linux_dsm_epyc7002/drivers/gpu/drm/nouveau/nouveau_dp.c
Ben Skeggs befb51e9c9 drm/nouveau/disp: parse connector info directly in nouveau_connector.c
Another case where we parsed vbios data to some structs, then again use
that info once to construct another set of data.  Skip the intermediate
step.

This is also slightly improved in that we can now use DCB 3.x connector
table info, which will allow NV4x to gain hotplug support, and to make
quirks for SPWG LVDS panels unnecessary.

Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
2011-12-21 19:01:41 +10:00

734 lines
19 KiB
C

/*
* Copyright 2009 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Ben Skeggs
*/
#include "drmP.h"
#include "nouveau_drv.h"
#include "nouveau_i2c.h"
#include "nouveau_connector.h"
#include "nouveau_encoder.h"
#include "nouveau_crtc.h"
/******************************************************************************
* aux channel util functions
*****************************************************************************/
#define AUX_DBG(fmt, args...) do { \
if (nouveau_reg_debug & NOUVEAU_REG_DEBUG_AUXCH) { \
NV_PRINTK(KERN_DEBUG, dev, "AUXCH(%d): " fmt, ch, ##args); \
} \
} while (0)
#define AUX_ERR(fmt, args...) NV_ERROR(dev, "AUXCH(%d): " fmt, ch, ##args)
static void
auxch_fini(struct drm_device *dev, int ch)
{
nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00310000, 0x00000000);
}
static int
auxch_init(struct drm_device *dev, int ch)
{
const u32 unksel = 1; /* nfi which to use, or if it matters.. */
const u32 ureq = unksel ? 0x00100000 : 0x00200000;
const u32 urep = unksel ? 0x01000000 : 0x02000000;
u32 ctrl, timeout;
/* wait up to 1ms for any previous transaction to be done... */
timeout = 1000;
do {
ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
udelay(1);
if (!timeout--) {
AUX_ERR("begin idle timeout 0x%08x", ctrl);
return -EBUSY;
}
} while (ctrl & 0x03010000);
/* set some magic, and wait up to 1ms for it to appear */
nv_mask(dev, 0x00e4e4 + (ch * 0x50), 0x00300000, ureq);
timeout = 1000;
do {
ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
udelay(1);
if (!timeout--) {
AUX_ERR("magic wait 0x%08x\n", ctrl);
auxch_fini(dev, ch);
return -EBUSY;
}
} while ((ctrl & 0x03000000) != urep);
return 0;
}
static int
auxch_tx(struct drm_device *dev, int ch, u8 type, u32 addr, u8 *data, u8 size)
{
u32 ctrl, stat, timeout, retries;
u32 xbuf[4] = {};
int ret, i;
AUX_DBG("%d: 0x%08x %d\n", type, addr, size);
ret = auxch_init(dev, ch);
if (ret)
goto out;
stat = nv_rd32(dev, 0x00e4e8 + (ch * 0x50));
if (!(stat & 0x10000000)) {
AUX_DBG("sink not detected\n");
ret = -ENXIO;
goto out;
}
if (!(type & 1)) {
memcpy(xbuf, data, size);
for (i = 0; i < 16; i += 4) {
AUX_DBG("wr 0x%08x\n", xbuf[i / 4]);
nv_wr32(dev, 0x00e4c0 + (ch * 0x50) + i, xbuf[i / 4]);
}
}
ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
ctrl &= ~0x0001f0ff;
ctrl |= type << 12;
ctrl |= size - 1;
nv_wr32(dev, 0x00e4e0 + (ch * 0x50), addr);
/* retry transaction a number of times on failure... */
ret = -EREMOTEIO;
for (retries = 0; retries < 32; retries++) {
/* reset, and delay a while if this is a retry */
nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x80000000 | ctrl);
nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00000000 | ctrl);
if (retries)
udelay(400);
/* transaction request, wait up to 1ms for it to complete */
nv_wr32(dev, 0x00e4e4 + (ch * 0x50), 0x00010000 | ctrl);
timeout = 1000;
do {
ctrl = nv_rd32(dev, 0x00e4e4 + (ch * 0x50));
udelay(1);
if (!timeout--) {
AUX_ERR("tx req timeout 0x%08x\n", ctrl);
goto out;
}
} while (ctrl & 0x00010000);
/* read status, and check if transaction completed ok */
stat = nv_mask(dev, 0x00e4e8 + (ch * 0x50), 0, 0);
if (!(stat & 0x000f0f00)) {
ret = 0;
break;
}
AUX_DBG("%02d 0x%08x 0x%08x\n", retries, ctrl, stat);
}
if (type & 1) {
for (i = 0; i < 16; i += 4) {
xbuf[i / 4] = nv_rd32(dev, 0x00e4d0 + (ch * 0x50) + i);
AUX_DBG("rd 0x%08x\n", xbuf[i / 4]);
}
memcpy(data, xbuf, size);
}
out:
auxch_fini(dev, ch);
return ret;
}
static u32
dp_link_bw_get(struct drm_device *dev, int or, int link)
{
u32 ctrl = nv_rd32(dev, 0x614300 + (or * 0x800));
