_dsm_epyc7002/drivers/watchdog/sprd_wdt.c
Alexey Khoroshilov 3c578cd4bc watchdog: sprd_wdt: Fix error handling in sprd_wdt_enable()
If clk_prepare_enable(wdt->rtc_enable) fails,
wdt->enable clock is left enabled.

Found by Linux Driver Verification project (linuxtesting.org).

Signed-off-by: Alexey Khoroshilov <khoroshilov@ispras.ru>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Wim Van Sebroeck <wim@iguana.be>
2018-03-13 19:14:18 +01:00

402 lines
9.8 KiB
C

/*
* Spreadtrum watchdog driver
* Copyright (C) 2017 Spreadtrum - http://www.spreadtrum.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/watchdog.h>
#define SPRD_WDT_LOAD_LOW 0x0
#define SPRD_WDT_LOAD_HIGH 0x4
#define SPRD_WDT_CTRL 0x8
#define SPRD_WDT_INT_CLR 0xc
#define SPRD_WDT_INT_RAW 0x10
#define SPRD_WDT_INT_MSK 0x14
#define SPRD_WDT_CNT_LOW 0x18
#define SPRD_WDT_CNT_HIGH 0x1c
#define SPRD_WDT_LOCK 0x20
#define SPRD_WDT_IRQ_LOAD_LOW 0x2c
#define SPRD_WDT_IRQ_LOAD_HIGH 0x30
/* WDT_CTRL */
#define SPRD_WDT_INT_EN_BIT BIT(0)
#define SPRD_WDT_CNT_EN_BIT BIT(1)
#define SPRD_WDT_NEW_VER_EN BIT(2)
#define SPRD_WDT_RST_EN_BIT BIT(3)
/* WDT_INT_CLR */
#define SPRD_WDT_INT_CLEAR_BIT BIT(0)
#define SPRD_WDT_RST_CLEAR_BIT BIT(3)
/* WDT_INT_RAW */
#define SPRD_WDT_INT_RAW_BIT BIT(0)
#define SPRD_WDT_RST_RAW_BIT BIT(3)
#define SPRD_WDT_LD_BUSY_BIT BIT(4)
/* 1s equal to 32768 counter steps */
#define SPRD_WDT_CNT_STEP 32768
#define SPRD_WDT_UNLOCK_KEY 0xe551
#define SPRD_WDT_MIN_TIMEOUT 3
#define SPRD_WDT_MAX_TIMEOUT 60
#define SPRD_WDT_CNT_HIGH_SHIFT 16
#define SPRD_WDT_LOW_VALUE_MASK GENMASK(15, 0)
#define SPRD_WDT_LOAD_TIMEOUT 1000
struct sprd_wdt {
void __iomem *base;
struct watchdog_device wdd;
struct clk *enable;
struct clk *rtc_enable;
int irq;
};
static inline struct sprd_wdt *to_sprd_wdt(struct watchdog_device *wdd)
{
return container_of(wdd, struct sprd_wdt, wdd);
}
static inline void sprd_wdt_lock(void __iomem *addr)
{
writel_relaxed(0x0, addr + SPRD_WDT_LOCK);
}
static inline void sprd_wdt_unlock(void __iomem *addr)
{
writel_relaxed(SPRD_WDT_UNLOCK_KEY, addr + SPRD_WDT_LOCK);
}
static irqreturn_t sprd_wdt_isr(int irq, void *dev_id)
{
struct sprd_wdt *wdt = (struct sprd_wdt *)dev_id;
sprd_wdt_unlock(wdt->base);
writel_relaxed(SPRD_WDT_INT_CLEAR_BIT, wdt->base + SPRD_WDT_INT_CLR);
sprd_wdt_lock(wdt->base);
watchdog_notify_pretimeout(&wdt->wdd);
return IRQ_HANDLED;
}
static u32 sprd_wdt_get_cnt_value(struct sprd_wdt *wdt)
{
u32 val;
val = readl_relaxed(wdt->base + SPRD_WDT_CNT_HIGH) <<
SPRD_WDT_CNT_HIGH_SHIFT;
val |= readl_relaxed(wdt->base + SPRD_WDT_CNT_LOW) &
SPRD_WDT_LOW_VALUE_MASK;
return val;
}
static int sprd_wdt_load_value(struct sprd_wdt *wdt, u32 timeout,
u32 pretimeout)
{
u32 val, delay_cnt = 0;
u32 tmr_step = timeout * SPRD_WDT_CNT_STEP;
u32 prtmr_step = pretimeout * SPRD_WDT_CNT_STEP;
sprd_wdt_unlock(wdt->base);
writel_relaxed((tmr_step >> SPRD_WDT_CNT_HIGH_SHIFT) &
SPRD_WDT_LOW_VALUE_MASK, wdt->base + SPRD_WDT_LOAD_HIGH);
writel_relaxed((tmr_step & SPRD_WDT_LOW_VALUE_MASK),
wdt->base + SPRD_WDT_LOAD_LOW);
writel_relaxed((prtmr_step >> SPRD_WDT_CNT_HIGH_SHIFT) &
SPRD_WDT_LOW_VALUE_MASK,
wdt->base + SPRD_WDT_IRQ_LOAD_HIGH);
writel_relaxed(prtmr_step & SPRD_WDT_LOW_VALUE_MASK,
wdt->base + SPRD_WDT_IRQ_LOAD_LOW);
sprd_wdt_lock(wdt->base);
/*
* Waiting the load value operation done,
* it needs two or three RTC clock cycles.
*/
do {
val = readl_relaxed(wdt->base + SPRD_WDT_INT_RAW);
if (!(val & SPRD_WDT_LD_BUSY_BIT))
break;
cpu_relax();
} while (delay_cnt++ < SPRD_WDT_LOAD_TIMEOUT);
if (delay_cnt >= SPRD_WDT_LOAD_TIMEOUT)
return -EBUSY;
return 0;
}
static int sprd_wdt_enable(struct sprd_wdt *wdt)
{
u32 val;
int ret;
ret = clk_prepare_enable(wdt->enable);
if (ret)
return ret;
ret = clk_prepare_enable(wdt->rtc_enable);
if (ret) {
clk_disable_unprepare(wdt->enable);
return ret;
}
sprd_wdt_unlock(wdt->base);
val = readl_relaxed(wdt->base + SPRD_WDT_CTRL);
val |= SPRD_WDT_NEW_VER_EN;
writel_relaxed(val, wdt->base + SPRD_WDT_CTRL);
sprd_wdt_lock(wdt->base);
return 0;
}
static void sprd_wdt_disable(void *_data)
{
struct sprd_wdt *wdt = _data;
sprd_wdt_unlock(wdt->base);
writel_relaxed(0x0, wdt->base + SPRD_WDT_CTRL);
sprd_wdt_lock(wdt->base);
clk_disable_unprepare(wdt->rtc_enable);
clk_disable_unprepare(wdt->enable);
}
static int sprd_wdt_start(struct watchdog_device *wdd)
{
struct sprd_wdt *wdt = to_sprd_wdt(wdd);
u32 val;
int ret;
ret = sprd_wdt_load_value(wdt, wdd->timeout, wdd->pretimeout);
if (ret)
return ret;
sprd_wdt_unlock(wdt->base);
val = readl_relaxed(wdt->base + SPRD_WDT_CTRL);
val |= SPRD_WDT_CNT_EN_BIT | SPRD_WDT_INT_EN_BIT | SPRD_WDT_RST_EN_BIT;
writel_relaxed(val, wdt->base + SPRD_WDT_CTRL);
sprd_wdt_lock(wdt->base);
set_bit(WDOG_HW_RUNNING, &wdd->status);
return 0;
}
static int sprd_wdt_stop(struct watchdog_device *wdd)
{
struct sprd_wdt *wdt = to_sprd_wdt(wdd);
u32 val;
sprd_wdt_unlock(wdt->base);
val = readl_relaxed(wdt->base + SPRD_WDT_CTRL);
val &= ~(SPRD_WDT_CNT_EN_BIT | SPRD_WDT_RST_EN_BIT |
SPRD_WDT_INT_EN_BIT);
writel_relaxed(val, wdt->base + SPRD_WDT_CTRL);
sprd_wdt_lock(wdt->base);
return 0;
}
static int sprd_wdt_set_timeout(struct watchdog_device *wdd,
u32 timeout)
{
struct sprd_wdt *wdt = to_sprd_wdt(wdd);
if (timeout == wdd->timeout)
return 0;
wdd->timeout = timeout;
return sprd_wdt_load_value(wdt, timeout, wdd->pretimeout);
}
static int sprd_wdt_set_pretimeout(struct watchdog_device *wdd,
u32 new_pretimeout)
{
struct sprd_wdt *wdt = to_sprd_wdt(wdd);
if (new_pretimeout < wdd->min_timeout)
return -EINVAL;
wdd->pretimeout = new_pretimeout;
return sprd_wdt_load_value(wdt, wdd->timeout, new_pretimeout);
}
static u32 sprd_wdt_get_timeleft(struct watchdog_device *wdd)
{
struct sprd_wdt *wdt = to_sprd_wdt(wdd);
u32 val;
val = sprd_wdt_get_cnt_value(wdt);
val = val / SPRD_WDT_CNT_STEP;
return val;
}
static const struct watchdog_ops sprd_wdt_ops = {
.owner = THIS_MODULE,
.start = sprd_wdt_start,
.stop = sprd_wdt_stop,
.set_timeout = sprd_wdt_set_timeout,
.set_pretimeout = sprd_wdt_set_pretimeout,
.get_timeleft = sprd_wdt_get_timeleft,
};
static const struct watchdog_info sprd_wdt_info = {
.options = WDIOF_SETTIMEOUT |
WDIOF_PRETIMEOUT |
WDIOF_MAGICCLOSE |
WDIOF_KEEPALIVEPING,
.identity = "Spreadtrum Watchdog Timer",
};
static int sprd_wdt_probe(struct platform_device *pdev)
{
struct resource *wdt_res;
struct sprd_wdt *wdt;
int ret;