if (!(ctrl & 0x000c0000))
return 162000;
return 270000;
}
static int
dp_lane_count_get(struct drm_device *dev, int or, int link)
{
u32 ctrl = nv_rd32(dev, NV50_SOR_DP_CTRL(or, link));
switch (ctrl & 0x000f0000) {
case 0x00010000: return 1;
case 0x00030000: return 2;
default:
return 4;
}
}
void
nouveau_dp_tu_update(struct drm_device *dev, int or, int link, u32 clk, u32 bpp)
{
const u32 symbol = 100000;
int bestTU = 0, bestVTUi = 0, bestVTUf = 0, bestVTUa = 0;
int TU, VTUi, VTUf, VTUa;
u64 link_data_rate, link_ratio, unk;
u32 best_diff = 64 * symbol;
u32 link_nr, link_bw, r;
/* calculate packed data rate for each lane */
link_nr = dp_lane_count_get(dev, or, link);
link_data_rate = (clk * bpp / 8) / link_nr;
/* calculate ratio of packed data rate to link symbol rate */
link_bw = dp_link_bw_get(dev, or, link);
link_ratio = link_data_rate * symbol;
r = do_div(link_ratio, link_bw);
for (TU = 64; TU >= 32; TU--) {
/* calculate average number of valid symbols in each TU */
u32 tu_valid = link_ratio * TU;
u32 calc, diff;
/* find a hw representation for the fraction.. */
VTUi = tu_valid / symbol;
calc = VTUi * symbol;
diff = tu_valid - calc;
if (diff) {
if (diff >= (symbol / 2)) {
VTUf = symbol / (symbol - diff);
if (symbol - (VTUf * diff))
VTUf++;
if (VTUf <= 15) {
VTUa = 1;
calc += symbol - (symbol / VTUf);
} else {
VTUa = 0;
VTUf = 1;
calc += symbol;
}
} else {
VTUa = 0;
VTUf = min((int)(symbol / diff), 15);
calc += symbol / VTUf;
}
diff = calc - tu_valid;
} else {
/* no remainder, but the hw doesn't like the fractional
* part to be zero. decrement the integer part and
* have the fraction add a whole symbol back
*/
VTUa = 0;
VTUf = 1;
VTUi--;
}
if (diff < best_diff) {
best_diff = diff;
bestTU = TU;
bestVTUa = VTUa;
bestVTUf = VTUf;
bestVTUi = VTUi;
if (diff == 0)
break;
}
}
if (!bestTU) {
NV_ERROR(dev, "DP: unable to find suitable config\n");
return;
}
/* XXX close to vbios numbers, but not right */
unk = (symbol - link_ratio) * bestTU;
unk *= link_ratio;
r = do_div(unk, symbol);
r = do_div(unk, symbol);
unk += 6;
nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x000001fc, bestTU << 2);
nv_mask(dev, NV50_SOR_DP_SCFG(or, link), 0x010f7f3f, bestVTUa << 24 |
bestVTUf << 16 |
bestVTUi << 8 |
unk);
}
u8 *
nouveau_dp_bios_data(struct drm_device *dev, struct dcb_entry *dcb, u8 **entry)
{
struct bit_entry d;
u8 *table;
int i;
if (bit_table(dev, 'd', &d)) {
NV_ERROR(dev, "BIT 'd' table not found\n");
return NULL;
}
if (d.version != 1) {
NV_ERROR(dev, "BIT 'd' table version %d unknown\n", d.version);
return NULL;
}
table = ROMPTR(dev, d.data[0]);
if (!table) {
NV_ERROR(dev, "displayport table pointer invalid\n");
return NULL;
}
switch (table[0]) {
case 0x20:
case 0x21:
case 0x30:
break;
default:
NV_ERROR(dev, "displayport table 0x%02x unknown\n", table[0]);
return NULL;
}
for (i = 0; i < table[3]; i++) {
*entry = ROMPTR(dev, table[table[1] + (i * table[2])]);
if (*entry && bios_encoder_match(dcb, ROM32((*entry)[0])))
return table;
}
NV_ERROR(dev, "displayport encoder table not found\n");
return NULL;
}
/******************************************************************************
* link training
*****************************************************************************/
struct dp_state {
struct dcb_entry *dcb;
u8 *table;
u8 *entry;
int auxch;
int crtc;
int or;
int link;
u8 *dpcd;
int link_nr;
u32 link_bw;
u8 stat[6];
u8 conf[4];
};
static void
dp_set_link_config(struct drm_device *dev, struct dp_state *dp)
{
int or = dp->or, link = dp->link;
u8 *entry, sink[2];
u32 dp_ctrl;
u16 script;
NV_DEBUG_KMS(dev, "%d lanes at %d KB/s\n", dp->link_nr, dp->link_bw);
/* set selected link rate on source */
switch (dp->link_bw) {
case 270000:
nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00040000);
sink[0] = DP_LINK_BW_2_7;
break;
default:
nv_mask(dev, 0x614300 + (or * 0x800), 0x000c0000, 0x00000000);
sink[0] = DP_LINK_BW_1_62;
break;
}
/* offset +0x0a of each dp encoder table entry is a pointer to another
* table, that has (among other things) pointers to more scripts that
* need to be executed, this time depending on link speed.