wdt = devm_kzalloc(&pdev->dev, sizeof(*wdt), GFP_KERNEL);
if (!wdt)
return -ENOMEM;
wdt_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
wdt->base = devm_ioremap_resource(&pdev->dev, wdt_res);
if (IS_ERR(wdt->base)) {
dev_err(&pdev->dev, "failed to map memory resource\n");
return PTR_ERR(wdt->base);
}
wdt->enable = devm_clk_get(&pdev->dev, "enable");
if (IS_ERR(wdt->enable)) {
dev_err(&pdev->dev, "can't get the enable clock\n");
return PTR_ERR(wdt->enable);
}
wdt->rtc_enable = devm_clk_get(&pdev->dev, "rtc_enable");
if (IS_ERR(wdt->rtc_enable)) {
dev_err(&pdev->dev, "can't get the rtc enable clock\n");
return PTR_ERR(wdt->rtc_enable);
}
wdt->irq = platform_get_irq(pdev, 0);
if (wdt->irq < 0) {
dev_err(&pdev->dev, "failed to get IRQ resource\n");
return wdt->irq;
}
ret = devm_request_irq(&pdev->dev, wdt->irq, sprd_wdt_isr,
IRQF_NO_SUSPEND, "sprd-wdt", (void *)wdt);
if (ret) {
dev_err(&pdev->dev, "failed to register irq\n");
return ret;
}
wdt->wdd.info = &sprd_wdt_info;
wdt->wdd.ops = &sprd_wdt_ops;
wdt->wdd.parent = &pdev->dev;
wdt->wdd.min_timeout = SPRD_WDT_MIN_TIMEOUT;
wdt->wdd.max_timeout = SPRD_WDT_MAX_TIMEOUT;
wdt->wdd.timeout = SPRD_WDT_MAX_TIMEOUT;
ret = sprd_wdt_enable(wdt);
if (ret) {
dev_err(&pdev->dev, "failed to enable wdt\n");
return ret;
}
ret = devm_add_action(&pdev->dev, sprd_wdt_disable, wdt);
if (ret) {
sprd_wdt_disable(wdt);
dev_err(&pdev->dev, "Failed to add wdt disable action\n");
return ret;
}
watchdog_set_nowayout(&wdt->wdd, WATCHDOG_NOWAYOUT);
watchdog_init_timeout(&wdt->wdd, 0, &pdev->dev);
ret = devm_watchdog_register_device(&pdev->dev, &wdt->wdd);
if (ret) {
sprd_wdt_disable(wdt);
dev_err(&pdev->dev, "failed to register watchdog\n");
return ret;
}
platform_set_drvdata(pdev, wdt);
return 0;
}
static int __maybe_unused sprd_wdt_pm_suspend(struct device *dev)
{
struct watchdog_device *wdd = dev_get_drvdata(dev);
struct sprd_wdt *wdt = dev_get_drvdata(dev);
if (watchdog_active(wdd))
sprd_wdt_stop(&wdt->wdd);
sprd_wdt_disable(wdt);
return 0;
}
static int __maybe_unused sprd_wdt_pm_resume(struct device *dev)
{
struct watchdog_device *wdd = dev_get_drvdata(dev);
struct sprd_wdt *wdt = dev_get_drvdata(dev);
int ret;
ret = sprd_wdt_enable(wdt);
if (ret)
return ret;
if (watchdog_active(wdd)) {
ret = sprd_wdt_start(&wdt->wdd);
if (ret) {
sprd_wdt_disable(wdt);
return ret;
}
}
return 0;
}
static const struct dev_pm_ops sprd_wdt_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sprd_wdt_pm_suspend,
sprd_wdt_pm_resume)
};
static const struct of_device_id sprd_wdt_match_table[] = {
{ .compatible = "sprd,sp9860-wdt", },
{},
};
MODULE_DEVICE_TABLE(of, sprd_wdt_match_table);
static struct platform_driver sprd_watchdog_driver = {
.probe = sprd_wdt_probe,
.driver = {
.name = "sprd-wdt",
.of_match_table = sprd_wdt_match_table,
.pm = &sprd_wdt_pm_ops,
},
};
module_platform_driver(sprd_watchdog_driver);
MODULE_AUTHOR("Eric Long <eric.long@spreadtrum.com>");
MODULE_DESCRIPTION("Spreadtrum Watchdog Timer Controller Driver");
MODULE_LICENSE("GPL v2");