*/
entry = ROMPTR(dev, dp->entry[10]);
if (entry) {
if (dp->table[0] < 0x30) {
while (dp->link_bw < (ROM16(entry[0]) * 10))
entry += 4;
script = ROM16(entry[2]);
} else {
while (dp->link_bw < (entry[0] * 27000))
entry += 3;
script = ROM16(entry[1]);
}
nouveau_bios_run_init_table(dev, script, dp->dcb, dp->crtc);
}
/* configure lane count on the source */
dp_ctrl = ((1 << dp->link_nr) - 1) << 16;
sink[1] = dp->link_nr;
if (dp->dpcd[2] & DP_ENHANCED_FRAME_CAP) {
dp_ctrl |= 0x00004000;
sink[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
}
nv_mask(dev, NV50_SOR_DP_CTRL(or, link), 0x001f4000, dp_ctrl);
/* inform the sink of the new configuration */
auxch_tx(dev, dp->auxch, 8, DP_LINK_BW_SET, sink, 2);
}
static void
dp_set_training_pattern(struct drm_device *dev, struct dp_state *dp, u8 tp)
{
u8 sink_tp;
NV_DEBUG_KMS(dev, "training pattern %d\n", tp);
nv_mask(dev, NV50_SOR_DP_CTRL(dp->or, dp->link), 0x0f000000, tp << 24);
auxch_tx(dev, dp->auxch, 9, DP_TRAINING_PATTERN_SET, &sink_tp, 1);
sink_tp &= ~DP_TRAINING_PATTERN_MASK;
sink_tp |= tp;
auxch_tx(dev, dp->auxch, 8, DP_TRAINING_PATTERN_SET, &sink_tp, 1);
}
static const u8 nv50_lane_map[] = { 16, 8, 0, 24 };
static const u8 nvaf_lane_map[] = { 24, 16, 8, 0 };
static int
dp_link_train_commit(struct drm_device *dev, struct dp_state *dp)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
u32 mask = 0, drv = 0, pre = 0, unk = 0;
const u8 *shifts;
int link = dp->link;
int or = dp->or;
int i;
if (dev_priv->chipset != 0xaf)
shifts = nv50_lane_map;
else
shifts = nvaf_lane_map;
for (i = 0; i < dp->link_nr; i++) {
u8 *conf = dp->entry + dp->table[4];
u8 lane = (dp->stat[4 + (i >> 1)] >> ((i & 1) * 4)) & 0xf;
u8 lpre = (lane & 0x0c) >> 2;
u8 lvsw = (lane & 0x03) >> 0;
mask |= 0xff << shifts[i];
unk |= 1 << (shifts[i] >> 3);
dp->conf[i] = (lpre << 3) | lvsw;
if (lvsw == DP_TRAIN_VOLTAGE_SWING_1200)
dp->conf[i] |= DP_TRAIN_MAX_SWING_REACHED;
if (lpre == DP_TRAIN_PRE_EMPHASIS_9_5)
dp->conf[i] |= DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
NV_DEBUG_KMS(dev, "config lane %d %02x\n", i, dp->conf[i]);
if (dp->table[0] < 0x30) {
u8 *last = conf + (dp->entry[4] * dp->table[5]);
while (lvsw != conf[0] || lpre != conf[1]) {
conf += dp->table[5];
if (conf >= last)
return -EINVAL;
}
conf += 2;
} else {
/* no lookup table anymore, set entries for each
* combination of voltage swing and pre-emphasis
* level allowed by the DP spec.
*/
switch (lvsw) {
case 0: lpre += 0; break;
case 1: lpre += 4; break;
case 2: lpre += 7; break;
case 3: lpre += 9; break;
}
conf = conf + (lpre * dp->table[5]);
conf++;
}
drv |= conf[0] << shifts[i];
pre |= conf[1] << shifts[i];
unk = (unk & ~0x0000ff00) | (conf[2] << 8);
}
nv_mask(dev, NV50_SOR_DP_UNK118(or, link), mask, drv);
nv_mask(dev, NV50_SOR_DP_UNK120(or, link), mask, pre);
nv_mask(dev, NV50_SOR_DP_UNK130(or, link), 0x0000ff0f, unk);
return auxch_tx(dev, dp->auxch, 8, DP_TRAINING_LANE0_SET, dp->conf, 4);
}
static int
dp_link_train_update(struct drm_device *dev, struct dp_state *dp, u32 delay)
{
int ret;
udelay(delay);
ret = auxch_tx(dev, dp->auxch, 9, DP_LANE0_1_STATUS, dp->stat, 6);
if (ret)
return ret;
NV_DEBUG_KMS(dev, "status %02x %02x %02x %02x %02x %02x\n",
dp->stat[0], dp->stat[1], dp->stat[2], dp->stat[3],
dp->stat[4], dp->stat[5]);
return 0;
}
static int
dp_link_train_cr(struct drm_device *dev, struct dp_state *dp)
{
bool cr_done = false, abort = false;
int voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
int tries = 0, i;
dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_1);
do {
if (dp_link_train_commit(dev, dp) ||
dp_link_train_update(dev, dp, 100))
break;
cr_done = true;
for (i = 0; i < dp->link_nr; i++) {
u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DP_LANE_CR_DONE)) {
cr_done = false;
if (dp->conf[i] & DP_TRAIN_MAX_SWING_REACHED)
abort = true;
break;
}
}
if ((dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK) != voltage) {
voltage = dp->conf[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
tries = 0;
}
} while (!cr_done && !abort && ++tries < 5);
return cr_done ? 0 : -1;
}
static int
dp_link_train_eq(struct drm_device *dev, struct dp_state *dp)
{
bool eq_done, cr_done = true;
int tries = 0, i;
dp_set_training_pattern(dev, dp, DP_TRAINING_PATTERN_2);
do {
if (dp_link_train_update(dev, dp, 400))
break;
eq_done = !!(dp->stat[2] & DP_INTERLANE_ALIGN_DONE);
for (i = 0; i < dp->link_nr && eq_done; i++) {
u8 lane = (dp->stat[i >> 1] >> ((i & 1) * 4)) & 0xf;
if (!(lane & DP_LANE_CR_DONE))
cr_done = false;
if (!(lane & DP_LANE_CHANNEL_EQ_DONE) ||
!(lane & DP_LANE_SYMBOL_LOCKED))
eq_done = false;
}
if (dp_link_train_commit(dev, dp))
break;
} while (!eq_done && cr_done && ++tries <= 5);
return eq_done ? 0 : -1;
}
bool
nouveau_dp_link_train(struct drm_encoder *encoder, u32 datarate)
{
struct drm_nouveau_private *dev_priv = encoder->dev->dev_private;
struct nouveau_gpio_engine *pgpio = &dev_priv->engine.gpio;
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_connector *nv_connector =
nouveau_encoder_connector_get(nv_encoder);
struct drm_device *dev = encoder->dev;
struct nouveau_i2c_chan *auxch;
const u32 bw_list[] = { 270000, 162000, 0 };
const u32 *link_bw = bw_list;
struct dp_state dp;
auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index);
if (!auxch)
return false;
dp.table = nouveau_dp_bios_data(dev, nv_encoder->dcb, &dp.entry);
if (!dp.table)
return -EINVAL;
dp.dcb = nv_encoder->dcb;
dp.crtc = nv_crtc->index;
dp.auxch = auxch->drive;
dp.or = nv_encoder->or;
dp.link = !(nv_encoder->dcb->sorconf.link & 1);
dp.dpcd = nv_encoder->dp.dpcd;
/* some sinks toggle hotplug in response to some of the actions
* we take during link training (DP_SET_POWER is one), we need
* to ignore them for the moment to avoid races.
*/
pgpio->irq_enable(dev, nv_connector->hpd, false);
/* enable down-spreading, if possible */
if (dp.table[1] >= 16) {
u16 script = ROM16(dp.entry[14]);
if (nv_encoder->dp.dpcd[3] & 1)
script = ROM16(dp.entry[12]);
nouveau_bios_run_init_table(dev, script, dp.dcb, dp.crtc);
}
/* execute pre-train script from vbios */
nouveau_bios_run_init_table(dev, ROM16(dp.entry[6]), dp.dcb, dp.crtc);
/* start off at highest link rate supported by encoder and display */
while (*link_bw > nv_encoder->dp.link_bw)
link_bw++;
while (link_bw[0]) {
/* find minimum required lane count at this link rate */
dp.link_nr = nv_encoder->dp.link_nr;
while ((dp.link_nr >> 1) * link_bw[0] > datarate)
dp.link_nr >>= 1;
/* drop link rate to minimum with this lane count */
while ((link_bw[1] * dp.link_nr) > datarate)
link_bw++;
dp.link_bw = link_bw[0];
/* program selected link configuration */
dp_set_link_config(dev, &dp);
/* attempt to train the link at this configuration */
memset(dp.stat, 0x00, sizeof(dp.stat));
if (!dp_link_train_cr(dev, &dp) &&
!dp_link_train_eq(dev, &dp))
break;
/* retry at lower rate */
link_bw++;
}
/* finish link training */
dp_set_training_pattern(dev, &dp, DP_TRAINING_PATTERN_DISABLE);
/* execute post-train script from vbios */
nouveau_bios_run_init_table(dev, ROM16(dp.entry[8]), dp.dcb, dp.crtc);
/* re-enable hotplug detect */
pgpio->irq_enable(dev, nv_connector->hpd, true);
return true;
}
bool
nouveau_dp_detect(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
struct nouveau_i2c_chan *auxch;
u8 *dpcd = nv_encoder->dp.dpcd;
int ret;
auxch = nouveau_i2c_find(dev, nv_encoder->dcb->i2c_index);
if (!auxch)
return false;
ret = auxch_tx(dev, auxch->drive, 9, DP_DPCD_REV, dpcd, 8);
if (ret)
return false;
nv_encoder->dp.link_bw = 27000 * dpcd[1];
nv_encoder->dp.link_nr = dpcd[2] & DP_MAX_LANE_COUNT_MASK;
NV_DEBUG_KMS(dev, "display: %dx%d dpcd 0x%02x\n",
nv_encoder->dp.link_nr, nv_encoder->dp.link_bw, dpcd[0]);
NV_DEBUG_KMS(dev, "encoder: %dx%d\n",
nv_encoder->dcb->dpconf.link_nr,
nv_encoder->dcb->dpconf.link_bw);
if (nv_encoder->dcb->dpconf.link_nr < nv_encoder->dp.link_nr)
nv_encoder->dp.link_nr = nv_encoder->dcb->dpconf.link_nr;
if (nv_encoder->dcb->dpconf.link_bw < nv_encoder->dp.link_bw)
nv_encoder->dp.link_bw = nv_encoder->dcb->dpconf.link_bw;
NV_DEBUG_KMS(dev, "maximum: %dx%d\n",
nv_encoder->dp.link_nr, nv_encoder->dp.link_bw);
return true;
}
int
nouveau_dp_auxch(struct nouveau_i2c_chan *auxch, int cmd, int addr,
uint8_t *data, int data_nr)
{
return auxch_tx(auxch->dev, auxch->drive, cmd, addr, data, data_nr);
}
static int
nouveau_dp_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
struct nouveau_i2c_chan *auxch = (struct nouveau_i2c_chan *)adap;
struct i2c_msg *msg = msgs;
int ret, mcnt = num;
while (mcnt--) {
u8 remaining = msg->len;
u8 *ptr = msg->buf;
while (remaining) {
u8 cnt = (remaining > 16) ? 16 : remaining;
u8 cmd;
if (msg->flags & I2C_M_RD)
cmd = AUX_I2C_READ;
else
cmd = AUX_I2C_WRITE;
if (mcnt || remaining > 16)
cmd |= AUX_I2C_MOT;
ret = nouveau_dp_auxch(auxch, cmd, msg->addr, ptr, cnt);
if (ret < 0)
return ret;
ptr += cnt;
remaining -= cnt;
}
msg++;
}
return num;
}
static u32
nouveau_dp_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
const struct i2c_algorithm nouveau_dp_i2c_algo = {
.master_xfer = nouveau_dp_i2c_xfer,
.functionality = nouveau_dp_i2c_func
};